
Workgroup: MASQUE

Internet-Draft:

draft-pauly-masque-quic-proxy-04

Published: 2 September 2022

Intended Status: Experimental

Expires: 6 March 2023

Authors: T. Pauly

Apple Inc.

D. Schinazi

Google LLC

QUIC-Aware Proxying Using HTTP

Abstract

This document defines an extension to UDP Proxying over HTTP that

adds specific optimizations for proxied QUIC connections. This

extension allows a proxy to reuse UDP 4-tuples for multiple

connections. It also defines a mode of proxying in which QUIC short

header packets can be forwarded using an HTTP/3 proxy rather than

being re-encapsulated and re-encrypted.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/tfpauly/quic-proxy.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/tfpauly/quic-proxy
https://github.com/tfpauly/quic-proxy
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions and Definitions

1.2. Terminology

1.3. Virtual Target Connection ID

2. Required Proxy State

2.1. Stream Mapping

2.2. Virtual Target Connection ID Mapping

2.3. Client Connection ID Mappings

2.4. Detecting Connection ID Conflicts

3. Connection ID Capsule Types

4. Client Request Behavior

4.1. New Proxied Connection Setup

4.2. Adding New Client Connection IDs

4.3. Sending With Forwarded Mode

4.4. Receiving With Forwarded Mode

5. Proxy Response Behavior

5.1. Removing Mapping State

5.2. Handling Connection Migration

6. Example

7. Packet Size Considerations

8. Security Considerations

9. IANA Considerations

9.1. HTTP Header

9.2. Capsule Types

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

UDP Proxying over HTTP [CONNECT-UDP] defines a way to send datagrams

through an HTTP proxy, where UDP is used to communicate between the

proxy and a target server. This can be used to proxy QUIC

connections [QUIC], since QUIC runs over UDP datagrams.

¶

¶

https://trustee.ietf.org/license-info

This document uses the term "target" to refer to the server that a

client is accessing via a proxy. This target may be an origin

hosting content, or another proxy.

This document extends the UDP proxying protocol to add signalling

about QUIC Connection IDs. QUIC Connection IDs are used to identify

QUIC connections in scenarios where there is not a strict

bidirectional mapping between one QUIC connection and one UDP 4-

tuple (pairs of IP addresses and ports). A proxy that is aware of

Connection IDs can reuse UDP 4-tuples between itself and a target

for multiple proxied QUIC connections.

Awareness of Connection IDs also allows a proxy to avoid re-

encapsulation and re-encryption of proxied QUIC packets once a

connection has been established. When this functionality is present,

the proxy can support two modes for handling QUIC packets:

Tunnelled, in which client <-> target QUIC packets are

encapsulated inside client <-> proxy QUIC packets. These

packets use multiple layers of encryption and congestion

control. QUIC long header packets MUST use this mode. QUIC

short header packets MAY use this mode. This is the default

mode for UDP proxying.

Forwarded, in which client <-> target QUIC packets are sent

directly over the client <-> proxy UDP socket. These packets

are only encrypted using the client-target keys, and use the

client-target congestion control. This mode MUST only be used

for QUIC short header packets.

Forwarding is defined as an optimization to reduce CPU processing on

clients and proxies, as well as avoiding MTU overhead for packets on

the wire. This makes it suitable for deployment situations that

otherwise relied on cleartext TCP proxies, which cannot support QUIC

and have inferior security and privacy properties.

The properties provided by the forwarding mode are as follows:

All packets sent between the client and the target traverse

through the proxy device.

The target server cannot know the IP address of the client solely

based on the proxied packets the target receives.

Observers of either or both of the client <-> proxy link and the

proxy <-> target are not able to learn more about the client <->

target communication than if no proxy was used.

¶

¶

¶

1.

¶

2.

¶

¶

¶

*

¶

*

¶

*

¶

It is not a goal of forwarding mode to prevent correlation between

client <-> proxy and the proxy <-> target packets from an entity

that can observe both links. See Section 8 for further discussion.

Both clients and proxies can unilaterally choose to disable

forwarded mode for any client <-> target connection.

The forwarding mode of this extension is only defined for HTTP/3

[HTTP3] and not any earlier versions of HTTP.

QUIC proxies only need to understand the Header Form bit, and the

connection ID fields from packets in client <-> target QUIC

connections. Since these fields are all in the QUIC invariants

header [INVARIANTS], QUIC proxies can proxy all versions of QUIC.

1.1. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

This document uses the following terms:

Client: the client of all QUIC connections discussed in this

document.

Proxy: the endpoint that responds to the UDP proxying request.

Target: the server that a client is accessing via a proxy.

Client <-> Proxy HTTP stream: a single HTTP stream established

from the client to the proxy.

Socket: a UDP 4-tuple (local IP address, local UDP port, remote

IP address, remote UDP port). In some implementations, this is

referred to as a "connected" socket.

Client-facing socket: the socket used to communicate between the

client and the proxy.

Target-facing socket: the socket used to communicate between the

proxy and the target.

Client Connection ID: a QUIC Connection ID that is chosen by the

client, and is used in the Destination Connection ID field of

packets from the target to the client.

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

Target Connection ID: a QUIC Connection ID that is chosen by the

target, and is used in the Destination Connection ID field of

packets from the client to the target.

Virtual Target Connection ID: a fake QUIC Connection ID that is

chosen by the proxy that the client MUST use when sending QUIC

packets in forwarding mode.

1.3. Virtual Target Connection ID

QUIC allows each endpoint of a connection to choose the connection

IDs they receive with. Load balancing strategies such as those

described in [QUIC-LB] may choose to take advantage of this by

encoding routing information in the connection ID. When operating in

forwarding mode, clients send QUIC packets destined for the Target

directly to the Proxy. Since these packets are generated using the

Target Connection ID, load balancers may not be able to route

packets to the correct Proxy.

The Virtual Target Connection ID is a connection ID chosen by the

Proxy that the Client uses when sending forwarded mode packets. The

Proxy replaces the Virtual Target Connection ID with the Target

Connection ID prior to forwarding the packet to the Target. This is

only necessary in the Client->Target direction because the Proxy is

otherwise the only receiver of QUIC packets with connection IDs it

did not generate.

Clients and Proxies not implementing forwarding mode do not need to

consider the Virtual Target Connection ID since all Client->Target

datagrams will be encapsulated within the Client<->Proxy connection.

2. Required Proxy State

In the methods defined in this document, the proxy is aware of the

QUIC Connection IDs being used by proxied connections, along with

the sockets used to communicate with the client and the target.

Tracking Connection IDs in this way allows the proxy to reuse

target-facing sockets for multiple connections and support the

forwarding mode of proxying.

QUIC packets can be either tunnelled within an HTTP proxy connection

using HTTP Datagram frames [HTTP-DGRAM], or be forwarded directly

alongside an HTTP/3 proxy connection on the same set of IP addresses

and UDP ports. The use of forwarded mode requires the consent of

both the client and the proxy.

In order to correctly route QUIC packets in both tunnelled and

forwarded modes, the proxy needs to maintain mappings between

several items. There are three required unidirectional mappings,

described below.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

2.1. Stream Mapping

Each client <-> proxy HTTP stream MUST be mapped to a single target-

facing socket.

Multiple streams can map to the same target-facing socket, but a

single stream cannot be mapped to multiple target-facing sockets.

This mapping guarantees that any HTTP Datagram using a stream sent

from the client to the proxy in tunnelled mode can be sent to the

correct target.

2.2. Virtual Target Connection ID Mapping

Each pair of Virtual Target Connection ID and client-facing socket

MUST map to a single target-facing socket and Target Connection ID.

Multiple pairs of Connection IDs and client-facing sockets can map

to the same target-facing socket.

This mapping guarantees that any QUIC packet containing the Virtual

Target Connection ID sent from the client to the proxy in forwarded

mode can be sent to the correct target with the correct Target

Connection ID. Thus, a proxy that does not allow forwarded mode does

not need to maintain this mapping.

2.3. Client Connection ID Mappings

Each pair of Client Connection ID and target-facing socket MUST map

to a single stream on a single client <-> proxy HTTP stream.

Additionally, when supporting forwarding mode, the pair of Client

Connection ID and target-facing socket MUST map to a single client-

facing socket.

Multiple pairs of Connection IDs and target-facing sockets can map

to the same HTTP stream or client-facing socket.

These mappings guarantee that any QUIC packet sent from a target to

the proxy can be sent to the correct client, in either tunnelled or

forwarded mode. Note that this mapping becomes trivial if the proxy

always opens a new target-facing socket for every client request

¶

(Client <-> Proxy HTTP Stream) => Target-facing socket¶

¶

¶

¶

(Client-facing socket + Virtual Target Connection ID)

 => (Target-facing socket + Target Connection ID)

¶

¶

¶

¶

(Target-facing socket + Client Connection ID) => (Client <-> Proxy HTTP Stream)

(Target-facing socket + Client Connection ID) => Client-facing socket

¶

¶

with a unique stream. The mapping is critical for any case where

target-facing sockets are shared or reused.

2.4. Detecting Connection ID Conflicts

In order to be able to route packets correctly in both tunnelled and

forwarded mode, proxies check for conflicts before creating a new

mapping. If a conflict is detected, the proxy will reject the

client's request, as described in Section 5.

Two sockets conflict if and only if all members of the 4-tuple

(local IP address, local UDP port, remote IP address, and remote UDP

port) are identical.

Two Connection IDs conflict if and only if one Connection ID is

equal to or a prefix of another. For example, a zero-length

Connection ID conflicts with all connection IDs. This definition of

a conflict originates from the fact that QUIC short headers do not

carry the length of the Destination Connection ID field, and

therefore if two short headers with different Destination Connection

IDs are received on a shared socket, one being a prefix of the other

prevents the receiver from identifying which mapping this

corresponds to.

The proxy treats two mappings as being in conflict when a conflict

is detected for all elements on the left side of the mapping

diagrams above.

Since very short Connection IDs are more likely to lead to

conflicts, particularly zero-length Connection IDs, a proxy MAY

choose to reject all requests for very short Connection IDs as

conflicts, in anticipation of future conflicts.

3. Connection ID Capsule Types

Proxy awareness of QUIC Connection IDs relies on using capsules

([HTTP-DGRAM]) to signal the addition and removal of Client and

Target Connection IDs.

Note that these capsules do not register contexts. QUIC packets are

encoded using HTTP Datagrams with the context ID set to zero as

defined in [CONNECT-UDP].

The capsules used for QUIC-aware proxying allow a client to register

connection IDs with the proxy, and for the proxy to acknowledge or

reject the connection ID mappings.

The REGISTER_CLIENT_CID and REGISTER_TARGET_CID capsule types (see

Section 9.2 for the capsule type values) allow a client to inform

the proxy about a new Client Connection ID or a new Target

¶

¶

¶

¶

¶

¶

¶

¶

¶

Connection ID:

Connection ID, respectively. These capsule types MUST only be sent

by a client.

The ACK_CLIENT_CID and ACK_TARGET_CID capsule types (see Section 9.2

for the capsule type values) are sent by the proxy to the client to

indicate that a mapping was successfully created for a registered

connection ID as well as provide the Virtual Target Connection ID

that may be used in forwarding mode. These capsule types MUST only

be sent by a proxy.

The CLOSE_CLIENT_CID and CLOSE_TARGET_CID capsule types (see Section

9.2 for the capsule type values) allow either a client or a proxy to

remove a mapping for a connection ID. These capsule types MAY be

sent by either a client or the proxy. If a proxy sends a

CLOSE_CLIENT_CID without having sent an ACK_CLIENT_CID, or if a

proxy sends a CLOSE_TARGET_CID without having sent an

ACK_TARGET_CID, it is rejecting a Connection ID registration.

All capsule types except for ACK_TARGET_CID are formatted as

follows:

Figure 1: Connection ID Capsule Format

A connection ID being registered or acknowledged,

which is between 0 and 255 bytes in length. The length of the

connection ID is implied by the length of the capsule. Note that

in QUICv1, the length of the Connection ID is limited to 20

bytes, but QUIC invariants allow up to 255 bytes.

The ACK_TARGET_CID capsule type includes the Virtual Target

Connection ID and a Stateless Reset Token.

¶

¶

¶

¶

Connection ID Capsule {

 Type (i) = 0xffe200..0xffe202, 0xffe204..0xffe205

 Length (i),

 Connection ID (0..2040),

}

¶

¶

Virtual Target Connection ID Capsule {

 Type (i) = 0xffe203,

 Length (i)

 Connection ID Length (i)

 Connection ID (0..2040),

 Virtual Target Connection ID Length (i)

 Virtual Target Connection ID (0..2040),

 Stateless Reset Token Length (i),

 Stateless Reset Token (..),

}

Connection ID Length

Connection ID

Virtual Target Connection ID Length

Virtual Target Connection ID

Stateless Reset Token Length

Stateless Reset Token

Figure 2: Virtual Target Connection ID Capsule Format

The length of the connection ID being

acknowledged, which is between 0 and 255. Note that in QUICv1,

the length of the Connection ID is limited to 20 bytes, but QUIC

invariants allow up to 255 bytes.

A connection ID being acknowledged whose length is

equal to Connection ID Length. This is the real Target Connection

ID.

The length of the connection ID

being provided to the client. This must be a valid connection ID

length for the QUIC version used in the client<->proxy QUIC

connection. When forwarding mode is not negotiated, the length

MUST be zero.

The Proxy-chosen connection ID that

the client MUST use when sending packets in forwarding mode. The

proxy rewrites forwarding mode packets to contain the correct

Target Connection ID prior to forwarding them on to the Target.

The length of the stateless reset

token that may be sent by the proxy in response to forwarded mode

packets in order to reset the Client<->Target QUIC connection.

When forwarding mode is not negotiated, the length MUST be zero.

Proxies choosing not to support stateless resets MAY set the

length to zero. Clients receiving a zero-length stateless reset

token MUST ignore it.

A Stateless Reset Token provided by the Proxy

to the Client allowing the Proxy to reset the Client<->Target

connection in response to Client->Target forwarding mode packets.

4. Client Request Behavior

A client initiates UDP proxying via a CONNECT request as defined in

[CONNECT-UDP]. Within its request, it includes the "Proxy-QUIC-

Forwarding" header to indicate whether or not the request should

support forwarding. If this header is not included, the client MUST

NOT send any connection ID capsules.

The "Proxy-QUIC-Forwarding" is an Item Structured Header [RFC8941].

Its value MUST be a Boolean. Its ABNF is:

If the client wants to enable QUIC packet forwarding for this

request, it sets the value to "?1". If it doesn't want to enable

forwarding, but instead only provide information about QUIC

¶

¶

¶

¶

¶

¶

¶

¶

 Proxy-QUIC-Forwarding = sf-boolean¶

Connection IDs for the purpose of allowing the proxy to share a

target-facing socket, it sets the value to "?0".

If the proxy supports QUIC-aware proxying, it will include the

"Proxy-QUIC-Forwarding" header in successful HTTP responses. The

value indicates whether or not the proxy supports forwarding. If the

client does not receive this header in responses, the client SHALL

assume that the proxy does not understand how to parse Connection ID

capsules, and MUST NOT send any Connection ID capsules.

The client sends a REGISTER_CLIENT_CID capsule whenever it

advertises a new Client Connection ID to the target, and a

REGISTER_TARGET_CID capsule when it has received a new Target

Connection ID for the target. Note that the initial

REGISTER_CLIENT_CID capsule MAY be sent prior to receiving an HTTP

response from the proxy.

4.1. New Proxied Connection Setup

To initiate QUIC-aware proxying, the client sends a

REGISTER_CLIENT_CID capsule containing the initial Client Connection

ID that the client has advertised to the target.

If the mapping is created successfully, the client will receive a

ACK_CLIENT_CID capsule that contains the same connection ID that was

requested.

Since clients are always aware whether or not they are using a QUIC

proxy, clients are expected to cooperate with proxies in selecting

Client Connection IDs. A proxy detects a conflict when it is not

able to create a unique mapping using the Client Connection ID

(Section 2.4). It can reject requests that would cause a conflict

and indicate this to the client by replying with a CLOSE_CLIENT_CID

capsule. In order to avoid conflicts, clients SHOULD select Client

Connection IDs of at least 8 bytes in length with unpredictable

values. A client also SHOULD NOT select a Client Connection ID that

matches the ID used for the QUIC connection to the proxy, as this

inherently creates a conflict.

If the rejection indicated a conflict due to the Client Connection

ID, the client MUST select a new Connection ID before sending a new

request, and generate a new packet. For example, if a client is

sending a QUIC Initial packet and chooses a Connection ID that

conflicts with an existing mapping to the same target server, it

will need to generate a new QUIC Initial.

4.2. Adding New Client Connection IDs

Since QUIC connection IDs are chosen by the receiver, an endpoint

needs to communicate its chosen connection IDs to its peer before

¶

¶

¶

¶

¶

¶

¶

the peer can start using them. In QUICv1, this is performed using

the NEW_CONNECTION_ID frame.

Prior to informing the target of a new chosen client connection ID,

the client MUST send a REGISTER_CLIENT_CID capsule request

containing the new Client Connection ID.

The client should only inform the target of the new Client

Connection ID once an ACK_CLIENT_CID capsule is received that

contains the echoed connection ID.

4.3. Sending With Forwarded Mode

Support for forwarding mode is determined by the "Proxy-QUIC-

Forwarding" header, see Section 5.

Once the client has learned the target server's Connection ID, such

as in the response to a QUIC Initial packet, it can send a

REGISTER_TARGET_CID capsule containing the Target Connection ID to

request the ability to forward packets.

The client MUST wait for an ACK_TARGET_CID capsule that contains the

echoed connection ID before using forwarded mode.

Prior to receiving the proxy server response, the client MUST send

short header packets tunnelled in HTTP Datagram frames. The client

MAY also choose to tunnel some short header packets even after

receiving the successful response.

If the Target Connection ID registration is rejected, for example

with a CLOSE_TARGET_CID capsule, it MUST NOT forward packets to the

requested Target Connection ID, but only use tunnelled mode. The

request might also be rejected if the proxy does not support

forwarded mode or has it disabled by policy.

QUIC long header packets MUST NOT be forwarded. These packets can

only be tunnelled within HTTP Datagram frames to avoid exposing

unnecessary connection metadata.

When forwarding, the client sends a QUIC packet with the Virtual

Target Connection ID in the QUIC short header, using the same socket

between client and proxy that was used for the main QUIC connection

between client and proxy.

If the Virtual Target Connection ID is smaller than the Target

Connection ID, the client MUST only write the Virtual Target

Connection ID bytes over the start of the Target Connection ID,

leaving the remainder of the Target Connection ID unmodified.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

If the Virtual Target Connection ID is larger than the Target

Connection ID, the client MUST extend the length of the packet by

the difference between the two lengths, to include the entire

Virtual Target Connection ID.

Clients supporting forwarding mode MUST be able to handle Virtual

Target Connection IDs of different lengths than the corresponding

Target Connection IDs.

4.4. Receiving With Forwarded Mode

If the client has indicated support for forwarding with the "Proxy-

QUIC-Forwarding" header, the proxy MAY use forwarded mode for any

Client Connection ID for which it has a valid mapping.

Once a client has sent "Proxy-QUIC-Forwarding" with a value of "?1",

it MUST be prepared to receive forwarded short header packets on the

socket between itself and the proxy for any Client Connection ID

that it has registered with a REGISTER_CLIENT_CID capsule. The

client uses the Destination Connection ID field of the received

packet to determine if the packet was originated by the proxy, or

merely forwarded from the target.

5. Proxy Response Behavior

Upon receipt of a CONNECT request that includes the "Proxy-QUIC-

Forwarding" header, the proxy indicates to the client that it

supports QUIC-aware proxying by including a "Proxy-QUIC-Forwarding"

header in a successful response. If it supports QUIC packet

forwarding, it sets the value to "?1"; otherwise, it sets it to "?

0".

Upon receipt of a REGISTER_CLIENT_CID or REGISTER_TARGET_CID

capsule, the proxy validates the registration, tries to establish

the appropriate mappings as described in Section 2.

The proxy MUST reply to each REGISTER_CLIENT_CID capsule with either

an ACK_CLIENT_CID or CLOSE_CLIENT_CID capsule containing the

Connection ID that was in the registration capsule.

Similarly, the proxy MUST reply to each REGISTER_TARGET_CID capsule

with either an ACK_TARGET_CID or CLOSE_TARGET_CID capsule containing

the Connection ID that was in the registration capsule.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

 aa bb cc aa bb cc aa bb <--- Target Connection ID

 11 22 33 <--- Virtual Target Connection ID

 11 22 33 aa bb cc aa bb <--- Resulting Connection ID Bytes

¶

¶

¶

¶

¶

¶

¶

¶

¶

The proxy then determines the target-facing socket to associate with

the client's request. This will generally involve performing a DNS

lookup for the target hostname in the CONNECT request, or finding an

existing target-facing socket to the authority. The target-facing

socket might already be open due to a previous request from this

client, or another. If the socket is not already created, the proxy

creates a new one. Proxies can choose to reuse target-facing sockets

across multiple UDP proxying requests, or have a unique target-

facing socket for every UDP proxying request.

If a proxy reuses target-facing sockets, it SHOULD store which

authorities (which could be a domain name or IP address literal) are

being accessed over a particular target-facing socket so it can

avoid performing a new DNS query and potentially choosing a

different target server IP address which could map to a different

target server.

Target-facing sockets MUST NOT be reused across QUIC and non-QUIC

UDP proxy requests, since it might not be possible to correctly

demultiplex or direct the traffic. Any packets received on a target-

facing socket used for proxying QUIC that does not correspond to a

known Connection ID MUST be dropped.

When the proxy recieves a REGISTER_CLIENT_CID capsule, it is

receiving a request to be able to route traffic back to the client

using that Connection ID. If the pair of this Client Connection ID

and the selected target-facing socket does not create a conflict,

the proxy creates the mapping and responds with a ACK_CLIENT_CID

capsule. After this point, any packets received by the proxy from

the target-facing socket that match the Client Connection ID can to

be sent to the client. The proxy MUST use tunnelled mode (HTTP

Datagram frames) for any long header packets. The proxy SHOULD

forward directly to the client for any matching short header packets

if forwarding is supported by the client, but the proxy MAY tunnel

these packets in HTTP Datagram frames instead. If the mapping would

create a conflict, the proxy responds with a CLOSE_CLIENT_CID

capsule.

When the proxy recieves a REGISTER_TARGET_CID capsule, it is

receiving a request to allow the client to forward packets to the

target. The proxy generates a Virtual Target Connection ID for the

client to use when sending packets in forwarding mode. If forwarding

mode is not supported, the proxy MUST NOT send a Virtual Target

Connection ID by setting the length to zero. If forwarding mode is

supported, the proxy MUST use a Virtual Target Connection ID that

does not introduce a conflict with any other Connection ID on the

client-facing socket. The proxy creates the mapping and responds

with an ACK_TARGET_CID capsule. Once the successful response is

sent, the proxy will forward any short header packets received on

¶

¶

¶

¶

the client-facing socket that use the Virtual Target Connection ID

using the correct target-facing socket after first rewriting the

Virtual Target Connection ID to be the correct Target Connection ID.

A proxy that supports forwarding mode but chooses not to support

rewriting the Virtual Target Connection ID to the Target Connection

ID may opt to simply let them be equal. If the proxy does wish to

choose a Virtual Target Connection ID, it MUST be able to replace

the Virtual Target Connection ID with the Target Connection ID and

correctly handle length differences between the two.

If the proxy does not support forwarded mode, or does not allow

forwarded mode for a particular client or authority by policy, it

can reject all REGISTER_TARGET_CID requests with CLOSE_TARGET_CID

capsule.

The proxy MUST only forward non-tunnelled packets from the client

that are QUIC short header packets (based on the Header Form bit)

and have mapped Virtual Target Connection IDs. Packets sent by the

client that are forwarded SHOULD be considered as activity for

restarting QUIC's Idle Timeout [QUIC].

5.1. Removing Mapping State

For any registration capsule for which the proxy has sent an

acknowledgement, any mappings last until either endpoint sends a

close capsule or the either side of the HTTP stream closes.

A client that no longer wants a given Connection ID to be forwarded

by the proxy sends a CLOSE_CLIENT_CID or CLOSE_TARGET_CID capsule.

If a client's connection to the proxy is terminated for any reason,

all mappings associated with all requests are removed.

A proxy can close its target-facing socket once all UDP proxying

requests mapped to that socket have been removed.

5.2. Handling Connection Migration

If a proxy supports QUIC connection migration, it needs to ensure

that a migration event does not end up sending too many tunnelled or

proxied packets on a new path prior to path validation.

Specifically, the proxy MUST limit the number of packets that it

will proxy to an unvalidated client address to the size of an

initial congestion window. Proxies additionally SHOULD pace the rate

at which packets are sent over a new path to avoid creating

unintentional congestion on the new path.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6. Example

Consider a client that is establishing a new QUIC connection through

the proxy. It has selected a Client Connection ID of 0x31323334. In

order to inform a proxy of the new QUIC Client Connection ID, the

client also sends a REGISTER_CLIENT_CID capsule.

The client will also send the initial QUIC packet with the Long

Header form in an HTTP datagram.

Once the client learns which Connection ID has been selected by the

target server, it can send a new request to the proxy to establish a

mapping for forwarding. In this case, that ID is 0x61626364. The

client sends the following capsule:

¶

¶

Client Server

STREAM(44): HEADERS -------->

 :method = CONNECT

 :protocol = connect-udp

 :scheme = https

 :path = /target.example.com/443/

 :authority = proxy.example.org

 proxy-quic-forwarding = ?1

 capsule-protocol = ?1

STREAM(44): DATA -------->

 Capsule Type = REGISTER_CLIENT_CID

 Connection ID = 0x31323334

DATAGRAM -------->

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated QUIC initial

 <-------- STREAM(44): HEADERS

 :status = 200

 proxy-quic-forwarding = ?1

 capsule-protocol = ?1

 <-------- STREAM(44): DATA

 Capsule Type = ACK_CLIENT_CID

 Connection ID = 0x31323334

/* Wait for target server to respond to UDP packet. */

 <-------- DATAGRAM

 Quarter Stream ID = 11

 Context ID = 0

 Payload = Encapsulated QUIC initial

¶

¶

Upon receiving an ACK_TARGET_CID capsule, the client starts sending

Short Header packets with a Destination Connection ID of

0x123412341234 directly to the proxy (not tunnelled), and these are

rewritten by the proxy to have the Destination Connection ID

0x61626364 prior to being forwarded directly to the target. In the

reverse direction, Short Header packets from the target with a

Destination Connection ID of 0x31323334 are forwarded directly to

the client without modification.

7. Packet Size Considerations

Since Initial QUIC packets must be at least 1200 bytes in length,

the HTTP Datagram frames that are used for a QUIC-aware proxy MUST

be able to carry at least 1200 bytes.

Additionally, clients that connect to a proxy for purpose of

proxying QUIC SHOULD start their connection with a larger packet

size than 1200 bytes, to account for the overhead of tunnelling an

Initial QUIC packet within an HTTP Datagram frame. If the client

does not begin with a larger packet size than 1200 bytes, it will

need to perform Path MTU (Maximum Transmission Unit) discovery to

discover a larger path size prior to sending any tunnelled Initial

QUIC packets.

Once a proxied QUIC connections moves into forwarded mode, the

client SHOULD initiate Path MTU discovery to increase its end-to-end

MTU.

8. Security Considerations

Proxies that support this extension SHOULD provide protections to

rate-limit or restrict clients from opening an excessive number of

proxied connections, so as to limit abuse or use of proxies to

launch Denial-of-Service attacks.

Sending QUIC packets by forwarding through a proxy without

tunnelling exposes some QUIC header metadata to onlookers, and can

be used to correlate packet flows if an attacker is able to see

traffic on both sides of the proxy. Tunnelled packets have similar

inference problems. An attacker on both sides of the proxy can use

STREAM(44): DATA -------->

 Capsule Type = REGISTER_TARGET_CID

 Connection ID = 0x61626364

 <-------- STREAM(44): DATA

 Capsule Type = ACK_TARGET_CID

 Connection ID = 0x61626364

 Virtual Target Connection ID = 0x123412341234

 Stateless Reset Token = Token

¶

¶

¶

¶

¶

¶

[CONNECT-UDP]

the size of ingress and egress packets to correlate packets

belonging to the same connection. (Absent client-side padding,

tunneled packets will typically have a fixed amount of overhead that

is removed before their HTTP Datagram contents are written to the

target.)

Since proxies that forward QUIC packets do not perform any

cryptographic integrity check, it is possible that these packets are

either malformed, replays, or otherwise malicious. This may result

in proxy targets rate limiting or decreasing the reputation of a

given proxy.

9. IANA Considerations

9.1. HTTP Header

This document registers the "Proxy-QUIC-Forwarding" header in the

"Permanent Message Header Field Names" <https://www.iana.org/

assignments/message-headers>.

Figure 3: Registered HTTP Header

9.2. Capsule Types

This document registers six new values in the "HTTP Capsule Types"

registry established by [HTTP-DGRAM].

Capule Type Value Specification

REGISTER_CLIENT_CID 0xffe200 This Document

REGISTER_TARGET_CID 0xffe201 This Document

ACK_CLIENT_CID 0xffe202 This Document

ACK_TARGET_CID 0xffe203 This Document

CLOSE_CLIENT_CID 0xffe204 This Document

CLOSE_TARGET_CID 0xffe205 This Document

Table 1: Registered Capsule Types

10. References

10.1. Normative References

Schinazi, D., "Proxying UDP in HTTP", Work in

Progress, Internet-Draft, draft-ietf-masque-connect-

¶

¶

¶

 +-----------------------+----------+--------+---------------+

 | Header Field Name | Protocol | Status | Reference |

 +-----------------------+----------+--------+---------------+

 | Proxy-QUIC-Forwarding | http | exp | This document |

 +-----------------------+----------+--------+---------------+

¶

https://www.iana.org/assignments/message-headers
https://www.iana.org/assignments/message-headers

[HTTP-DGRAM]

[HTTP3]

[INVARIANTS]

[QUIC]

[RFC2119]

[RFC8174]

[RFC8941]

[QUIC-LB]

udp-15, 17 June 2022, <https://datatracker.ietf.org/doc/

html/draft-ietf-masque-connect-udp-15>.

Schinazi, D. and L. Pardue, "HTTP Datagrams and the

Capsule Protocol", Work in Progress, Internet-Draft,

draft-ietf-masque-h3-datagram-11, 17 June 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-masque-h3-

datagram-11>.

Bishop, M., "HTTP/3", Work in Progress, Internet-Draft,

draft-ietf-quic-http-34, 2 February 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-quic-http-34>.

Thomson, M., "Version-Independent Properties of QUIC",

RFC 8999, DOI 10.17487/RFC8999, May 2021, <https://

www.rfc-editor.org/rfc/rfc8999>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field Values

for HTTP", RFC 8941, DOI 10.17487/RFC8941, February 2021,

<https://www.rfc-editor.org/rfc/rfc8941>.

10.2. Informative References

Duke, M., Banks, N., and C. Huitema, "QUIC-LB: Generating

Routable QUIC Connection IDs", Work in Progress,

Internet-Draft, draft-ietf-quic-load-balancers-14, 11

July 2022, <https://datatracker.ietf.org/doc/html/draft-

ietf-quic-load-balancers-14>.

Acknowledgments

Thanks to Lucas Pardue, Ryan Hamilton, and Mirja Kuehlewind for

their inputs on this document.¶

https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-15
https://datatracker.ietf.org/doc/html/draft-ietf-masque-connect-udp-15
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-masque-h3-datagram-11
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-34
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/rfc/rfc8999
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941
https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers-14
https://datatracker.ietf.org/doc/html/draft-ietf-quic-load-balancers-14

Authors' Addresses

Tommy Pauly

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

David Schinazi

Google LLC

1600 Amphitheatre Parkway

Mountain View, California 94043,

United States of America

Email: dschinazi.ietf@gmail.com

mailto:tpauly@apple.com
mailto:dschinazi.ietf@gmail.com

	QUIC-Aware Proxying Using HTTP
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions
	1.2. Terminology
	1.3. Virtual Target Connection ID

	2. Required Proxy State
	2.1. Stream Mapping
	2.2. Virtual Target Connection ID Mapping
	2.3. Client Connection ID Mappings
	2.4. Detecting Connection ID Conflicts

	3. Connection ID Capsule Types
	4. Client Request Behavior
	4.1. New Proxied Connection Setup
	4.2. Adding New Client Connection IDs
	4.3. Sending With Forwarded Mode
	4.4. Receiving With Forwarded Mode

	5. Proxy Response Behavior
	5.1. Removing Mapping State
	5.2. Handling Connection Migration

	6. Example
	7. Packet Size Considerations
	8. Security Considerations
	9. IANA Considerations
	9.1. HTTP Header
	9.2. Capsule Types

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Authors' Addresses

