
Network Working Group T. Pauly
Internet-Draft E. Kinnear
Intended status: Standards Track Apple Inc.
Expires: May 7, 2020 D. Schinazi
 Google LLC
 November 04, 2019

An Unreliable Datagram Extension to QUIC
draft-pauly-quic-datagram-05

Abstract

 This document defines an extension to the QUIC transport protocol to
 add support for sending and receiving unreliable datagrams over a
 QUIC connection.

 Discussion of this work is encouraged to happen on the QUIC IETF
 mailing list quic@ietf.org [1] or on the GitHub repository which
 contains the draft: https://github.com/tfpauly/draft-pauly-quic-

datagram [2].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Pauly, et al. Expires May 7, 2020 [Page 1]

https://github.com/tfpauly/draft-pauly-quic-datagram
https://github.com/tfpauly/draft-pauly-quic-datagram
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUIC Datagrams November 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Specification of Requirements 3

2. Motivation . 3
3. Transport Parameter . 4
4. Datagram Frame Type . 5
5. Behavior and Usage . 5
5.1. Acknowledgement Handling 6
5.2. Flow Control . 6
5.3. Congestion Control 6

6. Security Considerations 7
7. IANA Considerations . 7
8. Acknowledgments . 7
9. References . 8
9.1. Normative References 8
9.2. Informative References 8
9.3. URIs . 8

 Authors' Addresses . 9

1. Introduction

 The QUIC Transport Protocol [I-D.ietf-quic-transport] provides a
 secure, multiplexed connection for transmitting reliable streams of
 application data. Reliability within QUIC is performed on a per-
 stream basis, so some frame types are not eligible for
 retransmission.

 Some applications, particularly those that need to transmit real-time
 data, prefer to transmit data unreliably. These applications can
 build directly upon UDP [RFC0768] as a transport, and can add
 security with DTLS [RFC6347]. Extending QUIC to support transmitting
 unreliable application data would provide another option for secure
 datagrams, with the added benefit of sharing a cryptographic and
 authentication context used for reliable streams.

 This document defines four new DATAGRAM QUIC frame types, which carry
 application data without requiring retransmissions.

 Discussion of this work is encouraged to happen on the QUIC IETF
 mailing list quic@ietf.org [3] or on the GitHub repository which

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc6347

Pauly, et al. Expires May 7, 2020 [Page 2]

Internet-Draft QUIC Datagrams November 2019

 contains the draft: https://github.com/tfpauly/draft-pauly-quic-
datagram [4].

1.1. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Motivation

 Transmitting unreliable data over QUIC provides benefits over
 existing solutions:

 o Applications that open both a reliable TLS stream and an
 unreliable DTLS flow to the same peer can benefit by sharing a
 single handshake and authentication context between a reliable
 QUIC stream and flow of unreliable QUIC datagrams. This can
 reduce the latency required for handshakes.

 o QUIC uses a more nuanced loss recovery mechanism than the DTLS
 handshake, which has a basic packet loss retransmission timer.
 This may allow loss recovery to occur more quickly for QUIC data.

 o QUIC datagrams, while unreliable, can support acknowledgements,
 allowing applications to be aware of whether a datagram was
 successfully received.

 o QUIC datagrams are subject to QUIC congestion control, allowing
 applications to avoid implementing their own.

 These reductions in connection latency, and application insight into
 the delivery of datagrams, can be useful for optimizing audio/video
 streaming applications, gaming applications, and other real-time
 network applications.

 Unreliable QUIC datagrams can also be used to implement an IP packet
 tunnel over QUIC, such as for a Virtual Private Network (VPN).
 Internet-layer tunneling protocols generally require a reliable and
 authenticated handshake, followed by unreliable secure transmission
 of IP packets. This can, for example, require a TLS connection for
 the control data, and DTLS for tunneling IP packets. A single QUIC
 connection could support both parts with the use of unreliable
 datagrams.

https://github.com/tfpauly/draft-pauly-quic-datagram
https://github.com/tfpauly/draft-pauly-quic-datagram
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Pauly, et al. Expires May 7, 2020 [Page 3]

Internet-Draft QUIC Datagrams November 2019

3. Transport Parameter

 Support for receiving the DATAGRAM frame types is advertised by means
 of a QUIC Transport Parameter (name=max_datagram_frame_size,
 value=0x0020). The max_datagram_frame_size transport parameter is an
 integer value (represented as a variable-length integer) that
 represents the maximum size of a DATAGRAM frame (including the frame
 type, length, and payload) the endpoint is willing to receive, in
 bytes. An endpoint that includes this parameter supports the
 DATAGRAM frame types and is willing to receive such frames on this
 connection. Endpoints MUST NOT send DATAGRAM frames until they have
 sent and received the max_datagram_frame_size transport parameter.
 Endpoints MUST NOT send DATAGRAM frames of size strictly larger than
 the value of max_datagram_frame_size the endpoint has received from
 its peer. An endpoint that receives a DATAGRAM frame when it has not
 sent the max_datagram_frame_size transport parameter MUST terminate
 the connection with error PROTOCOL_VIOLATION. An endpoint that
 receives a DATAGRAM frame that is strictly larger than the value it
 sent in its max_datagram_frame_size transport parameter MUST
 terminate the connection with error PROTOCOL_VIOLATION. Endpoints
 that wish to use DATAGRAM frames need to ensure they send a
 max_datagram_frame_size value sufficient to allow their peer to use
 them. It is RECOMMENDED to send the value 65536 in the
 max_datagram_frame_size transport parameter as that indicates to the
 peer that this endpoint will accept any DATAGRAM frame that fits
 inside a QUIC packet.

 When clients use 0-RTT, they MAY store the value of the server's
 max_datagram_frame_size transport parameter. Doing so allows the
 client to send DATAGRAM frames in 0-RTT packets. When servers decide
 to accept 0-RTT data, they MUST send a max_datagram_frame_size
 transport parameter greater or equal to the value they sent to the
 client in the connection where they sent them the NewSessionTicket
 message. If a client stores the value of the max_datagram_frame_size
 transport parameter with their 0-RTT state, they MUST validate that
 the new value of the max_datagram_frame_size transport parameter sent
 by the server in the handshake is greater or equal to the stored
 value; if not, the client MUST terminate the connection with error
 PROTOCOL_VIOLATION.

 Application protocols that use datagrams MUST define how they react
 to the max_datagram_frame_size transport parameter being missing. If
 datagram support is integral to the application, the application
 protocol can fail the handshake if the max_datagram_frame_size
 transport parameter is not present.

Pauly, et al. Expires May 7, 2020 [Page 4]

Internet-Draft QUIC Datagrams November 2019

4. Datagram Frame Type

 DATAGRAM frames are used to transmit application data in an
 unreliable manner. The DATAGRAM frame type takes the form 0b0011000X
 (or the values 0x30 and 0x31). The least significant bit of the
 DATAGRAM frame type is the LEN bit (0x01). It indicates that there
 is a Length field present. If this bit is set to 0, the Length field
 is absent and the Datagram Data field extends to the end of the
 packet. If this bit is set to 1, the Length field is present.

 The DATAGRAM frame is structured as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | [Length (i)] ...
 +-+
 | Datagram Data (*) ...
 +-+

 Figure 1: DATAGRAM Frame Format

 DATAGRAM frames contain the following fields:

 Length: A variable-length integer specifying the length of the
 datagram in bytes. This field is present only when the LEN bit is
 set. If the LEN bit is not set, the datagram data extends to the
 end of the QUIC packet. Note that empty (i.e., zero-length)
 datagrams are allowed.

 Datagram Data: The bytes of the datagram to be delivered.

5. Behavior and Usage

 When an application sends an unreliable datagram over a QUIC
 connection, QUIC will generate a new DATAGRAM frame and send it in
 the first available packet. This frame SHOULD be sent as soon as
 possible, and MAY be coalesced with other frames.

 When a QUIC endpoint receives a valid DATAGRAM frame, it SHOULD
 deliver the data to the application immediately, as long as it is
 able to process the frame and can store the contents in memory.

 DATAGRAM frames MUST be protected with either 0-RTT or 1-RTT keys.

 Application protocols using datagrams are responsible for defining
 the semantics of the Datagram Data field, and how it is parsed. If
 the application protocol supports the coexistence of multiple

Pauly, et al. Expires May 7, 2020 [Page 5]

Internet-Draft QUIC Datagrams November 2019

 entities using datagrams inside a single QUIC connection, it may need
 a mechanism to allow demultiplexing between them. For example, using
 datagrams with HTTP/3 involves prepending a flow identifier to all
 datagrams, see [I-D.schinazi-quic-h3-datagram].

 Note that while the max_datagram_frame_size transport parameter
 places a limit on the maximum size of DATAGRAM frames, that limit can
 be further reduced by the max_packet_size transport parameter, and by
 the Maximum Transmission Unit (MTU) of the path between endpoints.
 DATAGRAM frames cannot be fragmented, therefore application protocols
 need to handle cases where the maximum datagram size is limited by
 other factors.

5.1. Acknowledgement Handling

 Although DATAGRAM frames are not retransmitted upon loss detection,
 they are ack-eliciting ([I-D.ietf-quic-recovery]). Receivers SHOULD
 support delaying ACK frames (within the limits specified by
 max_ack_delay) in reponse to receiving packets that only contain
 DATAGRAM frames, since the timing of these acknowledgements is not
 used for loss recovery.

 If a sender detects that a packet containing a specific DATAGRAM
 frame might have been lost, the implementation MAY notify the
 application that it believes the datagram was lost. Similarly, if a
 packet containing a DATAGRAM frame is acknowledged, the
 implementation MAY notify the application that the datagram was
 successfully transmitted and received. Note that, due to reordering,
 a DATAGRAM frame that was thought to be lost could at a later point
 be received and acknowledged.

5.2. Flow Control

 DATAGRAM frames do not provide any explicit flow control signaling,
 and do not contribute to any per-flow or connection-wide data limit.

 The risk associated with not providing flow control for DATAGRAM
 frames is that a receiver may not be able to commit the necessary
 resources to process the frames. For example, it may not be able to
 store the frame contents in memory. However, since DATAGRAM frames
 are inherently unreliable, they MAY be dropped by the receiver if the
 receiver cannot process them.

5.3. Congestion Control

 DATAGRAM frames employ the QUIC connection's congestion controller.
 As a result, a connection may be unable to send a DATAGRAM frame
 generated by the application until the congestion controller allows

Pauly, et al. Expires May 7, 2020 [Page 6]

Internet-Draft QUIC Datagrams November 2019

 it [I-D.ietf-quic-recovery]. The sender implementation MUST
 either delay sending the frame until the controller allows it or drop
 the frame without sending it (at which point it MAY notify the
 application).

 Implementations can optionally support allowing the application to
 specify a sending expiration time, beyond which a congestion-
 controlled DATAGRAM frame ought to be dropped without transmission.

6. Security Considerations

 The DATAGRAM frame shares the same security properties as the rest of
 the data transmitted within a QUIC connection. All application data
 transmitted with the DATAGRAM frame, like the STREAM frame, MUST be
 protected either by 0-RTT or 1-RTT keys.

7. IANA Considerations

 This document registers a new value in the QUIC Transport Parameter
 Registry:

 Value: 0x0020 (if this document is approved)

 Parameter Name: max_datagram_frame_size

 Specification: Indicates that the connection should enable support
 for unreliable DATAGRAM frames. An endpoint that advertises this
 transport parameter can receive datagrams frames from the other
 endpoint, up to and including the length in bytes provided in the
 transport parameter.

 This document also registers a new value in the QUIC Frame Type
 registry:

 Value: 0x30 and 0x31 (if this document is approved)

 Frame Name: DATAGRAM

 Specification: Unreliable application data

8. Acknowledgments

 Thanks to Ian Swett, who inspired this proposal.

Pauly, et al. Expires May 7, 2020 [Page 7]

Internet-Draft QUIC Datagrams November 2019

9. References

9.1. Normative References

 [I-D.ietf-quic-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", draft-ietf-quic-recovery-23 (work in
 progress), September 2019.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-23 (work
 in progress), September 2019.

9.2. Informative References

 [I-D.schinazi-quic-h3-datagram]
 Schinazi, D., "Using QUIC Datagrams with HTTP/3", draft-

schinazi-quic-h3-datagram-01 (work in progress), October
 2019.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.3. URIs

 [1] mailto:quic@ietf.org

 [2] https://github.com/tfpauly/draft-pauly-quic-datagram

 [3] mailto:quic@ietf.org

 [4] https://github.com/tfpauly/draft-pauly-quic-datagram

https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-23
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-23
https://datatracker.ietf.org/doc/html/draft-schinazi-quic-h3-datagram-01
https://datatracker.ietf.org/doc/html/draft-schinazi-quic-h3-datagram-01
https://datatracker.ietf.org/doc/html/rfc768
https://www.rfc-editor.org/info/rfc768
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://github.com/tfpauly/draft-pauly-quic-datagram
https://github.com/tfpauly/draft-pauly-quic-datagram

Pauly, et al. Expires May 7, 2020 [Page 8]

Internet-Draft QUIC Datagrams November 2019

Authors' Addresses

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Eric Kinnear
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: ekinnear@apple.com

 David Schinazi
 Google LLC
 1600 Amphitheatre Parkway
 Mountain View, California 94043
 United States of America

 Email: dschinazi.ietf@gmail.com

Pauly, et al. Expires May 7, 2020 [Page 9]

