
TAPS Working Group                                         T. Pauly, Ed.
Internet-Draft                                                Apple Inc.
Intended status: Informational                          B. Trammell, Ed.
Expires: August 30, 2018                                      ETH Zurich
                                                            A. Brunstrom
                                                     Karlstad University
                                                            G. Fairhurst
                                                  University of Aberdeen
                                                              C. Perkins
                                                   University of Glasgow
                                                               P. Tiesel
                                                               TU Berlin
                                                                 C. Wood
                                                              Apple Inc.
                                                       February 26, 2018

An Architecture for Transport Services
draft-pauly-taps-arch-00

Abstract

   This document provides an overview of the architecture of Transport
   Services, a system for exposing the features of transport protocols
   to applications.  This architecture serves as a basis for Application
   Programming Interfaces (APIs) and implementations that provide
   flexible transport networking services.  It defines the common set of
   terminology and concepts to be used in more detailed discussion of
   Transport Services.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on August 30, 2018.

Pauly, et al.            Expires August 30, 2018                [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/


Internet-Draft              TAPS Architecture              February 2018

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Background  . . . . . . . . . . . . . . . . . . . . . . . . .   3
3.  Design Principles . . . . . . . . . . . . . . . . . . . . . .   4
3.1.  Common APIs for Common Features . . . . . . . . . . . . .   4
3.2.  Access to Specialized Features  . . . . . . . . . . . . .   4
3.3.  Scope for API and Implementation Definitions  . . . . . .   5

4.  Transport Services Architecture and Concepts  . . . . . . . .   6
4.1.  Transport Services API Concepts . . . . . . . . . . . . .   7
4.1.1.  Basic Objects . . . . . . . . . . . . . . . . . . . .   9
4.1.2.  Pre-Establishment . . . . . . . . . . . . . . . . . .  10
4.1.3.  Establishment Actions . . . . . . . . . . . . . . . .  11
4.1.4.  Data Transfer Objects and Actions . . . . . . . . . .  11
4.1.5.  Event Handling  . . . . . . . . . . . . . . . . . . .  12
4.1.6.  Termination Actions . . . . . . . . . . . . . . . . .  12

4.2.  Transport System Implementation Concepts  . . . . . . . .  13
4.2.1.  Gathering . . . . . . . . . . . . . . . . . . . . . .  14
4.2.2.  Racing  . . . . . . . . . . . . . . . . . . . . . . .  14

5.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  14
6.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
7.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  15
8.  Informative References  . . . . . . . . . . . . . . . . . . .  15

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   Many APIs to perform transport networking have been deployed, perhaps
   the most widely known and imitated being the BSD socket() interface.
   The names and functions between these APIs are not consistent, and
   vary depending on the protocol being used.  For example, sending and
   receiving on a stream of data is conceptually the same between
   operating on an unencrypted TCP stream and operating on an encrypted

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info


Pauly, et al.            Expires August 30, 2018                [Page 2]



Internet-Draft              TAPS Architecture              February 2018

   TLS stream over TCP, but applications cannot use the same socket
   send() and recv() calls on top of both kinds of connections.
   Similarly, terminology for the implementation of protocols offering
   transport services vary based on the context of the protocols
   themselves.  This variety can lead to confusion when trying to
   understand the similarities and differences between protocols, and
   how applications can use them effectively.

   The goal of the Transport Services architecture is to provide a
   common, flexible, and reusable interface for transport protocols.  As
   applications adopt this interface, they will benefit from a wide set
   of transport features that can evolve over time, and ensure that the
   system providing the interface can optimize its behavior based on the
   application requirements and network conditions.

   This document is developed in parallel with the specification of the
   Transport Services API [draft-trammell-taps-interface] and
   Implementation [draft-brunstrom-taps-impl] documents.

2.  Background

   The Transport Services architecture is based on the survey of
   Services Provided by IETF Transport Protocols and Congestion Control
   Mechanisms [RFC8095], and the distilled minimal set of the features
   offered by transport protocols [I-D.ietf-taps-minset].  This work has
   identified common features and patterns across all transport
   protocols developed thus far in the IETF.

   Since transport security is an increasingly relevant aspect of using
   transport protocols on the Internet, this architecture also considers
   the impact of transport security protocols on the feature set exposed
   by transport services [I-D.pauly-taps-transport-security].

   One of the key insights to come from identifying the minimal set of
   features provided by transport protocols [I-D.ietf-taps-minset] was
   that features either require application interaction and guidance
   (referred to as Functional Features), or else can be handled
   automatically by a system implementing Transport Services (referred
   to as Automatable Features).  Among the Functional Features, some
   were common across all or nearly all transport protocols, while
   others could be seen as features that, if specified, would only be
   useful with a subset of protocols, or perhaps even a single transport
   protocol, but would not harm the functionality of other protocols.
   For example, some protocols can deliver messages faster for
   applications that do not require them to arrive in the order in which
   they were sent.  However, this functionality must be explicitly
   allowed by the application, since reordering messages would be
   undesirable in many cases.

https://datatracker.ietf.org/doc/html/draft-trammell-taps-interface
https://datatracker.ietf.org/doc/html/draft-brunstrom-taps-impl
https://datatracker.ietf.org/doc/html/rfc8095


Pauly, et al.            Expires August 30, 2018                [Page 3]



Internet-Draft              TAPS Architecture              February 2018

3.  Design Principles

   The goal of the Transport Services architecture is to redefine the
   interface between applications and transports in a way that allows
   the transport layer to evolve and improve without fundamentally
   changing the contract with the application.  This requires a careful
   consideration of how to expose the capabilities of protocols.

   There are several degrees in which a Transport Services system can
   offer flexibility to an application: it can provide access to
   multiple sets of protocols and protocol features, it can use these
   protocols across multiple paths that may have different performance
   and functional characteristics, and it can communicate with different
   Remote Endpoints to optimize performance.  Beyond these, if the API
   for the system remains the same over time, new protocols and features
   may be added to the system's implementation without requiring
   significant changes in applications for adoption.

   The following considerations were used in the design of this
   architecture.

3.1.  Common APIs for Common Features

   Functionality that is common across multiple transport protocols
   should be accessible through a unified set of API calls.  An
   application should be able to implement logic for its basic use of
   transport networking (establishing the transport, and sending and
   receiving data) once, and expect that implementation to continue to
   function as the transports change.

   Any Transport Services API must allow access to the distilled minimal
   set of features offered by transport protocols
   [I-D.ietf-taps-minset].

3.2.  Access to Specialized Features

   Since applications will often need to control fine-grained details of
   transport protocols to optimize their behavior and ensure
   compatibility with remote peers, a Transport Services system also
   needs to allow more specialized protocol features to be used.  The
   interface for these specialized options should be exposed differently
   from the common options to ensure flexibility.

   A specialized feature may be required by an application only when
   using a specific protocol, and not when using others.  For example,
   if an application is using UDP, it may require control over the
   checksum or fragmentation behavior for UDP; if it used a protocol to
   frame its data over a byte stream like TCP, it would not need these



Pauly, et al.            Expires August 30, 2018                [Page 4]



Internet-Draft              TAPS Architecture              February 2018

   options.  In such cases, the API should expose the features in such a
   way that they take effect when a particular protocol is selected, but
   do not imply that only that protocol may be used if there are
   equivalent options.

   Other specialized features, however, may be strictly required by an
   application and thus constrain the set of protocols that can be used.
   For example, if an application requires encryption of its transport
   data, only protocol stacks that include some transport security
   protocol are eligible to be used.  A Transport Services API must
   allow applications to define such requirements and constrain the
   system's options.  Since such options are not part of the core/common
   features, it should be simple for an application to modify its set of
   constraints and change the set of allowable protocol features without
   changing the core implementation.

3.3.  Scope for API and Implementation Definitions

   The Transport Services API is envisioned as the abstract model for a
   family of APIs that share a common way to expose transport features
   and encourage flexibility.  The abstract API definition
   [draft-trammell-taps-interface] describes this interface and is aimed
   at application developers.

   Implementations that provide the Transport Services API
   [draft-brunstrom-taps-impl] will vary due to system-specific support
   and the needs of the deployment scenario.  It is expected that all
   implementations of Transport Services will offer the entire mandatory
   API, but that some features will not be functional in certain
   implementations.  All implementations must offer sufficient APIs to
   use the distilled minimal set of features offered by transport
   protocols [I-D.ietf-taps-minset], including API support for TCP and
   UDP transport, but it is possible that some very constrained devices
   might not have, for example, a full TCP implementation.

   In order to preserve flexibility and compatibility with future
   protocols, top-level features in the Transport Services API should
   avoid referencing particular transport protocols.  Mappings of these
   API features in the Implementation document, on the other hand, must
   explain the ramifications of each feature on existing protocols.  It
   is expected that the Implementation document will be updated and
   supplemented as new protocols and protocol features are developed.

   It is important to note that neither the Transport Services API nor
   the Implementation document defines new protocols that require any
   changes on remote hosts.  The Transport Services system must be
   deployable on one side only, as a way to allow an application to make

https://datatracker.ietf.org/doc/html/draft-trammell-taps-interface
https://datatracker.ietf.org/doc/html/draft-brunstrom-taps-impl


Pauly, et al.            Expires August 30, 2018                [Page 5]



Internet-Draft              TAPS Architecture              February 2018

   better use of available capabilities on a system and protocol
   features that may be supported by peers across the network.

4.  Transport Services Architecture and Concepts

   The concepts defined in this document are intended primarily for use
   in the documents and specifications that describe the Transport
   Services architecture and API.  While the specific terminology may be
   used in some implementations, it is expected that there will remain a
   variety of terms used by running code.

   The architecture divides the concepts for Transport Services into two
   categories:

   1.  API concepts, which are meant to be exposed to applications; and

   2.  System-implementation concepts, which are meant to be internally
       used when building systems that implement Transport Services.

   The following diagram summarizes the top-level concepts in the
   architecture and how they relate to one another.



Pauly, et al.            Expires August 30, 2018                [Page 6]



Internet-Draft              TAPS Architecture              February 2018

     +------------------------------------------------------+
     |                    Application                       |
     +-+----------------+------^-------+--------^-----------+
       |                |      |       |        |
     pre-               |     data     |      events
     establishment      |   transfer   |        |
       |        establishment  |   termination  |
       |                |      |       |        |
       |             +--v------v-------v+       |
     +-v-------------+   Basic Objects  +-------+----------+
     |  Transport    +--------+---------+                  |
     |  Services              |                            |
     |  API                   |                            |
     +------------------------|----------------------------+
                              |
     +------------------------|----------------------------+
     |  Transport             |                            |
     |  System                |        +-----------------+ |
     |  Implementation        |        |     Cached      | |
     |                        |        |      State      | |
     |  (Candidate Gathering) |        +-----------------+ |
     |                        |                            |
     |  (Candidate Racing)    |        +-----------------+ |
     |                        |        |     System      | |
     |                        |        |     Policy      | |
     |             +----------v-----+  +-----------------+ |
     |             |    Protocol    |                      |
     +-------------+    Stack(s)    +----------------------+
                   +-------+--------+
                           V
                 Network Layer Interface

      Figure 1: Concepts and Relationships in the Transport Services
                               Architecture

4.1.  Transport Services API Concepts

   Fundamentally, a Transport Services API needs to provide basic
   objects (Section 4.1.1) that allow applications to establish
   communication and send and receive data.  These may be exposed as
   handles or referenced objects, depending on the language.

   Beyond the basic objects, there are several high-level groups of
   actions that any Transport Services API must provide:

   o  Pre-Establishment (Section 4.1.2) encompasses the properties that
      an application can pass to describe its intent, requirements,
      prohibitions, and preferences for its networking operations.  For



Pauly, et al.            Expires August 30, 2018                [Page 7]



Internet-Draft              TAPS Architecture              February 2018

      any system that provides generic Transport Services, these
      properties should primarily offer knobs that are applicable to
      multiple transports.  Properties may have a large impact on the
      rest of the aspects of the interface: they can modify how
      establishment occurs, they can influence the expectations around
      data transfer, and they determine the set of events that will be
      supported.

   o  Establishment (Section 4.1.3) focuses on the actions that an
      application takes on the basic objects to prepare for data
      transfer.

   o  Data Transfer (Section 4.1.4) consists of how an application
      represents data to be sent and received, the functions required to
      send and receive that data, and how the application is notified of
      the status of its data transfer.

   o  Event Handling (Section 4.1.5) defines the set of properties about
      which an application can receive notifications during the lifetime
      of transport objects.  Events can also provide opportunities for
      the application to interact with the underlying transport by
      querying state or updating maintenance options.

   o  Termination (Section 4.1.6) focuses on the methods by which data
      transmission is ceased, and state is torn down in the transport.

   The diagram below provides a high-level view of the actions taken
   during the lifetime of a connection.



Pauly, et al.            Expires August 30, 2018                [Page 8]



Internet-Draft              TAPS Architecture              February 2018

     Pre-Establishment     :       Established             : Termination
     -----------------     :       -----------             : -----------
                           :                     Close()   :
     +---------------+ Initiate() +------------+ Abort()   :
 +-->| Preconnection |----------->| Connection |---------------> Closed
 |   +---------------+     :      +------------+ Connection:
 |                         :      ^   ^    |     Finished  :
 +-- Local Endpoint        :      |   |    |               :
 |                         :      |   |    +---------+     :
 +-- Remote Endpoint       :      |   |              |     :
 |                         :      |   |Send()        |     :
 +-- Path Selection        :      | +---------+      v     :
 |   Properties            :      | | Message |  Message   :
 |                         :      | | to send |  Received  :
 +-- Protocol Selection    :      | +---------+            :
 |   Properties            :      |                        :
 |                         :      |                        :
 +-- Specific Protocol     :      |                        :
 |   Properties            :      |                        :
 |                         :      |                        :
 |   +----------+          :      |                        :
 +-->| Listener |-----------------+                        :
     +----------+ Connection Received                      :
           ^               :                               :
           |               :                               :
        Listen()           :                               :

                  Figure 2: The lifetime of a connection

4.1.1.  Basic Objects

   o  Preconnection: A Preconnection object is a representation of a
      potential connection.  It has state that describes parameters of a
      Connection that might exist in the future: the Local Endpoint from
      which that Connection will be established, the Remote Endpoint to
      which it will connect, and Path Selection Properties, Protocol
      Selection Properties, and Specific Protocol Properties that
      influence the choice of transport that a Connection will use.  A
      Preconnection can be fully specified and represent a single
      possible Connection, or it can be partially specified such that it
      represents a family of possible Connections.  The Local Endpoint
      must be specified if the Preconnection is used to Listen for
      incoming connections, but is optional if it is used to Initiate
      connections.  The Remote Endpoint must be specified in the
      Preconnection is used to Initiate connections, but is optional if
      it is used to Listen for incoming connections.



Pauly, et al.            Expires August 30, 2018                [Page 9]



Internet-Draft              TAPS Architecture              February 2018

   o  Connection: A Connection object represents an active transport
      protocol instance that can send and/or receive Messages between a
      Local Endpoint and a Remote Endpoint.  It holds state pertaining
      to the underlying transport protocol instance and any ongoing data
      transfer.  This represents, for example, an active connection in a
      connection-oriented protocol such as TCP, or a fully-specified
      5-tuple for a connectionless protocol such as UDP.

   o  Listener: A Listener object accepts incoming transport protocol
      connections from Remote Endpoints and generates corresponding
      Connection objects.  It is created from a Preconnection object
      that specifies the type of incoming connections it will accept.

4.1.2.  Pre-Establishment

   o  Endpoint: An Endpoint represents one side of a transport
      connection.  Endpoints can be Local Endpoints or Remote Endpoints,
      and respectively represent an identity that the application uses
      for the source or destination of a connection.  Endpoint can vary
      in levels of specificity, and can be resolved to more concrete
      identities.

   o  Remote Endpoint: The Remote Endpoint represents the application's
      name for a peer that can participate in a transport connection.
      For example, the combination of a DNS name for the peer and a
      service name/port.

   o  Local Endpoint: The Local Endpoint represents the application's
      name for itself that it wants to use for transport connections.
      For example, a local IP address and port.

   o  Path Selection Properties: The Path Selection Properties consist
      of the options that an application may set to influence the
      selection of paths between itself and the Remote Endpoint.  These
      options can come in the form of requirements, prohibitions, or
      preferences.  Examples of options which may influence path
      selection include the interface type (such as a Wi-Fi Ethernet
      connection, or a Cellular LTE connection), characteristics of the
      path that are locally known like Maximum Transmission Unit (MTU)
      or discovered like Path MTU (PMTU), or predicted based on cached
      information like expected throughput or latency.

   o  Protocol Selection Properties: The Protocol Selection Properties
      consist of the options that an application may set to influence
      the selection of transport protocol, or to configure the behavior
      of generic transport protocol features.  These options come in the
      form of requirements, prohibitions, and preferences.  Examples



Pauly, et al.            Expires August 30, 2018               [Page 10]



Internet-Draft              TAPS Architecture              February 2018

      include reliability, service class, multipath support, and fast
      open support.

   o  Specific Protocol Properties: The Specific Protocol Properties
      refer to the subset of Protocol Properties options that apply to a
      single protocol (transport protocol, IP, or security protocol).
      The presence of such Properties does not necessarily require that
      a specific protocol must be used when a Connection is established,
      but that if this protocol is employed, a particular set of options
      should be used.

4.1.3.  Establishment Actions

   o  Initiate is the primary action that an application can take to
      create a Connection to a remote endpoint, and prepare any required
      local or remote state to be able to send and/or receive Messages.
      For some protocols, this may initiate a server-to-client style
      handshake; for other protocols, this may just establish local
      state; and for peer-to-peer protocols, this may begin the process
      of a simultaneous open.  The process of identifying options for
      connecting, such as resolution of the Remote Endpoint, occurs in
      response the Initiate call.

   o  Listen is the action of marking a Listener as willing to accept
      incoming Connections.  The Listener will then create Connection
      objects as incoming connections are accepted (Section 4.1.5).

4.1.4.  Data Transfer Objects and Actions

   o  Message: A Message object is a unit of data that can be
      represented as bytes that can be transferred between two endpoints
      over a transport connection.  The bytes within a Message are
      assumed to be ordered within the Message.  If an application does
      not care about the order in which a peer receives two distinct
      spans of bytes, those spans of bytes are considered independent
      Messages.  Messages may or may not be usable if incomplete or
      corrupted.  Boundaries of a Message may or may not be understood
      or transmitted by transport protocols.  Specifically, what one
      application considers to be two Messages sent on a stream-based
      transport may be treated as a single Message by the application on
      the other side.

   o  Send is the action to transmit a Message or partial Message over a
      Connection to a Remote Endpoint.  The interface to Send may
      include options specific to how the Message's content is to be
      sent.  Status of the Send operation may be delivered back to the
      application in an event (Section 4.1.5).



Pauly, et al.            Expires August 30, 2018               [Page 11]



Internet-Draft              TAPS Architecture              February 2018

   o  Receive is an action that indicates that the application is ready
      to asynchronously accept a Message over a Connection from a Remote
      Endpoint, while the Message content itself will be delivered in an
      event (Section 4.1.5).  The interface to Receive may include
      options specific to the Message that is to be delivered to the
      application.

4.1.5.  Event Handling

   This list of events that can be delivered to an application is not
   exhaustive, but gives the top-level categories of events.  The API
   may expand this list.

   o  Connection Ready: Signals to an application that a given
      Connection is ready to send and/or receive Messages.  If the
      Connection relies on handshakes to establish state between peers,
      then it is assumed that these steps have been taken.

   o  Connection Finished: Signals to an application that a given
      Connection is no longer usable for sending or receiving Messages.
      This should deliver an error to the application that describes the
      nature of the termination.

   o  Connection Received: Signals to an application that a given
      Listener has passively received a Connection.

   o  Message Received: Delivers received Message content to the
      application, based on a Receive action.  This may include an error
      if the Receive action cannot be satisfied due to the Connection
      being closed.

   o  Message Sent: Notifies the application of the status of its Send
      action.  This may be an error if the Message cannot be sent, or an
      indication that Message has been processed by the protocol stack.

   o  Path Properties Changed: Notifies the application that some
      property of the Connection has changed that may influence how and
      where data is sent and/or received.

4.1.6.  Termination Actions

   o  Close is the action an application may take on a Connection to
      indicate that it no longer intends to send data, is no longer
      willing to receive data, and that the protocol should signal this
      state to the remote endpoint if applicable.

   o  Abort is an action the application may take on a Connection to
      indicate a Close, but with the additional indication that the



Pauly, et al.            Expires August 30, 2018               [Page 12]



Internet-Draft              TAPS Architecture              February 2018

      transport system should not attempt to deliver any outstanding
      data.

4.2.  Transport System Implementation Concepts

   The Transport System Implementation Concepts define the set of
   objects used internally to a system or library to provide the
   functionality of transport networking, as required by the abstract
   interface.

   o  Connection Group: A Connections Group is a set of Connections that
      share properties.  For multiplexing transport protocols, the
      Connection Group defines the set of Connections that can be
      multiplexed together.

   o  Path: A Path represents an available set of properties of a
      network route on which packets may be sent or received.

   o  Protocol Instance: A Protocol Instance is a single instance of one
      protocol, including any state it has necessary to establish
      connectivity or send and receive Messages.

   o  Protocol Stack: A Protocol Stack is a set of Protocol Instances
      (including relevant application, security, transport, or Internet
      protocols) that are used together to establish connectivity or
      send and receive Messages.  A single stack may be simple (a single
      transport protocol instance over IP), or complex (multiple
      application protocol streams going through a single security and
      transport protocol, over IP; or, a multi-path transport protocol
      over multiple transport sub-flows).

   o  System Policy: System Policy represents the input from an
      operating system or other global preferences that can constrain or
      influence how an implementation will gather candidate paths and
      protocols (Section 4.2.1) and race the candidates during
      establishment (Section 4.2.2).  Specific aspects of the System
      Policy may apply to all Connections, or only certain ones
      depending on the runtime context and properties of the Connection.

   o  Cached State: Cached State is the state and history that the
      implementation keeps for each set of associated endpoints that
      have been used previously.  This can include DNS results, TLS
      session state, previous success and quality of transport protocols
      over certain paths.



Pauly, et al.            Expires August 30, 2018               [Page 13]



Internet-Draft              TAPS Architecture              February 2018

4.2.1.  Gathering

   o  Path Selection: Path Selection represents the act of choosing one
      or more paths that are available to use based on the Path
      Selection Properties provided by the application, and a Transport
      Services system's policies and heuristics.

   o  Protocol Selection: Protocol Selection represents the act of
      choosing one or more sets of protocol options that are available
      to use based on the Protocol Properties provided by the
      application, and a Transport Services system's policies and
      heuristics.

4.2.2.  Racing

   o  Protocol Option Racing: Protocol Racing is the act of attempting
      to establish, or scheduling attempts to establish, multiple
      Protocol Stacks that differ based on the composition of protocols
      or the options used for protocols.

   o  Path Racing: Path Racing is the act of attempting to establish, or
      scheduling attempts to establish, multiple Protocol Stacks that
      differ based on a selection from the available Paths.

   o  Endpoint Racing: Endpoint Racing is the act of attempting to
      establish, or scheduling attempts to establish, multiple Protocol
      Stacks that differ based on the specific representation of the
      Remote Endpoint and the Local Endpoint, such as IP addresses
      resolved from a DNS hostname.

5.  IANA Considerations

   RFC-EDITOR: Please remove this section before publication.

   This document has no actions for IANA.

6.  Security Considerations

   The Transport Services architecture does not recommend use of
   specific security protocols or algorithms.  Its goal is to offer ease
   of use for existing protocols by providing a generic security-related
   interface.  Each provided interface mimics an existing protocol-
   specific interface provided by supported security protocols.  For
   example, trust verification callbacks are common parts of TLS APIs.
   Transport Services APIs will expose similar functionality.  Clients
   must take care to use security APIs appropriately.  In cases where
   clients use said interface to provide sensitive keying material,
   e.g., access to private keys or copies of pre-shared keys (PSKs), key



Pauly, et al.            Expires August 30, 2018               [Page 14]



Internet-Draft              TAPS Architecture              February 2018

   use must be validated.  For example, clients should not use PSK
   material created for ESP with IETF-QUIC, and clients must not use
   private keys intended for server authentication as a key for client
   authentication.  Moreover, unlike certain transport features such as
   TFO or ECN which can fall back to standard configurations, Transport
   Services systems must not permit fallback for security protocols.
   For example, if a client requests TLS, yet TLS or the desired version
   are not available, its connection must fail.  Clients are responsible
   for implementing protocol or version fallback using a Transport
   Services API if so desired.

7.  Acknowledgements

   This work has received funding from the European Union's Horizon 2020
   research and innovation programme under grant agreement No. 644334
   (NEAT).

   This work has been supported by Leibniz Prize project funds of DFG -
   German Research Foundation: Gottfried Wilhelm Leibniz-Preis 2011 (FKZ
   FE 570/4-1).

   Thanks to Stuart Cheshire, Josh Graessley, David Schinazi, and Eric
   Kinnear for their implementation and design efforts, including Happy
   Eyeballs, that heavily influenced this work.

8.  Informative References

   [draft-brunstrom-taps-impl]
              "Implementing Interfaces to Transport Services", n.d..

   [draft-trammell-taps-interface]
              "An Abstract Application Layer Interface to Transport
              Services", n.d..

   [I-D.ietf-taps-minset]
              Welzl, M. and S. Gjessing, "A Minimal Set of Transport
              Services for TAPS Systems", draft-ietf-taps-minset-01
              (work in progress), February 2018.

   [I-D.pauly-taps-transport-security]
              Pauly, T., Rose, K., and C. Wood, "A Survey of Transport
              Security Protocols", draft-pauly-taps-transport-

security-01 (work in progress), January 2018.

https://datatracker.ietf.org/doc/html/draft-brunstrom-taps-impl
https://datatracker.ietf.org/doc/html/draft-trammell-taps-interface
https://datatracker.ietf.org/doc/html/draft-ietf-taps-minset-01
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-01
https://datatracker.ietf.org/doc/html/draft-pauly-taps-transport-security-01


Pauly, et al.            Expires August 30, 2018               [Page 15]



Internet-Draft              TAPS Architecture              February 2018

   [RFC8095]  Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
              Ed., "Services Provided by IETF Transport Protocols and
              Congestion Control Mechanisms", RFC 8095,
              DOI 10.17487/RFC8095, March 2017,
              <https://www.rfc-editor.org/info/rfc8095>.

Authors' Addresses

   Tommy Pauly (editor)
   Apple Inc.
   One Apple Park Way
   Cupertino, California 95014
   United States of America

   Email: tpauly@apple.com

   Brian Trammell (editor)
   ETH Zurich
   Gloriastrasse 35
   8092 Zurich
   Switzerland

   Email: ietf@trammell.ch

   Anna Brunstrom
   Karlstad University

   Email: anna.brunstrom@kau.se

   Godred Fairhurst
   University of Aberdeen
   Fraser Noble Building
   Aberdeen, AB24 3UE
   Scotland

   Email: gorry@erg.abdn.ac.uk
   URI:   http://www.erg.abdn.ac.uk/

https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095
http://www.erg.abdn.ac.uk/


Pauly, et al.            Expires August 30, 2018               [Page 16]



Internet-Draft              TAPS Architecture              February 2018

   Colin Perkins
   University of Glasgow
   School of Computing Science
   Glasgow  G12 8QQ
   United Kingdom

   Email: csp@csperkins.org

   Philipp S. Tiesel
   TU Berlin
   Marchstrasse 23
   10587 Berlin
   Germany

   Email: philipp@inet.tu-berlin.de

   Chris Wood
   Apple Inc.
   One Apple Park Way
   Cupertino, California 95014
   United States of America

   Email: cawood@apple.com



Pauly, et al.            Expires August 30, 2018               [Page 17]


