
Workgroup: Network Working Group

Internet-Draft:

draft-pauly-privacypass-auth-scheme-00

Published: 31 January 2022

Intended Status: Standards Track

Expires: 4 August 2022

Authors: T. Pauly

Apple Inc.

S. Valdez

Google LLC

C.A. Wood

Cloudflare

The Privacy Pass HTTP Authentication Scheme

Abstract

This document defines an HTTP authentication scheme that can be used

by clients to redeem Privacy Pass tokens with an origin. It can also

be used by origins to challenge clients to present an acceptable

Privacy Pass token.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/tfpauly/privacy-proxy.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/tfpauly/privacy-proxy
https://github.com/tfpauly/privacy-proxy
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. HTTP Authentication Scheme

2.1. Token Challenge

2.2. Token Redemption

3. Issuance Protocol Requirements

4. User Interaction

5. Security Considerations

6. IANA Considerations

6.1. Authentication Scheme

6.2. Token Type Registry

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

Privacy Pass tokens are unlinkable authenticators that can be used

to anonymously authorize a client (see [I-D.ietf-privacypass-

architecture]). A client possessing such a token is able to prove

that it was able to get a token issued by a token issuer -- based on

some check from a token issuer, such as authentication or solving a

CAPTCHA -- without allowing the relying party redeeming the client's

token (the origin) to link it with issuance flow.

Different types of authenticators, using different token issuance

protocols, can be used as Privacy Pass tokens.

This document defines a common HTTP authentication scheme

([RFC7235]), PrivateToken, that allows clients to redeem various

kinds of Privacy Pass tokens.

Clients and relying parties interact using this scheme to perform

the token challenge and token redemption flow. Clients use a token

issuance protocol to actually fetch tokens to redeem.

¶

¶

¶

¶

¶

Figure 1: Token Architectural Components

In addition to working with different token issuance protocols, this

scheme supports both interactive (online challenges) and non-

interactive (pre-fetched) token redemption, as well as the ability

to scope a token to a specific resource or origin. Relying parties

that request and redeem tokens can choose a specific kind of token,

as appropriate for its use case. For example, non-interactive token

redemption that is not scoped to a specific origin can be used as a

replacement for CAPTCHAs, as exemplified by the original Privacy

Pass work [DGSTV18].

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the following terms to refer to various roles and

functions in the Privacy Pass architecture:

Client: A client is a application or device, generally operated

by a user, that can be issued tokens via an issuance protocol,

and can redeem these tokens with an origin.

Origin: An HTTP server that acts as the relying party and can

redeem tokens presented by a client. When used in a web context,

this represents the origin the client is accessing.

Token: A signed message that can be issued to a client and

redeemed without allowing token redemption to be linked to

issuance.

Interactive / non-interactive token: An interactive token signs a

nonce generated by an origin as part of a challenge for tokens.

This means that the client needs to fetch a new token for this

 Client Relying Party (Origin)

 <------------------------------ Challenge \

 |

+----------------------------------\ |

| | |

| Issuance Protocol | |

| | |

+----------------------------------/ |

 |

 Redemption -------------------------- > /

¶

¶

¶

*

¶

*

¶

*

¶

*

challenge in order to redeem it and cannot use a pre-fetched

token. A non-interactive token is one that can be pre-fetched.

Issuance protocol: A protocol by which the client fetches tokens.

Every issuance protocol includes two functions: validating or

authenticating the client, and issuing a token to the client.

Issuer: An entity that generates tokens for clients using one or

more issuance protocols. An Issuer is identified by an Issuer

name.

Issuer key: Keying material that can be used with an issuance

protocol to create a signed token.

Token challenge: A requirement for tokens sent from an origin to

a client, using the "WWW-Authenticate" HTTP header. This may be a

challenge for an interactive token or a non-interactive token. A

challenge defines the issuance protocol and issuer name to use

for a token.

Token redemption: An action by which a client presents a token to

an origin, using the "Authorization" HTTP header.

2. HTTP Authentication Scheme

Token redemption is performed using HTTP Authentication ([RFC7235]),

with the scheme "PrivateToken". Origins challenge clients to present

a token from a specific issuer (Section 2.1). Once a client has

received a token from that issuer, or already has a valid token

available, it presents the token to the origin (Section 2.2).

2.1. Token Challenge

Origins send a token challenge to Clients in an "WWW-Authenticate"

header with the "PrivateToken" scheme. This challenge includes a

TokenChallenge message, along with information about what keys to

use when requesting a token from the issuer.

The TokenChallenge message has the following structure:

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

struct {

 uint16_t token_type;

 opaque issuer_name<1..2^16-1>;

 opaque redemption_nonce<0..32>;

 opaque origin_name<0..2^16-1>;

} TokenChallenge;

¶

The structure fields are defined as follows:

"token_type" is a 2-octet integer, in network byte order. This

type indicates the issuance protocol used to generate the token.

Values are registered in an IANA registry, Section 6.2.

Challenges with unsupported token_type values MUST be ignored.

"issuer_name" is a string containing the name of the issuer. This

is a hostname that is used to identify the issuer that is allowed

to issue tokens that can be redeemed by this origin.

"redemption_nonce" is an optional field. If present, it indicates

that a client needs to present an interactive token, generated

specifically in response to this challenge. If empty, the client

can use a non-interactive token. When present, this valid is a

fresh 32-byte nonce generated by the origin for each challenge.

Valid lengths for this field are either 0 or 32 bytes. Challenges

with redemption_nonce values of invalid lengths MUST be ignored.

"origin_name" is an optional string containing the name of the

origin. This allows a token to be scoped to a specific origin. If

empty, any non-origin specific token can be redeemed.

When used in an authentication challenge, the "PrivateToken" scheme

uses the following attributes:

"challenge", which contains a base64url-encoded [RFC4648]

TokenChallenge value. This MUST be unique for every 401 HTTP

response to prevent replay attacks. This attribute is required

for all challenges.

"token-key", which contains a base64url encoding of the public

key for use with the issuance protocol indicated by the

challenge. This attribute MAY be omitted in deployments where

clients are able to retrieve the issuer key using an out-of-band

mechanism.

"max-age", an optional attribute that consists of the number of

seconds for which the challenge will be accepted by the Origin.

Clients can ignore the challenge if the token-key is invalid or

otherwise untrusted.

Origins MAY also include the standard "realm" attribute, if desired.

Issuance protocols MAY require other attributes.

As an example, the WWW-Authenticate header could look like this:

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

WWW-Authenticate: PrivateToken challenge=abc..., token-key=123...¶

Upon receipt of this challenge, a client uses the message and keys

in the issuance protocol indicated by the token_type. If the

TokenChallenge has a token_type the client does not recognize or

support, it MUST NOT parse or respond to the challenge.

Note that it is possible for the WWW-Authenticate header to include

multiple challenges, in order to allow the Client to fetch a batch

of multiple tokens for future use.

For example, the WWW-Authenticate header could look like this:

2.2. Token Redemption

The output of the issuance protocol is a token that corresponds to

the origin's challenge (see Section 2.1). A token is a structure

that begins with a two-octet field that indicates a token type,

which MUST match the token_type in the TokenChallenge structure.

The structure fields are defined as follows:

"token_type" is a 2-octet integer, in network byte order. This

value must match the value in the challenge (Section 2.1).

"nonce" is a 32-octet message containing a client-generated

random nonce.

"context" is a 32-octet message containing the hash of the

original TokenChallenge, SHA256(TokenChallenge).

"token_key_id" is an Nid-octet identifier for the the token

authentication key. The value of this field is defined by the

token_type and corresponding issuance protocol.

"authenticator" is a Nk-octet authenticator that covers the

preceding fields in the token. The value of this field is defined

by the token_type and corresponding issuance protocol.

The authenticator value in the Token structure is computed over the

token_type, nonce, context, and token_key_id fields.

¶

¶

¶

WWW-Authenticate: PrivateToken challenge=abc..., token-key=123...,

PrivateToken challenge=def..., token-key=234...

¶

¶

struct {

 uint16_t token_type;

 uint8_t nonce[32];

 uint8_t context[32];

 uint8_t token_key_id[Nid];

 uint8_t authenticator[Nk];

} Token;

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

When used for client authorization, the "PrivateToken"

authentication scheme defines one parameter, "token", which contains

the base64url-encoded Token struct. All unknown or unsupported

parameters to "PrivateToken" authentication credentials MUST be

ignored.

Clients present this Token structure to Origins in a new HTTP

request using the Authorization header as follows:

For token types that support public verifiability, origins verify

the token authenticator using the public key of the issuer, and

validate that the signed message matches the concatenation of the

client nonce and the hash of a valid TokenChallenge. For interactive

tokens, origins store the nonces of previous TokenChallenge

structures in order to validate uniqueness. A TokenChallenge MAY be

bound to a specific HTTP session with client, but origins can also

accept tokens for valid challenges in new sessions. For non-

interactive tokens, origins SHOULD implement some form of double

spend prevention that prevents a token with the same nonce from

being redeemed twice. This prevents clients from "replaying" tokens

for previous challenges.

If a client is unable to fetch a token, it MUST react to the

challenge as if it could not produce a valid Authorization response.

3. Issuance Protocol Requirements

Clients initiate the issuance protocol using a challenge, a randomly

generated nonce, and a public key for the issuer. The issuance

protocol itself can be any interactive protocol between client,

issuer, or other parties that produces a valid authenticator over

the client's input, subject to the following security requirements.

Unconditional input secrecy. The issuance protocol MUST NOT

reveal anything about the client's private input, including the

challenge and nonce. The issuance protocol can reveal the

issuer public key for the purposes of determining which private

key to use in producing the issuance protocol. A result of this

property is that the redemption flow is unlinkable from the

issuance flow.

One-more forgery security. The issuance protocol MUST NOT allow

malicious clients to forge tokens without interacting with the

issuer directly.

Concurrent security. The issuance protocol MUST be safe to run

concurrently with arbitrarily many clients.

¶

¶

Authorization: PrivateToken token=abc...¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4. User Interaction

When used in contexts like websites, origins that challenge clients

for tokens need to consider how to optimize their interaction model

to ensure a good user experience.

Tokens challenges can be performed without explicit user

involvement, depending on the issuance protocol. If tokens are

scoped to a specific origin, there is no need for per-challenge user

interaction. Note that the issuance protocol may separately involve

user interaction if the client needs to be newly validated.

The use of interactive tokens can add user-perceivable latency,

since such tokens cannot be pre-fetched. Origins need not block

useful work on token authentication. Instead, token authentication

can be used in similar ways to CAPTCHA validation today, but without

the need for user interaction. If issuance is taking a long time, a

website could show an indicator that it is waiting, or fall back to

another method of user validation.

An origin MUST NOT issue more than one interactive challenge for a

given token type and issuer per client request. If an origin issues

a large number of challenges, such as more than once for each

request, this can indicate that the origin is either not functioning

correctly or is trying to attack or overload the client or issuance

server. In such cases, a client MUST ignore redundant token

challenges for the same request and SHOULD alert the user if

possible.

Origins MAY include multiple challenges, where each challenge refers

to a different issuer or a different token type, to allow clients to

choose a preferred issuer or type.

5. Security Considerations

The security properties of token challenges vary depending on

whether the challenge is interactive or not, as well as whether the

challenge is per-origin or not. For example, non-interactive, cross-

origin tokens can be replayed from one party by another, as shown

below.

¶

¶

¶

¶

¶

¶

Figure 2: Token Architectural Components

Interactive token challenges require clients to obtain matching

tokens when challenged, rather than presenting a token that was

obtained in the past. This means that issuance and redemption events

will occur at approximately the same time. For example, if a client

is challenged for an interactive token at time T1 and then

subsequently obtains a token at time T2, a colluding issuer and

origin can link this to the same client if T2 is unique to the

client. This linkability is less feasible as the number of issuance

events at time T2 increases. Depending on the "max-age" token

challenge attribute, clients MAY try to augment the time between

getting challenged then redeeming a token so as to make this sort of

linkability more difficult. For more discussion on correlation risks

between token issuance and redemption, see [I-D.ietf-privacypass-

architecture].

Applications SHOULD constrain tokens to a single origin unless the

use case can accommodate such replay attacks.

All random values in the challenge and token MUST be generated using

a cryptographically secure source of randomness.

6. IANA Considerations

6.1. Authentication Scheme

This document registers the "PrivateToken" authentication scheme in

the "Hypertext Transfer Protocol (HTTP) Authentication Scheme

Registry" established by [RFC7235].

Authentication Scheme Name: PrivateToken

Pointer to specification text: Section 2 of this document

6.2. Token Type Registry

The "Token Type" registry lists identifiers for issuance protocols

defined for use with the Privacy Pass token authentication scheme.

 Client Attacker Origin

 <----------- Challenge \

 |

 <--------- Challenge |

 |

 Redemption ----> |

 |

 Redemption ----------> /

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC4648]

[RFC7235]

These identifiers are two-byte values, so the maximum possible value

is 0xFFFF = 65535.

Template:

Value: The two-byte identifier for the algorithm

Name: Name of the issuance protocol

Publicly Verifiable: A Y/N value indicating if the output tokens

are publicly verifiable

Public Metadata: A Y/N value indicating if the output tokens can

contain public metadata.

Private Metadata: A Y/N value indicating if the output tokens can

contain private metadata.

Nk: The length in bytes of an output authenticator

Nid: The length of the token key identifier

Reference: Where this algorithm is defined

The initial contents for this registry are defined in the table

below.

Value Name
Publicly

Verifiable

Public

Metadata

Private

Metadata
Nk Nid Reference

0x0000 (reserved) N/A N/A N/A
N/

A
N/A N/A

Table 1: Token Types

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/rfc/rfc4648>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4648

[RFC8174]

[DGSTV18]

[I-D.ietf-privacypass-architecture]

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/rfc/rfc7235>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

7.2. Informative References

"Privacy Pass, Bypassing Internet Challenges

Anonymously", n.d., <https://petsymposium.org/2018/files/

papers/issue3/popets-2018-0026.pdf>.

Davidson, A. and C. A. Wood,

"Privacy Pass Architectural Framework", Work in Progress,

Internet-Draft, draft-ietf-privacypass-architecture-01,

22 February 2021, <https://datatracker.ietf.org/doc/html/

draft-ietf-privacypass-architecture-01>.

Authors' Addresses

Tommy Pauly

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: tpauly@apple.com

Steven Valdez

Google LLC

Email: svaldez@chromium.org

Christopher A. Wood

Cloudflare

Email: caw@heapingbits.net

https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc7235
https://www.rfc-editor.org/rfc/rfc8174
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://petsymposium.org/2018/files/papers/issue3/popets-2018-0026.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-01
https://datatracker.ietf.org/doc/html/draft-ietf-privacypass-architecture-01
mailto:tpauly@apple.com
mailto:svaldez@chromium.org
mailto:caw@heapingbits.net

	The Privacy Pass HTTP Authentication Scheme
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. HTTP Authentication Scheme
	2.1. Token Challenge
	2.2. Token Redemption

	3. Issuance Protocol Requirements
	4. User Interaction
	5. Security Considerations
	6. IANA Considerations
	6.1. Authentication Scheme
	6.2. Token Type Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

