
Network Working Group T. Pauly
Internet-Draft E. Kinnear
Intended status: Standards Track Apple Inc.
Expires: March 14, 2019 September 10, 2018

An Interface to the QUIC Transport Protocol
draft-pauly-quic-interface-00

Abstract

 This document defines the abstract application interface to the QUIC
 transport protocol. This allows applications to use a standard
 interface to directly interact with the QUIC protocol for cases that
 may not be using an HTTP mapping.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 14, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Pauly & Kinnear Expires March 14, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft QUIC Interface September 2018

Table of Contents

1. Introduction . 2
1.1. Specification of Requirements 3

2. Background . 3
2.1. QUIC Streams . 3
2.2. Transport Connection Interface 3
2.3. Transferring Messages over Streams 3

3. API Mappings . 4
3.1. Transport Connection as QUIC Connection 4
3.2. Transport Connection as QUIC Stream 5

4. Racing QUIC Connections 6
5. Security Considerations 7
6. IANA Considerations . 7
7. Acknowledgments . 7
8. Informative References 7

 Authors' Addresses . 8

1. Introduction

 The QUIC Transport Protocol [I-D.ietf-quic-transport] defines a
 mechanism for allowing applications to communicate as clients or
 servers to securely send and receive data over multiplexed streams
 associated with a single cryptographic state. While some
 applications may not need to directly interact with QUIC as a
 transport if they use HTTP over QUIC, others will need to send and
 recieve data directly over the transport.

 Defining a standard application interface to QUIC as a transport has
 several benefits to applications as they adopt the protocol. These
 benefits are expressed in the following requirements for a transport
 interface to QUIC:

 o Many of the benefits of QUIC, such as reducing head-of-line
 blocking or being able to send zero-RTT data, can be lost if the
 transport API does not provide adequate support. The interface
 SHOULD allow such features to be accessed in a reliable fashion.

 o Various implementations of the QUIC protocol SHOULD provide
 similar transport interfaces in order to allow applications to
 easily adopt them across different platforms and deployments.

 o The interface to configure QUIC security properties SHOULD be
 restricted to a standard set of functionality to ensure that
 applications cannot easily diminish the security properties of the
 protocol, while still retaining control over the configuration.

Pauly & Kinnear Expires March 14, 2019 [Page 2]

Internet-Draft QUIC Interface September 2018

1.1. Specification of Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Background

2.1. QUIC Streams

 QUIC defines the concept of "streams" of data. Streams may be either
 bidirectional or unidirectional. For both cases, data in each
 direction is treated as a reliable in-order sequence of bytes.
 Streams are transmitted without head-of-line blocking between one
 another, although data frames for multiple streams may be
 consolidated into single packets.

2.2. Transport Connection Interface

 The design of this abstract interface is intended to be compatible
 with the Transport Services Abstract Interface
 [I-D.ietf-taps-interface], although it can be used independently.
 The Transport Services interface defines a Connection as an active
 transport protocol instance that can send and/or receive Messages
 between a Local Endpoint and a Remote Endpoint.

 To avoid confusion with the notion of a QUIC Connection, this
 definition of a Connection will be referred to as a "Transport
 Connection Object" in this document.

 The portions of data that are transferred over the Transport
 Connection are referred to as Messages. Messages that are sent and
 received may be associated with metadata and properties in addition
 to their raw bytes.

2.3. Transferring Messages over Streams

 The QUIC stream architecture provides several possible mappings of
 application data into separate streams. Consider a case in which an
 application wants to send ten separate messages to a peer, and some
 of these messages expect replies from the remote host. There are two
 high-level strategies for mapping these messages over QUIC streams:

 1. Each message sent is represented as a new stream, and consumes a
 Stream ID. Any message that expects a reply can use a
 bidirectional stream, and data sent back on that stream will be

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Pauly & Kinnear Expires March 14, 2019 [Page 3]

Internet-Draft QUIC Interface September 2018

 interpreted as the reply. This stategy is descibed in
Section 3.1.

 2. The messages are sent all over a single bidirectional stream, in
 order. This requires that the messages are able to encode their
 boundaries within the byte stream, as well as some message
 identifier or ordering guarantee to allow correlation of replies
 with outbound messages. This stategy is descibed in Section 3.2.

 Strategy (1) relies on QUIC for message delineation and correlation;
 this may be a benefit if an application does not already define its
 own message framing. However, if messages already define message
 boundaries and semantics, strategy (2) may be less redundant.

 Strategy (1) allows all messages to be delivered without head-of-line
 blocking, which may be beneficial if there are delays on one stream.
 However, this approach does not provide any ordering guarantees. If
 an application will only be able to process messages in a strict
 order, strategy (2) may be preferable.

3. API Mappings

3.1. Transport Connection as QUIC Connection

 The mapping of a Transport Connection Object onto an entire QUIC
 Connection SHOULD be exposed to applications as the "quic-connection"
 protocol.

 When this protocol is part of a Protocol Stack being used for a
 Transport Connection, either as the top-level protocol (the one that
 the application directly interacts with) or as a protocol in the
 middle of the stack, each Message object corresponds to a QUIC
 stream. The description of this mapping will refer to the interation
 model as if the quic-connection protocol is being used as a top-level
 protocol.

 The following API mappings are defined:

 Initiate: When an application calls Initiate on an outbound
 connection, and the quic-connection protocol is being used, QUIC
 MUST initiate its handshake with the Remote Endpoint. The Ready
 event will be delivered once the handshake is complete and 1-RTT
 keys have been established.

 Close: When the application calls Close on its connection, QUIC MUST
 send a CONNECTION_CLOSE frame to the endpoint if it is currently
 active.

Pauly & Kinnear Expires March 14, 2019 [Page 4]

Internet-Draft QUIC Interface September 2018

 Send: When the application sends a new Message, QUIC MUST allocate a
 new stream ID. A metadata option SHOULD be exposed to allow the
 application to specify whether or not it expects a reply. If it
 does, the QUIC stream will be bidirectional; if not, the QUIC
 stream will be unidirectional. The API SHOULD allow the
 application to configure a default directionality setting on the
 connection to apply to default Messages. Any data sent associated
 with the Message Send should be sent in a QUIC stream frame for
 the new stream ID.

 Send Idempotent: When the application sends a Message, it may mark
 it as idempotent, which makes the data eligible for sending under
 0-RTT keys.

 Send End-of-Message: When the application marks the end of a
 Message, which may be done as part of the first call to Send, or a
 subsequent call, the associated QUIC stream MUST deliver a FIN.

 Receive: A call to receive new data from a Connection will invoke
 the Received event upon receiving new stream data. If a new
 stream is received from the peer, the Received event will be
 associated with a new Message object. If the stream data is
 marked with a FIN, the Received event will indicate that the
 Message is complete; otherwise, it will indicate that the Message
 has received partial data. As new data arrives on various
 streams, Received events will be delivered for various streams,
 and may result in partial receives be interleaved with one
 another. If an application does not wish to ever receive partial
 Messages, it can indicate that in the call to Receive; this means
 that data will only be delivered on behalf of a QUIC stream once
 the FIN bit has been received.

3.2. Transport Connection as QUIC Stream

 The mapping of each Transport Connection Object onto an single QUIC
 Stream SHOULD be exposed to applications as the "quic-stream"
 protocol.

 Messages in this mapping are transferred as in-order chunks of data
 over a stream represented by the Connection. This Connection is
 equivalent in contract to a TLS or TCP stream in many ways. The
 description of this mapping will refer to the interation model as if
 the quic-stream protocol is being used as a top-level protocol.

 The following API mappings are defined:

 Initiate: When an application calls Initiate on an outbound
 connection, QUIC MUST both start a new handshake with the remote

Pauly & Kinnear Expires March 14, 2019 [Page 5]

Internet-Draft QUIC Interface September 2018

 endpoint and also allocate a new stream ID to be associated with
 the Transport Connection Object.

 Clone: When an application calls Clone on an existing outbound
 Transport Connection Object, and the QUIC connection is not
 already closed, QUIC MUST allocate a new stream ID and associate
 that stream with a new Transport Connection Object.

 Close: If the application calls Close on a connection, QUIC MUST
 send a FIN on the associated stream if it it has not been marked
 previously.

 Send: When the application sends a new Message, QUIC MUST send that
 data on the associated stream. If the application is using a
 framing protocol on top of quic-stream, then the message
 boundaries may be interpreted by the framing protocol. Otherwise,
 the end of a Message will have no impact on the frames being send
 by QUIC, unless that Message is also marked Final, in which case
 the QUIC stream MUST send a FIN.

 Send Idempotent: When the application sends a Message, it may mark
 it as idempotent, which makes the data eligible for sending under
 0-RTT keys.

 Receive: A call to Receive will enqueue a request to receive data on
 the associated QUIC stream only. Once new data is available on
 the stream, or the stream is remotely closed, the Received event
 MUST be invoked. If the stream is not allowed to receive data,
 since it is unidirectional, the Receive call MUST result in a
 Received event delivering an error.

4. Racing QUIC Connections

 When a QUIC hostname endpoint is resolved using DNS, a client may
 want to use the Happy Eyeballs algorithm [RFC8305] to race
 connections to the various IPv6 and IPv4 addresses returned by the
 DNS resolver.

 If multiple connection attempts are run in parallel, the end of the
 "race" can be determined in one of two ways:

 1. The race ends at the completion of the QUIC handshake, once 1-RTT
 keys are established.

 2. The race ends upon successful reception the first Handshake
 Packet received from the server.

https://datatracker.ietf.org/doc/html/rfc8305

Pauly & Kinnear Expires March 14, 2019 [Page 6]

Internet-Draft QUIC Interface September 2018

 The first strategy results in potentially longer overlap of
 connection attempts, but guarantees that the chosen connection
 instance completes authentication. Thus, the first option SHOULD be
 used when possible. This also means that the API for QUIC as a
 transport SHOULD support multiple handshakes running in parallel for
 the duration of the Happy Eyeballs race. If the application needs to
 be involved in Identity Valdiation, then it may need to validate
 identities multiple times for a process that results in a single
 transport connection.

5. Security Considerations

 The security interface exposed for QUIC as a transport SHOULD be
 expressed in terms of minimal interactions required for correct
 behavior. Functionality that MUST be exposed includes Identity
 Validation (to allow the application to validate a certificate).
 Functionality that SHOULD NOT be exposed include direct key export
 for negotiated keys.

6. IANA Considerations

 This document has no request to IANA.

7. Acknowledgments

 Thanks to members of the TAPS working group who helped design and
 review these mappings.

8. Informative References

 [I-D.ietf-quic-applicability]
 Kuehlewind, M. and B. Trammell, "Applicability of the QUIC
 Transport Protocol", draft-ietf-quic-applicability-02
 (work in progress), July 2018.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-14 (work
 in progress), August 2018.

 [I-D.ietf-taps-interface]
 Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,
 Kuehlewind, M., Perkins, C., Tiesel, P., and C. Wood, "An
 Abstract Application Layer Interface to Transport
 Services", draft-ietf-taps-interface-01 (work in
 progress), July 2018.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-14
https://datatracker.ietf.org/doc/html/draft-ietf-taps-interface-01

Pauly & Kinnear Expires March 14, 2019 [Page 7]

Internet-Draft QUIC Interface September 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8305] Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:
 Better Connectivity Using Concurrency", RFC 8305,
 DOI 10.17487/RFC8305, December 2017,
 <https://www.rfc-editor.org/info/rfc8305>.

Authors' Addresses

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Eric Kinnear
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: ekinnear@apple.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8305
https://www.rfc-editor.org/info/rfc8305

Pauly & Kinnear Expires March 14, 2019 [Page 8]

