
Network Working Group T. Pauly
Internet-Draft Apple Inc.
Intended status: Informational K. Rose
Expires: July 7, 2018 Akamai Technologies, Inc.
 C. Wood
 Apple Inc.
 January 03, 2018

A Survey of Transport Security Protocols
draft-pauly-taps-transport-security-01

Abstract

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate
 with applications and transport protocols. Its goal is to supplement
 efforts to define and catalog transport services [RFC8095] by
 describing the interfaces required to add security protocols. It
 examines Transport Layer Security (TLS), Datagram Transport Layer
 Security (DTLS), Quick UDP Internet Connections with TLS (QUIC +
 TLS), MinimalT, CurveCP, tcpcrypt, Internet Key Exchange with
 Encapsulating Security Protocol (IKEv2 + ESP), SRTP (with DTLS), and
 WireGuard. This survey is not limited to protocols developed within
 the scope or context of the IETF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 7, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Pauly, et al. Expires July 7, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc8095
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft transport security survey January 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Transport Security Protocol Descriptions 5
3.1. TLS . 5
3.1.1. Protocol Description 5
3.1.2. Protocol Features 6
3.1.3. Protocol Dependencies 6

3.2. DTLS . 7
3.2.1. Protocol Description 7
3.2.2. Protocol Features 7
3.2.3. Protocol Dependencies 8

3.3. QUIC with TLS . 8
3.3.1. Protocol Description 8
3.3.2. Protocol Features 9
3.3.3. Protocol Dependencies 9

3.4. MinimalT . 9
3.4.1. Protocol Description 9
3.4.2. Protocol Features 10
3.4.3. Protocol Dependencies 10

3.5. CurveCP . 10
3.5.1. Protocol Description 11
3.5.2. Protocol Features 12
3.5.3. Protocol Dependencies 12

3.6. tcpcrypt . 12
3.6.1. Protocol Description 12
3.6.2. Protocol Features 13
3.6.3. Protocol Dependencies 13

3.7. IKEv2 with ESP . 14
3.7.1. Protocol descriptions 14
3.7.2. Protocol features 15
3.7.3. Protocol dependencies 16

3.8. WireGuard . 16
3.8.1. Protocol description 16
3.8.2. Protocol features 17
3.8.3. Protocol dependencies 17

3.9. SRTP (with DTLS) . 17

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pauly, et al. Expires July 7, 2018 [Page 2]

Internet-Draft transport security survey January 2018

3.9.1. Protocol descriptions 18
3.9.2. Protocol features 18
3.9.3. Protocol dependencies 18

4. Common Transport Security Features 19
4.1. Mandatory Features 19
4.1.1. Handshake . 19
4.1.2. Record . 19

4.2. Optional Features . 19
4.2.1. Handshake . 19
4.2.2. Record . 20

5. Transport Security Protocol Interfaces 20
5.1. Configuration Interfaces 20
5.2. Handshake Interfaces 21
5.3. Record Interfaces . 22

6. IANA Considerations . 23
7. Security Considerations 23
8. Acknowledgments . 23
9. Normative References . 23

 Authors' Addresses . 26

1. Introduction

 This document provides a survey of commonly used or notable network
 security protocols, with a focus on how they interact and integrate
 with applications and transport protocols. Its goal is to supplement
 efforts to define and catalog transport services [RFC8095] by
 describing the interfaces required to add security protocols. It
 examines Transport Layer Security (TLS), Datagram Transport Layer
 Security (DTLS), Quick UDP Internet Connections with TLS (QUIC +
 TLS), MinimalT, CurveCP, tcpcrypt, Internet Key Exchange with
 Encapsulating Security Protocol (IKEv2 + ESP), SRTP (with DTLS), and
 WireGuard. This survey is not limited to protocols developed within
 the scope or context of the IETF.

 For each protocol, this document provides a brief description, the
 security features it provides, and the dependencies it has on the
 underlying transport. This is followed by defining the set of
 transport security features shared by these protocols. Finally, we
 distill the application and transport interfaces provided by the
 transport security protocols.

2. Terminology

 The following terms are used throughout this document to describe the
 roles and interactions of transport security protocols:

 o Transport Feature: a specific end-to-end feature that the
 transport layer provides to an application. Examples include

https://datatracker.ietf.org/doc/html/rfc8095

Pauly, et al. Expires July 7, 2018 [Page 3]

Internet-Draft transport security survey January 2018

 confidentiality, reliable delivery, ordered delivery, message-
 versus-stream orientation, etc.

 o Transport Service: a set of Transport Features, without an
 association to any given framing protocol, which provides a
 functionality to an application.

 o Transport Protocol: an implementation that provides one or more
 different transport services using a specific framing and header
 format on the wire. A Transport Protocol services an application.

 o Application: an entity that uses a transport protocol for end-to-
 end delivery of data across the network (this may also be an upper
 layer protocol or tunnel encapsulation).

 o Security Feature: a specific feature that a network security layer
 provides to applications. Examples include authentication,
 encryption, key generation, session resumption, and privacy. A
 feature may be considered to be Mandatory or Optional to an
 application's implementation.

 o Security Protocol: a defined network protocol that implements one
 or more security features. Security protocols may be used
 alongside transport protocols, and in combination with one another
 when appropriate.

 o Handshake Protocol: a security protocol that performs a handshake
 to validate peers and establish a shared cryptographic key.

 o Record Protocol: a security protocol that allows data to be
 encrypted in records or datagrams based on a shared cryptographic
 key.

 o Session: an ephemeral security association between applications.

 o Connection: the shared state of two or more endpoints that
 persists across messages that are transmitted between these
 endpoints. A connection is a transient participant of a session,
 and a session generally lasts between connection instances.

 o Connection Mobility: a property of a connection that allows it to
 be multihomed or resilient across network interface or address
 changes.

 o Peer: an endpoint application party to a session.

 o Client: the peer responsible for initiating a session.

Pauly, et al. Expires July 7, 2018 [Page 4]

Internet-Draft transport security survey January 2018

 o Server: the peer responsible for responding to a session
 initiation.

3. Transport Security Protocol Descriptions

 This section contains descriptions of security protocols that
 currently used to protect data being sent over a network.

 For each protocol, we describe the features it provides and its
 dependencies on other protocols.

3.1. TLS

 TLS (Transport Layer Security) [RFC5246] is a common protocol used to
 establish a secure session between two endpoints. Communication over
 this session "prevents eavesdropping, tampering, and message
 forgery." TLS consists of a tightly coupled handshake and record
 protocol. The handshake protocol is used to authenticate peers,
 negotiate protocol options, such as cryptographic algorithms, and
 derive session-specific keying material. The record protocol is used
 to marshal (possibly encrypted) data from one peer to the other.
 This data may contain handshake messages or raw application data.

3.1.1. Protocol Description

 TLS is the composition of a handshake and record protocol
 [I-D.ietf-tls-tls13]. The record protocol is designed to marshal an
 arbitrary, in-order stream of bytes from one endpoint to the other.
 It handles segmenting, compressing (when enabled), and encrypting
 data into discrete records. When configured to use an AEAD
 algorithm, it also handles nonce generation and encoding for each
 record. The record protocol is hidden from the client behind a byte
 stream-oriented API.

 The handshake protocol serves several purposes, including: peer
 authentication, protocol option (key exchange algorithm and
 ciphersuite) negotiation, and key derivation. Peer authentication
 may be mutual. However, commonly, only the server is authenticated.
 X.509 certificates are commonly used in this authentication step,
 though other mechanisms, such as raw public keys [RFC7250], exist.
 The client is not authenticated unless explicitly requested by the
 server with a CertificateRequest handshake message.

 The handshake protocol is also extensible. It allows for a variety
 of extensions to be included by either the client or server. These
 extensions are used to specify client preferences, e.g., the
 application-layer protocol to be driven with the TLS connection
 [RFC7301], or signals to the server to aid operation, e.g., the

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7250
https://datatracker.ietf.org/doc/html/rfc7301

Pauly, et al. Expires July 7, 2018 [Page 5]

Internet-Draft transport security survey January 2018

 server name [RFC6066]. Various extensions also exist to tune the
 parameters of the record protocol, e.g., the maximum fragment length
 [RFC6066].

 Alerts are used to convey errors and other atypical events to the
 endpoints. There are two classes of alerts: closure and error
 alerts. A closure alert is used to signal to the other peer that the
 sender wishes to terminate the connection. The sender typically
 follows a close alert with a TCP FIN segment to close the connection.
 Error alerts are used to indicate problems with the handshake or
 individual records. Most errors are fatal and are followed by
 connection termination. However, warning alerts may be handled at
 the discretion of each respective implementation.

 Once a session is disconnected all session keying material must be
 torn down, unless resumption information was previously negotiated.
 TLS supports stateful and stateless resumption. (Here, the state
 refers to the information requirements for the server. It is assumed
 that the client must always store some state information in order to
 resume a session.)

3.1.2. Protocol Features

 o Key exchange and ciphersuite algorithm negotiation.

 o Stateful and stateless session resumption.

 o Certificate- and raw public-key-based authentication.

 o Mutual client and server authentication.

 o Byte stream confidentiality and integrity.

 o Extensibility via well-defined extensions.

 o 0-RTT data support (in TLS 1.3 only).

 o Application-layer protocol negotiation.

 o Transparent data segmentation.

3.1.3. Protocol Dependencies

 o TCP for in-order, reliable transport.

 o (Optionally) A PKI trust store for certificate validation.

https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6066

Pauly, et al. Expires July 7, 2018 [Page 6]

Internet-Draft transport security survey January 2018

3.2. DTLS

 DTLS (Datagram Transport Layer Security) [RFC6347] is based on TLS,
 but differs in that it is designed to run over UDP instead of TCP.
 Since UDP does not guarantee datagram ordering or reliability, DTLS
 modifies the protocol to make sure it can still provide the same
 security guarantees as TLS. DTLS was designed to be as close to TLS
 as possible, so this document will assume that all properties from
 TLS are carried over except where specified.

3.2.1. Protocol Description

 DTLS is modified from TLS to account for packet loss and reordering
 that occur when operating over a datagram-based transport, i.e., UDP.
 Each message is assigned an explicit sequence number to be used to
 reorder on the receiving end. This removes the inter-record
 dependency and allows each record to be decrypt in isolation of the
 rest. However, DTLS does not deviate from TLS in that in still
 provides in-order delivery of data to the application.

 With respect to packet loss, if one peer has sent a handshake message
 and has not yet received its expected response, it will retransmit
 the handshake message after a configurable timeout.

 To account for long records that cannot fit within a single UDP
 datagram, DTLS supports fragmentation of records across datagrams,
 keeping track of fragment offsets and lengths in each datagram. The
 receiving peer must re-assemble records before decrypting.

 DTLS relies on UDP's port numbers to allow peers with multiple DTLS
 sessions between them to demultiplex 'streams' of encrypted packets
 that share a single TLS session.

 Since datagrams may be replayed, DTLS provides anti-replay detection
 based on a window of acceptable sequence numbers [RFC4303].

3.2.2. Protocol Features

 o Anti-replay protection between datagrams.

 o Basic reliability for handshake messages.

 o See also the features from TLS.

https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc4303

Pauly, et al. Expires July 7, 2018 [Page 7]

Internet-Draft transport security survey January 2018

3.2.3. Protocol Dependencies

 o Since DTLS runs over an unreliable, unordered datagram transport,
 it does not require any reliability features.

 o DTLS contains its own length, so although it runs over a datagram
 transport, it does not rely on the transport protocol supporting
 framing.

 o UDP for port numbers used for demultiplexing.

 o Path MTU discovery.

3.3. QUIC with TLS

 QUIC (Quick UDP Internet Connections) is a new transport protocol
 that runs over UDP, and was originally designed with a tight
 integration with its security protocol and application protocol
 mappings. The QUIC transport layer itself provides support for data
 confidentiality and integrity. This requires keys to be derived with
 a separate handshake protocol. A mapping for QUIC over TLS 1.3
 [I-D.ietf-quic-tls] has been specified to provide this handshake.

3.3.1. Protocol Description

 Since QUIC integrates TLS with its transport, it relies on specific
 integration points between its security and transport sides.
 Specifically, these points are:

 o Starting the handshake to generate keys and provide authentication
 (and providing the transport for the handshake).

 o Client address validation.

 o Key ready events from TLS to notify the QUIC transport.

 o Exporting secrets from TLS to the QUIC transport.

 The QUIC transport layer support multiple streams over a single
 connection. The first stream is reserved specifically for a TLS
 connection. The TLS handshake, along with further records, are sent
 over this stream. This TLS connection follows the TLS standards and
 inherits the security properties of TLS. The handshake generates
 keys, which are then exported to the rest of the QUIC connection, and
 are used to protect the rest of the streams.

 Initial QUIC messages (packets) are encrypted using "fixed" keys
 derived from the QUIC version and public packet information

Pauly, et al. Expires July 7, 2018 [Page 8]

Internet-Draft transport security survey January 2018

 (Connection ID). Packets are later encrypted using keys derived from
 the TLS traffic secret upon handshake completion. The TLS 1.3
 handshake for QUIC is used in either a single-RTT mode or a fast-open
 zero-RTT mode. When zero-RTT handshakes are possible, the encryption
 first transitions to use the zero-RTT keys before using single-RTT
 handshake keys after the next TLS flight.

3.3.2. Protocol Features

 o Handshake properties of TLS.

 o Multiple encrypted streams over a single connection without head-
 of-line blocking.

 o Packet payload encryption and complete packet authentication (with
 the exception of the Public Reset packet, which is not
 authenticated).

3.3.3. Protocol Dependencies

 o QUIC transport relies on UDP.

 o QUIC transport relies on TLS 1.3 for authentication and initial
 key derivation.

 o TLS within QUIC relies on a reliable stream abstraction for its
 handshake.

3.4. MinimalT

 MinimalT is a UDP-based transport security protocol designed to offer
 confidentiality, mutual authentication, DoS prevention, and
 connection mobility [MinimalT]. One major goal of the protocol is to
 leverage existing protocols to obtain server-side configuration
 information used to more quickly bootstrap a connection. MinimalT
 uses a variant of TCP's congestion control algorithm.

3.4.1. Protocol Description

 MinimalT is a secure transport protocol built on top of a widespread
 directory service. Clients and servers interact with local directory
 services to (a) resolve server information and (b) public ephemeral
 state information, respectively. Clients connect to a local resolver
 once at boot time. Through this resolver they recover the IP
 address(es) and public key(s) of each server to which they want to
 connect.

Pauly, et al. Expires July 7, 2018 [Page 9]

Internet-Draft transport security survey January 2018

 Connections are instances of user-authenticated, mobile sessions
 between two endpoints. Connections run within tunnels between hosts.
 A tunnel is a server-authenticated container that multiplexes
 multiple connections between the same hosts. All connections in a
 tunnel share the same transport state machine and encryption. Each
 tunnel has a dedicated control connection used to configure and
 manage the tunnel over time. Moreover, since tunnels are independent
 of the network address information, they may be reused as both ends
 of the tunnel move about the network. This does however imply that
 the connection establishment and packet encryption mechanisms are
 coupled.

 Before a client connects to a remote service, it must first establish
 a tunnel to the host providing or offering the service. Tunnels are
 established in 1-RTT using an ephemeral key obtained from the
 directory service. Tunnel initiators provide their own ephemeral key
 and, optionally, a DoS puzzle solution such that the recipient
 (server) can verify the authenticity of the request and derive a
 shared secret. Within a tunnel, new connections to services may be
 established.

3.4.2. Protocol Features

 o 0-RTT forward secrecy for new connections.

 o DoS prevention by client-side puzzles.

 o Tunnel-based mobility.

 o (Transport Feature) Connection multiplexing between hosts across
 shared tunnels.

 o (Transport Feature) Congestion control state is shared across
 connections between the same host pairs.

3.4.3. Protocol Dependencies

 o A DNS-like resolution service to obtain location information (an
 IP address) and ephemeral keys.

 o A PKI trust store for certificate validation.

3.5. CurveCP

 CurveCP [CurveCP] is a UDP-based transport security protocol from
 Daniel J. Bernstein. Unlike other transport security protocols, it
 is based entirely upon highly efficient public key algorithms. This

Pauly, et al. Expires July 7, 2018 [Page 10]

Internet-Draft transport security survey January 2018

 removes many pitfalls associated with nonce reuse and key
 synchronization.

3.5.1. Protocol Description

 CurveCP is a UDP-based transport security protocol. It is built on
 three principal features: exclusive use of public key authenticated
 encryption of packets, server-chosen cookies to prohibit memory and
 computation DoS at the server, and connection mobility with a client-
 chosen ephemeral identifier.

 There are two rounds in CurveCP. In the first round, the client
 sends its first initialization packet to the server, carrying its
 (possibly fresh) ephemeral public key C', with zero-padding encrypted
 under the server's long-term public key. The server replies with a
 cookie and its own ephemeral key S' and a cookie that is to be used
 by the client. Upon receipt, the client then generates its second
 initialization packet carrying: the ephemeral key C', cookie, and an
 encryption of C', the server's domain name, and, optionally, some
 message data. The server verifies the cookie and the encrypted
 payload and, if valid, proceeds to send data in return. At this
 point, the connection is established and the two parties can
 communicate.

 The use of only public-key encryption and authentication, or
 "boxing", is done to simplify problems that come with symmetric key
 management and synchronization. For example, it allows the sender of
 a message to be in complete control of each message's nonce. It does
 not require either end to share secret keying material. And it
 allows ephemeral public keys to be associated with connections (or
 sessions).

 The client and server do not perform a standard key exchange.
 Instead, in the initial exchange of packets, the each party provides
 its own ephemeral key to the other end. The client can choose a new
 ephemeral key for every new connection. However, the server must
 rotate these keys on a slower basis. Otherwise, it would be trivial
 for an attacker to force the server to create and store ephemeral
 keys with a fake client initialization packet.

 Unlike TCP, the server employs cookies to enable source validation.
 After receiving the client's initial packet, encrypted under the
 server's long-term public key, the server generates and returns a
 stateless cookie that must be echoed back in the client's following
 message. This cookie is encrypted under the client's ephemeral
 public key. This stateless technique prevents attackers from
 hijacking client initialization packets to obtain cookie values to
 flood clients. (A client would detect the duplicate cookies and

Pauly, et al. Expires July 7, 2018 [Page 11]

Internet-Draft transport security survey January 2018

 reject the flooded packets.) Similarly, replaying the client's
 second packet, carrying the cookie, will be detected by the server.

 CurveCP supports a weak form of client authentication. Clients are
 permitted to send their long-term public keys in the second
 initialization packet. A server can verify this public key and, if
 untrusted, drop the connection and subsequent data.

 Unlike some other protocols, CurveCP data packets only leave the
 ephemeral public key, i.e., the connection ID, and the per-message
 nonce in the clear. Everything else is encrypted.

3.5.2. Protocol Features

 o Forward-secure data encryption and authentication.

 o Per-packet public-key encryption.

 o 1-RTT session bootstrapping.

 o Connection mobility based on a client-chosen ephemeral identifier.

 o Connection establishment message padding to prevent traffic
 amplification.

 o Sender-chosen explicit nonces, e.g., based on a sequence number.

3.5.3. Protocol Dependencies

 o An unreliable transport protocol such as UDP.

3.6. tcpcrypt

 Tcpcrypt is a lightweight extension to the TCP protocol to enable
 opportunistic encryption with hooks available to the application
 layer for implementation of endpoint authentication.

3.6.1. Protocol Description

 Tcpcrypt extends TCP to enable opportunistic encryption between the
 two ends of a TCP connection [I-D.ietf-tcpinc-tcpcrypt]. It is a
 family of TCP encryption protocols (TEP), distinguished by key
 exchange algorithm. The use of a TEP is negotiated with a TCP option
 during the initial TCP handshake via the mechanism described by TCP
 Encryption Negotiation Option (ENO) [I-D.ietf-tcpinc-tcpeno]. In the
 case of initial session establishment, once a tcpcrypt TEP has been
 negotiated the key exchange occurs within the data segments of the
 first few packets exchanged after the handshake completes. The

Pauly, et al. Expires July 7, 2018 [Page 12]

Internet-Draft transport security survey January 2018

 initiator of a connection sends a list of supported AEAD algorithms,
 a random nonce, and an ephemeral public key share. The responder
 typically chooses a mutually-supported AEAD algorithm and replies
 with this choice, its own nonce, and ephemeral key share. An initial
 shared secret is derived from the ENO handshake, the tcpcrypt
 handshake, and the initial keying material resulting from the key
 exchange. The traffic encryption keys on the initial connection are
 derived from the shared secret. Connections can be re-keyed before
 the natural AEAD limit for a single set of traffic encryption keys is
 reached.

 Each tcpcrypt session is associated with a ladder of resumption IDs,
 each derived from the respective entry in a ladder of shared secrets.
 These resumption IDs can be used to negotiate a stateful resumption
 of the session in a subsequent connection, resulting in use of a new
 shared secret and traffic encryption keys without requiring a new key
 exchange. Willingness to resume a session is signaled via the ENO
 option during the TCP handshake. Given the length constraints
 imposed by TCP options, unlike stateless resumption mechanisms (such
 as that provided by session tickets in TLS) resumption in tcpcrypt
 requires the maintenance of state on the server, and so successful
 resumption across a pool of servers implies shared state.

 Owing to middlebox ossification issues, tcpcrypt only protects the
 payload portion of a TCP packet. It does not encrypt any header
 information, such as the TCP sequence number.

 Tcpcrypt exposes a universally-unique connection-specific session ID
 to the application, suitable for application-level endpoint
 authentication either in-band or out-of-band.

3.6.2. Protocol Features

 o Forward-secure TCP payload encryption and integrity protection.

 o Session caching and address-agnostic resumption.

 o Connection re-keying.

 o Application-level authentication primitive.

3.6.3. Protocol Dependencies

 o TCP

 o TCP Encryption Negotiation Option (ENO)

Pauly, et al. Expires July 7, 2018 [Page 13]

Internet-Draft transport security survey January 2018

3.7. IKEv2 with ESP

 IKEv2 [RFC7296] and ESP [RFC4303] together form the modern IPsec
 protocol suite that encrypts and authenticates IP packets, either as
 for creating tunnels (tunnel-mode) or for direct transport
 connections (transport-mode). This suite of protocols separates out
 the key generation protocol (IKEv2) from the transport encryption
 protocol (ESP). Each protocol can be used independently, but this
 document considers them together, since that is the most common
 pattern.

3.7.1. Protocol descriptions

3.7.1.1. IKEv2

 IKEv2 is a control protocol that runs on UDP port 500. Its primary
 goal is to generate keys for Security Associations (SAs). It first
 uses a Diffie-Hellman key exchange to generate keys for the "IKE SA",
 which is a set of keys used to encrypt further IKEv2 messages. It
 then goes through a phase of authentication in which both peers
 present blobs signed by a shared secret or private key, after which
 another set of keys is derived, referred to as the "Child SA". These
 Child SA keys are used by ESP.

 IKEv2 negotiates which protocols are acceptable to each peer for both
 the IKE and Child SAs using "Proposals". Each proposal may contain
 an encryption algorithm, an authentication algorithm, a Diffie-
 Hellman group, and (for IKE SAs only) a pseudorandom function
 algorithm. Each peer may support multiple proposals, and the most
 preferred mutually supported proposal is chosen during the handshake.

 The authentication phase of IKEv2 may use Shared Secrets,
 Certificates, Digital Signatures, or an EAP (Extensible
 Authentication Protocol) method. At a minimum, IKEv2 takes two round
 trips to set up both an IKE SA and a Child SA. If EAP is used, this
 exchange may be expanded.

 Any SA used by IKEv2 can be rekeyed upon expiration, which is usually
 based either on time or number of bytes encrypted.

 There is an extension to IKEv2 that allows session resumption
 [RFC5723].

 MOBIKE is a Mobility and Multihoming extension to IKEv2 that allows a
 set of Security Associations to migrate over different addresses and
 interfaces [RFC4555].

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc5723
https://datatracker.ietf.org/doc/html/rfc4555

Pauly, et al. Expires July 7, 2018 [Page 14]

Internet-Draft transport security survey January 2018

 When UDP is not available or well-supported on a network, IKEv2 may
 be encapsulated in TCP [I-D.ietf-ipsecme-tcp-encaps].

3.7.1.2. ESP

 ESP is a protocol that encrypts and authenticates IP and IPv6
 packets. The keys used for both encryption and authentication can be
 derived from an IKEv2 exchange. ESP Security Associations come as
 pairs, one for each direction between two peers. Each SA is
 identified by a Security Parameter Index (SPI), which is marked on
 each encrypted ESP packet.

 ESP packets include the SPI, a sequence number, an optional
 Initialization Vector (IV), payload data, padding, a length and next
 header field, and an Integrity Check Value.

 From [RFC4303], "ESP is used to provide confidentiality, data origin
 authentication, connectionless integrity, an anti-replay service (a
 form of partial sequence integrity), and limited traffic flow
 confidentiality."

 Since ESP operates on IP packets, it is not directly tied to the
 transport protocols it encrypts. This means it requires little or no
 change from transports in order to provide security.

 ESP packets are sent directly over IP, except when a NAT is present,
 in which case they are sent on UDP port 4500, or via TCP
 encapsulation [I-D.ietf-ipsecme-tcp-encaps].

3.7.2. Protocol features

3.7.2.1. IKEv2

 o Encryption and authentication of handshake packets.

 o Cryptographic algorithm negotiation.

 o Session resumption.

 o Mobility across addresses and interfaces.

 o Peer authentication extensibility based on Shared Secret,
 Certificates, Digital Signatures, or EAP methods.

https://datatracker.ietf.org/doc/html/rfc4303

Pauly, et al. Expires July 7, 2018 [Page 15]

Internet-Draft transport security survey January 2018

3.7.2.2. ESP

 o Data confidentiality and authentication.

 o Connectionless integrity.

 o Anti-replay protection.

 o Limited flow confidentiality.

3.7.3. Protocol dependencies

3.7.3.1. IKEv2

 o Availability of UDP to negotiate, or implementation support for
 TCP-encapsulation.

 o Some EAP authentication types require accessing a hardware device,
 such as a SIM card; or interacting with a user, such as password
 prompting.

3.7.3.2. ESP

 o Since ESP is below transport protocols, it does not have any
 dependencies on the transports themselves, other than on UDP or
 TCP for NAT traversal.

3.8. WireGuard

 WireGuard is a layer 3 protocol designed to complement or replace
 IPsec [WireGuard]. Unlike most transport security protocols, which
 rely on PKI for peer authentication, WireGuard authenticates peers
 using pre-shared public keys delivered out-of-band, each of which is
 bound to one or more IP addresses. Moreover, as a protocol suited
 for VPNs, WireGuard offers no extensibility, negotiation, or
 cryptographic agility.

3.8.1. Protocol description

 WireGuard is a simple VPN protocol that binds a pre-shared public key
 to one or more IP addresses. Users configure WireGuard by
 associating peer public keys with IP addresses. These mappings are
 stored in a CryptoKey Routing Table. (See Section 2 of [WireGuard]
 for more details and sample configurations.) These keys are used
 upon WireGuard packet transmission and reception. For example, upon
 receipt of a Handshake Initiation message, receivers use the static
 public key in their CryptoKey routing table to perform necessary
 cryptographic computations.

Pauly, et al. Expires July 7, 2018 [Page 16]

Internet-Draft transport security survey January 2018

 WireGuard builds on Noise [Noise] for 1-RTT key exchange with
 identity hiding. The handshake hides peer identities as per the
 SIGMA construction [SIGMA]. As a consequence of using Noise,
 WireGuard comes with a fixed set of cryptographic algorithms:

 o x25519 [Curve25519] and HKDF [RFC5869] for ECDH and key
 derivation.

 o ChaCha20+Poly1305 [RFC7539] for packet authenticated encryption.

 o BLAKE2s [BLAKE2] for hashing.

 There is no cryptographic agility. If weaknesses are found in any of
 these algorithms, new message types using new algorithms must be
 introduced.

 WireGuard is designed to be entirely stateless, modulo the CryptoKey
 routing table, which has size linear with the number of trusted
 peers. If a WireGuard receiver is under heavy load and cannot
 process a packet, e.g., cannot spare CPU cycles for point
 multiplication, it can reply with a cookie similar to DTLS and IKEv2.
 This cookie only proves IP address ownership. Any rate limiting
 scheme can be applied to packets coming from non-spoofed addresses.

3.8.2. Protocol features

 o Optional PSK-based session creation.

 o Mutual client and server authentication.

 o Stateful, timestamp-based replay prevention.

 o Cookie-based DoS mitigation similar to DTLS and IKEv2.

3.8.3. Protocol dependencies

 o Datagram transport.

 o Out-of-band key distribution and management.

3.9. SRTP (with DTLS)

 SRTP - Secure RTP - is a profile for RTP that provides
 confidentiality, message authentication, and replay protection for
 data and control packets [RFC3711]. SRTP packets are encrypted using
 a session key, which is derived from a separate master key. Master
 keys are derived and managed externally, e.g., via DTLS, as specified
 in RFC 5736 [RFC5763].

https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc7539
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc5736
https://datatracker.ietf.org/doc/html/rfc5763

Pauly, et al. Expires July 7, 2018 [Page 17]

Internet-Draft transport security survey January 2018

3.9.1. Protocol descriptions

 SRTP adds confidentiality and, optionally, integrity protection to
 SRTP packets. This is done by encrypting RTP payloads and optionally
 appending an authentication tag (MAC) to the packet trailer. Packets
 are encrypted using session keys, which are ultimately derived from a
 master key and some additional master salt and session salt. SRTP
 packets carry a 2-byte sequence number to partially identify the
 unique packet index. SRTP peers maintain a separate rollover counter
 (ROC) that is incremented whenever the sequence number wraps. The
 sequence number and ROC together determine the packet index. Packets
 also carry

 Numerous encryption modes are supported. For popular modes of
 operation, e.g., AES-CTR, The (unique) initialization vector (IV)
 used for each encryption mode is a function of the RTP SSRC
 (synchronization source), packet index, and session "salting key".

 SRTP offers replay detection by keeping a Replay List of already seen
 and processed packet indices. If a packet arrives with an index that
 matches one in the Replay List, it is silently discarded.

 DTLS [RFC5764] is commonly used as a way to perform mutually
 authentication key establishment for SRTP [RFC5763]. (Here,
 certificates marshall public keys between endpoints. Thus, self-
 signed certificates may be used if peers do not mutually trust one
 another, as is common on the Internet.) When DTLS is used,
 certificate fingerprints are transmitted out-of-band using SIP.
 Peers typically verify that DTLS-offered certificates match that
 which are offered over SIP. This prevents active attacks on RTP, but
 not on the signalling (SIP) channel.

3.9.2. Protocol features

 o Optional replay protection with tunable replay windows.

 o Out-of-order packet receipt.

 o (RFC5763) Mandatory mutually authenticated key exchange.

3.9.3. Protocol dependencies

 o External key derivation and management mechanism or protocol,
 e.g., DTLS [RFC5763].

https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5763
https://datatracker.ietf.org/doc/html/rfc5763

Pauly, et al. Expires July 7, 2018 [Page 18]

Internet-Draft transport security survey January 2018

4. Common Transport Security Features

 There exists a common set of features shared across the transport
 protocols surveyed in this document. The mandatory features should
 be provided by any transport security protocol, while the optional
 features are extensions that a subset of the protocols provide. For
 clarity, we also distinguish between handshake and record features.

4.1. Mandatory Features

4.1.1. Handshake

 o Forward-secure segment encryption and authentication: Transit data
 must be protected with an authenticated encryption algorithm.

 o Private key interface or injection: Authentication based on public
 key signatures is commonplace for many transport security
 protocols.

 o Endpoint authentication: The endpoint (receiver) of a new
 connection must be authenticated before any data is sent to said
 party.

 o Source validation: Source validation must be provided to mitigate
 server-targeted DoS attacks. This can be done with puzzles or
 cookies.

4.1.2. Record

 o Pre-shared key support: A record protocol must be able to use a
 pre-shared key established out-of-band to encrypt individual
 messages, packets, or datagrams.

4.2. Optional Features

4.2.1. Handshake

 o Mutual authentication: Transport security protocols should allow
 both endpoints to authenticate one another if needed.

 o Application-layer feature negotiation: The type of application
 using a transport security protocol often requires features
 configured at the connection establishment layer, e.g., ALPN
 [RFC7301]. Moreover, application-layer features may often be used
 to offload the session to another server which can better handle
 the request. (The TLS SNI is one example of such a feature.) As
 such, transport security protocols should provide a generic

https://datatracker.ietf.org/doc/html/rfc7301

Pauly, et al. Expires July 7, 2018 [Page 19]

Internet-Draft transport security survey January 2018

 mechanism to allow for such application-specific features and
 options to be configured or otherwise negotiated.

 o Configuration extensions: The protocol negotiation should be
 extensible with addition of new configuration options.

 o Session caching and management: Sessions should be cacheable to
 enable reuse and amortize the cost of performing session
 establishment handshakes.

4.2.2. Record

 o Connection mobility: Sessions should not be bound to a network
 connection (or 5 tuple). This allows cryptographic key material
 and other state information to be reused in the event of a
 connection change. Examples of this include a NAT rebinding that
 occurs without a client's knowledge.

5. Transport Security Protocol Interfaces

 This section describes the interface surface exposed by the security
 protocols described above, with each interface. Note that not all
 protocols support each interface.

5.1. Configuration Interfaces

 Configuration interfaces are used to configure the security protocols
 before a handshake begins or the keys are negotiated.

 o Identity and Private Keys
 The application can provide its identities (certificates) and
 private keys, or mechanisms to access these, to the security
 protocol to use during handshakes.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT, CurveCP, IKEv2,
 WireGuard, SRTP

 o Supported Algorithms (Key Exchange, Signatures and Ciphersuites)
 The application can choose the algorithms that are supported for
 key exchange, signatures, and ciphersuites.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT, tcpcrypt, IKEv2, SRTP

 o Session Cache
 The application provides the ability to save and retrieve session
 state (tickets, keying material, server parameters) that may be
 used to resume the security session.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT

 o Authentication Delegate

Pauly, et al. Expires July 7, 2018 [Page 20]

Internet-Draft transport security survey January 2018

 The application provides access to a separate module that will
 provide authentication, using EAP for example.
 Protocols: IKEv2, SRTP

5.2. Handshake Interfaces

 Handshake interfaces are the points of interaction between a
 handshake protocol and the application, record protocol, and
 transport once the handshake is active.

 o Send Handshake Messages
 The handshake protocol needs to be able to send messages over a
 transport to the remote peer to establish trust and negotiate
 keys.
 Protocols: All (TLS, DTLS, QUIC + TLS, MinimalT, CurveCP, IKEv2,
 WireGuard, SRTP (DTLS))

 o Receive Handshake Messages
 The handshake protocol needs to be able to receive messages from
 the remote peer over a transport to establish trust and negotiate
 keys.
 Protocols: All (TLS, DTLS, QUIC + TLS, MinimalT, CurveCP, IKEv2,
 WireGuard, SRTP (DTLS))

 o Identity Validation
 During a handshake, the security protocol will conduct identity
 validation of the peer. This can call into the application to
 offload validation. Protocols: All (TLS, DTLS, QUIC + TLS,
 MinimalT, CurveCP, IKEv2, WireGuard, SRTP (DTLS))

 o Source Address Validation
 The handshake protocol may delegate validation of the remote peer
 that has sent data to the transport protocol or application. This
 involves sending a cookie exchange to avoid DoS attacks.
 Protocols: QUIC + TLS, DTLS, WireGuard

 o Key Update
 The handshake protocol may be instructed to update its keying
 material, either by the application directly or by the record
 protocol sending a key expiration event.
 Protocols: TLS, DTLS, QUIC + TLS, MinimalT, tcpcrypt, IKEv2

 o Pre-Shared Key Export
 The handshake protocol will generate one or more keys to be used
 for record encryption/decryption and authentication. These may be
 explicitly exportable to the application, traditionally limited to
 direct export to the record protocol, or inherently non-exportable

Pauly, et al. Expires July 7, 2018 [Page 21]

Internet-Draft transport security survey January 2018

 because the keys must be used directly in conjunction with the
 record protocol.

 * Explict export: TLS (for QUIC), tcpcrypt, IKEv2, DTLS (for
 SRTP)

 * Direct export: TLS, DTLS, MinimalT

 * Non-exportable: CurveCP

5.3. Record Interfaces

 Record interfaces are the points of interaction between a record
 protocol and the application, handshake protocol, and transport once
 in use.

 o Pre-Shared Key Import
 Either the handshake protocol or the application directly can
 supply pre-shared keys for the record protocol use for encryption/
 decryption and authentication. If the application can supply keys
 directly, this is considered explicit import; if the handshake
 protocol traditionally provides the keys directly, it is
 considered direct import; if the keys can only be shared by the
 handshake, they are considered non-importable.

 * Explict import: QUIC, ESP

 * Direct import: TLS, DTLS, MinimalT, tcpcrypt, WireGuard

 * Non-importable: CurveCP

 o Encrypt application data
 The application can send data to the record protocol to encrypt it
 into a format that can be sent on the underlying transport. The
 encryption step may require that the application data is treated
 as a stream or as datagrams, and that the transport to send the
 encrypted records present a stream or datagram interface.

 * Stream-to-Stream Protocols: TLS, tcpcrypt

 * Datagram-to-Datagram Protocols: DTLS, ESP, SRTP, WireGuard

 * Stream-to-Datagram Protocols: QUIC ((Editor's Note: This
 depends on the interface QUIC exposes to applications.))

 o Decrypt application data
 The application can receive data from its transport to be
 decrypted using record protocol. The decryption step may require

Pauly, et al. Expires July 7, 2018 [Page 22]

Internet-Draft transport security survey January 2018

 that the incoming transport data is presented as a stream or as
 datagrams, and that the resulting application data is a stream or
 datagrams.

 * Stream-to-Stream Protocols: TLS, tcpcrypt

 * Datagram-to-Datagram Protocols: DTLS, ESP, SRTP, WireGuard

 * Datagram-to-Stream Protocols: QUIC ((Editor's Note: This
 depends on the interface QUIC exposes to applications.))

 o Key Expiration
 The record protocol can signal that its keys are expiring due to
 reaching a time-based deadline, or a use-based deadline (number of
 bytes that have been encrypted with the key). This interaction is
 often limited to signaling between the record layer and the
 handshake layer.
 Protocols: ESP ((Editor's note: One may consider TLS/DTLS to also
 have this interface))

 o Transport mobility
 The record protocol can be signaled that it is being migrated to
 another transport or interface due to connection mobility, which
 may reset address and state validation.
 Protocols: QUIC, MinimalT, CurveCP, ESP, WireGuard (roaming)

6. IANA Considerations

 This document has on request to IANA.

7. Security Considerations

 This document summarizes existing transport security protocols and
 their interfaces. It does not propose changes to or recommend usage
 of reference protocols.

8. Acknowledgments

 The authors would like to thank Mirja Kuehlewind, Brian Trammell,
 Yannick Sierra, Frederic Jacobs, and Bob Bradley for their input and
 feedback on earlier versions of this draft.

9. Normative References

 [BLAKE2] "BLAKE2 -- simpler, smaller, fast as MD5", n.d..

 [Curve25519]
 "Curve25519 - new Diffie-Hellman speed records", n.d..

Pauly, et al. Expires July 7, 2018 [Page 23]

Internet-Draft transport security survey January 2018

 [CurveCP] "CurveCP -- Usable security for the Internet", n.d..

 [I-D.ietf-ipsecme-tcp-encaps]
 Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", draft-ietf-ipsecme-tcp-

encaps-10 (work in progress), May 2017.

 [I-D.ietf-quic-tls]
 Thomson, M. and S. Turner, "Using Transport Layer Security
 (TLS) to Secure QUIC", draft-ietf-quic-tls-08 (work in
 progress), December 2017.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-08 (work
 in progress), December 2017.

 [I-D.ietf-tcpinc-tcpcrypt]
 Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,
 Q., and E. Smith, "Cryptographic protection of TCP Streams
 (tcpcrypt)", draft-ietf-tcpinc-tcpcrypt-11 (work in
 progress), November 2017.

 [I-D.ietf-tcpinc-tcpeno]
 Bittau, A., Giffin, D., Handley, M., Mazieres, D., and E.
 Smith, "TCP-ENO: Encryption Negotiation Option", draft-

ietf-tcpinc-tcpeno-18 (work in progress), November 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-22 (work in progress),
 November 2017.

 [MinimalT]
 "MinimaLT -- Minimal-latency Networking Through Better
 Security", n.d..

 [Noise] "The Noise Protocol Framework", n.d..

 [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.
 Norrman, "The Secure Real-time Transport Protocol (SRTP)",

RFC 3711, DOI 10.17487/RFC3711, March 2004,
 <https://www.rfc-editor.org/info/rfc3711>.

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, DOI 10.17487/RFC4303, December 2005,

 <https://www.rfc-editor.org/info/rfc4303>.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-tcp-encaps-10
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-tcp-encaps-10
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-08
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-08
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpcrypt-11
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpeno-18
https://datatracker.ietf.org/doc/html/draft-ietf-tcpinc-tcpeno-18
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-22
https://datatracker.ietf.org/doc/html/rfc3711
https://www.rfc-editor.org/info/rfc3711
https://datatracker.ietf.org/doc/html/rfc4303
https://www.rfc-editor.org/info/rfc4303

Pauly, et al. Expires July 7, 2018 [Page 24]

Internet-Draft transport security survey January 2018

 [RFC4555] Eronen, P., "IKEv2 Mobility and Multihoming Protocol
 (MOBIKE)", RFC 4555, DOI 10.17487/RFC4555, June 2006,
 <https://www.rfc-editor.org/info/rfc4555>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008, <https://www.rfc-

editor.org/info/rfc5246>.

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
 DOI 10.17487/RFC5723, January 2010, <https://www.rfc-

editor.org/info/rfc5723>.

 [RFC5763] Fischl, J., Tschofenig, H., and E. Rescorla, "Framework
 for Establishing a Secure Real-time Transport Protocol
 (SRTP) Security Context Using Datagram Transport Layer
 Security (DTLS)", RFC 5763, DOI 10.17487/RFC5763, May
 2010, <https://www.rfc-editor.org/info/rfc5763>.

 [RFC5764] McGrew, D. and E. Rescorla, "Datagram Transport Layer
 Security (DTLS) Extension to Establish Keys for the Secure
 Real-time Transport Protocol (SRTP)", RFC 5764,
 DOI 10.17487/RFC5764, May 2010, <https://www.rfc-

editor.org/info/rfc5764>.

 [RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010, <https://www.rfc-

editor.org/info/rfc5869>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011, <https://www.rfc-

editor.org/info/rfc6066>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/info/rfc6347>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in
 Transport Layer Security (TLS) and Datagram Transport
 Layer Security (DTLS)", RFC 7250, DOI 10.17487/RFC7250,
 June 2014, <https://www.rfc-editor.org/info/rfc7250>.

https://datatracker.ietf.org/doc/html/rfc4555
https://www.rfc-editor.org/info/rfc4555
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://datatracker.ietf.org/doc/html/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://datatracker.ietf.org/doc/html/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764
https://datatracker.ietf.org/doc/html/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://datatracker.ietf.org/doc/html/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066
https://datatracker.ietf.org/doc/html/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7250
https://www.rfc-editor.org/info/rfc7250

Pauly, et al. Expires July 7, 2018 [Page 25]

Internet-Draft transport security survey January 2018

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,
 "Transport Layer Security (TLS) Application-Layer Protocol
 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,
 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7539] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 7539, DOI 10.17487/RFC7539, May 2015,
 <https://www.rfc-editor.org/info/rfc7539>.

 [RFC8095] Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,
 Ed., "Services Provided by IETF Transport Protocols and
 Congestion Control Mechanisms", RFC 8095,
 DOI 10.17487/RFC8095, March 2017, <https://www.rfc-

editor.org/info/rfc8095>.

 [SIGMA] "SIGMA -- The 'SIGn-and-MAc' Approach to Authenticated
 Diffie-Hellman and Its Use in the IKE-Protocols", n.d..

 [WireGuard]
 "WireGuard -- Next Generation Kernel Network Tunnel",
 n.d..

Authors' Addresses

 Tommy Pauly
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Kyle Rose
 Akamai Technologies, Inc.
 150 Broadway
 Cambridge, MA 02144
 United States of America

 Email: krose@krose.org

https://datatracker.ietf.org/doc/html/rfc7296
https://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://datatracker.ietf.org/doc/html/rfc7539
https://www.rfc-editor.org/info/rfc7539
https://datatracker.ietf.org/doc/html/rfc8095
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8095

Pauly, et al. Expires July 7, 2018 [Page 26]

Internet-Draft transport security survey January 2018

 Christopher A. Wood
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 United States of America

 Email: cawood@apple.com

Pauly, et al. Expires July 7, 2018 [Page 27]

