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Abstract

   Network protocols other than TCP, such as UDP, are often blocked or
   suboptimally handled by network middleboxes.  One strategy that
   applications can use to continue to send non-TCP traffic on such
   networks is to encapsulate datagrams or messages within in a TCP
   stream.  However, encapsulating datagrams within TCP streams can lead
   to performance degradation.  This document provides guidelines for
   how to use TCP for encapsulation, a summary of performance concerns,
   and some suggested mitigations for these concerns.
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   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   TCP streams are sometimes used as a mechanism for encapsulating
   datagrams or messages, which is referred to in this document as "TCP
   encapsulation".  Encapsulation may be used to transmit data over
   networks that block or suboptimally handle non-TCP traffic.  The
   current motivations for using encapsulation generally revolve around
   the treatment of UDP packets (Section 2).

   Implementing a TCP encapsulation strategy consists of mapping
   datagram messages into a stream protocol, often with a length-value
   record format (Section 3).  While these formats are described here as
   applying to encapsulating datagrams in a TCP stream, the formats are
   equally suited to encapsulating datagrams within any stream
   abstraction.  For example, the same format may be used for both raw
   TCP streams and TLS streams running over TCP.
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2.  Motivations for Encapsulation

   The primary motivations for enabling TCP encapsulation that will be
   explored in this document relate mainly to the treatment of UDP
   packets on a given network.  UDP can be used for real-time network
   traffic, as a mechanism for deploying non-TCP transport protocols,
   and as a tunneling protocol that is compatible with Network Address
   Translators (NATs).

2.1.  UDP Blocking

   Some network middleboxes block any IP packets that do not appear to
   be used for HTTP traffic, either as a security mechanism to block
   unknown traffic or as a way to restrict access to whitelisted
   services.  Network applications that rely on UDP to transmit data
   will be blocked by these middleboxes.  In this case, the application
   can attempt to use TCP encapsulation to transmit the same data over a
   TCP stream.

2.2.  UDP NAT Timeouts

   Other networks may not altogether block non-TCP traffic, but instead
   make other protocols unsuitable for use.  For example, many Network
   Address Translation (NAT) devices will maintain TCP port mappings for
   long periods of time, since the end of a TCP stream can be detected
   by the NAT.  Since UDP packet flows do not signal when no more
   packets will be sent, NATs often use short timeouts for UDP port
   mappings.  Thus, applications can attempt to use TCP encapsulation
   when long-lived flows are required on networks with NATs.

3.  Encapsulation Formats

   The simplest approach for encapsulating datagram messages within a
   TCP stream is to use a length-value record format.  That is, a header
   consisting of a length field, followed by the datagram message
   itself.

   For example, if an encapsulation protocol uses a 16-bit length field
   (allowing up to 65536 bytes of datagram payload), it will use a
   format like the following:
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   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |            Length             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                       Datagram Payload                        ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The format of the length header field could be longer or shorter
   depending on the needs of the protocol. 16 bits is most appropriate
   when encapsulating datagrams that would otherwise be sent directly in
   IP packets, since the payload length field for an IP header is also
   16 bits.

   The length field must be specified to either include itself in the
   length of the entire record, or to only describe the length of the
   payload field.  The protocol used for encapsulating IKE and ESP
   packets in TCP [RFC8229] does include the length field itself in the
   length of the record.  This may be slightly easier for
   implementations to parse out records, since they will not need to add
   the length of the length field when finding record offsets within a
   stream.

3.1.  Multiplexing Flows

   Since TCP encapsulation is used to avoid failures caused by NATs or
   firewalls, some implementations re-use one TCP port or one
   established TCP stream for multiple kinds of encapsulated traffic.
   Using a single port or stream allows re-use of NAT bindings and
   reduces the chance that a firewall will block some flows, but not
   others.

   If multiple kinds of traffic are multiplexed on the same listening
   TCP port, individual streams opened to that port need to be
   differentiated.  This may require adding a one-time header that is
   sent on the stream to indicate the type of encapsulated traffic that
   will follow.  For example, TCP encapsulated IKE [RFC8229] uses a
   stream prefix to differentiate its encapsulation strategy from
   proprietary Virtual Private Network (VPN) protocols.

   Multiplexing multiple kinds of datagrams, or independent flows of
   datagrams, over a single TCP stream requires adding a per-record type
   field or marker to the encapsulation record format.  For ease of
   parsing records, this value should be placed after the length field
   of the record format.  For example, various ESP packet flows are
   identified by the four-byte Security Parameter Index (SPI) that

https://datatracker.ietf.org/doc/html/rfc8229
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   comprises the first bytes of the datagram payload, while IKE packets
   in the same TCP encapsulated stream are differentiated by using all
   zeros for the first four bytes.

4.  Deployment Considerations

   In general, any new TCP encapsulation protocol should allocate a new
   TCP port.  If TCP is being used to encapsulate traffic that is
   normally sent over UDP, then the the most obvious port choice for the
   TCP encapsulated version is the equivalent port value in the TCP port
   namespace.

   Simply using TCP instead of UDP may be enough in some cases to
   mitigate the connectivity problems of using UDP with NATs and other
   middleboxes.  However, it may be useful to also add a layer of
   encryption to the stream using TLS to obfuscate the contents of the
   stream.  This may be done for security and privacy reasons, or to
   prevent middleboxes from mishandling encapsulated traffic or
   ossifying around a particular format for encapsulation.

5.  Performance Considerations

   Many encapsulation or tunnelling protocols utilize an underlying
   transport like UDP, which does not provide stateful features such as
   loss recovery or congestion control.  Because encapsulation using TCP
   involves an additional layer of state that is shared among all
   traffic inside the tunnel, there are additional performance
   considerations to address.

   Even though this document describes encapsulating datagrams or
   messages inside a TCP stream, some protocols, such as ESP, themselves
   often encapsulate additional TCP streams, such as when transmitting
   data for a VPN protocol [RFC8229].  This introduces several potential
   sources of suboptimal behavior, as multiple TCP contexts act upon the
   same traffic.

   For the purposes of this discussion, we will refer to the TCP
   encapsulation context as the "outer" TCP context, while the TCP
   context applicable to any encapsulated protocol will be referred to
   as the "inner" TCP context.

   The use of an outer TCP context may cause signals from the network to
   be hidden from the inner TCP contexts.  Depending on the signals that
   the inner TCP contexts use for indicating congestion, events that
   would otherwise result in a modification of behavior may go
   unnoticed, or may build up until a large modification of behavior is
   necessary.  Generally, the main areas of concern are signals that

https://datatracker.ietf.org/doc/html/rfc8229


Pauly & Kinnear          Expires January 3, 2019                [Page 5]



Internet-Draft              TCP Encapsulation                  July 2018

   inform loss recovery, Bufferbloat and delay avoidance, and head of
   line blocking between streams.

5.1.  Loss Recovery

5.1.1.  Concern

   The outer TCP context experiences packet loss on the network
   directly, while any inner TCP contexts present observe the effects of
   that loss on the delivery of their packets by the encapsulation
   layer.  Furthermore, inner TCP contexts still observe direct network
   effects for any network segments that are traversed outside of the
   encapsulation, as is common with a VPN.

   In this way, the outer TCP context masks packet loss from the inner
   contexts by retransmitting encapsulated segments to recover from
   those losses.  An inner context observes this as a delay while the
   packets are retransmitted rather than a loss.  This can lead to
   spurious retransmissions if the recovery of the lost packets takes
   longer than the inner context's retransmission timeout (RTO).  Since
   the outer context is retransmitting the packets to make up for the
   losses, the spurious retransmissions waste bandwidth that could be
   used for packets that advance the progress of the flows being
   encapsulated.  A RTO event on an inner TCP context also hinders
   performance beyond generating spurious retransmissions, as many TCP
   congestion control algorithms dramatically reduce the sending rate
   after an RTO is observed.

   When recovery from a loss event on the outer TCP context completes,
   the network or endpoint on the other end of the encapsulation will
   receive a potentially large burst of packets as the retransmitted
   packets fill in any gaps and the entire set of pending data can be
   delivered.

   If content from multiple inner flows is shared within a single TCP
   packet in the outer context, the effects of lost packets from the
   outer context will be experienced by more than one inner flow at a
   time.  However, this loss is actually shared by all inner flows,
   since forward progress for the entire encapsulation tunnel is
   generally blocked until the lost segments can be filled in.  This is
   discussed further in Section 5.3.

5.1.2.  Mitigation

   Generally, TCP congestion controls and loss recovery algorithms are
   capable of recovering from loss events very efficiently, and the
   inner TCP contexts observe brief periods of added delay without much
   penalty.
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   A TCP congestion control should be selected and tuned to be able to
   gracefully handle extremely variable RTT values, which may already
   the case for some congestion controls, as RTT variance is often
   greatly increased in mobile and cellular networks.

   Additionally, use of a TCP congestion control that considers delay to
   be a sign of congestion may help the coordination between inner and
   outer TCP contexts.  LEDBAT [RFC6817] and BBR
   [I-D.cardwell-iccrg-bbr-congestion-control] are two examples of delay
   based congestion control that an inner TCP context could use to
   properly interpret loss events experienced by the outer TCP context.
   Care must be taken to ensure that any TCP congestion control in use
   is also appropriate for an inner context to use on any network
   segments that are traversed outside of the encapsulation.

   Since any losses will be handled by the outer TCP context, it might
   seem reasonable to modify the the inner TCP contexts' loss recovery
   algorithms to prevent retransmissions, there are often network
   segments outside of the encapsulated segments that still rely on the
   inner contexts' loss recovery algorithms.  Instead, spurious
   retransmissions can be reduced by ensuring that RTO values are tuned
   such that the outer TCP context will fully time out before any inner
   TCP contexts.

5.2.  Bufferbloat

5.2.1.  Concern

   "Bufferbloat", or delay introduced by consistently full large buffers
   along a network path [TSV2011] [BB2011], can increase observed RTTs
   along a network path, which can harm the performance of latency
   sensitive applications.  Any spurious retransmissions sent on the
   network take place in queues that would otherwise be filled by useful
   data.  In this case, any retransmission sent by an inner TCP context
   for a loss or timeout along the network segments also covered by the
   outer TCP context is considered to be spurious.  This can pose a
   performance problem for implementations that rely on interactive data
   transfer.

   Additionally, because there may be multiple inner TCP contexts being
   multiplexed over a single outer TCP context, even a minor reduction
   in sending rate by each of the inner contexts can result in a
   dramatic decrease in data sent through the outer context.  Similarly,
   an increase in sending rate is also amplified.

https://datatracker.ietf.org/doc/html/rfc6817
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5.2.2.  Mitigation

   Great care should be taken in tuning the inner TCP congestion control
   to avoid spurious retransmissions as much as possible.  However, in
   order to provide effective loss recovery for the segments of the
   network outside the tunnel, the set of parameters used for tuning
   needs to be viable both inside and outside the tunnel.  Adjusting the
   retransmission timeout (RTO) value for the TCP congestion control on
   the inner TCP context to be greater than that of the out TCP context
   will often help to reduce the number of spurious retransmissions
   generated while the outer TCP context attempts to catch up with lost
   or reordered packets.

   In most cases, fast retransmit will be sufficient to recover from
   losses on network segments after the inner flows leave the tunnel,
   although loss events that trigger a full RTO on those last-mile
   segments will carry a higher penalty with such tuning.  However, in
   many deployments, the last-mile segments will often observe lower
   loss rates than the first-mile segments, leading to a balance that
   often favors spurious retransmission avoidance on the first-mile over
   loss recovery speed on the last-mile.

5.3.  Head of Line Blocking

5.3.1.  Concern

   Because TCP provides in-order delivery and reliability, even if there
   are multiple flows being multiplexed over the encapsulation layer,
   loss events, spurious retransmissions, or other recovery efforts will
   cause data for all other flows to back up and not be delivered to the
   client.  In deployments where there are additional network segments
   to traverse beyond the encapsulation boundary, this may mean that
   flows are not delivered onto those segments until recovery for the
   outer TCP context is complete.

   With UDP encapsulation, packet reordering and loss did not
   necessarily prevent data from being delivered, even if it was
   delivered out of order.  Because TCP groups all data being
   encapsulated into one outer congestion control and loss recovery
   context, this may cause significant delays for flows not directly
   impacted by a recovery event.

   Reordering on the network will also cause problems in this case, as
   it will often trigger fast retransmissions on the outer TCP context,
   blocking all inner contexts from being able to deliver data until the
   retransmissions are complete.  However, a well behaved TCP will
   reorder the data that arrived out of order and deliver it before the
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   retransmissions arrive, reducing the detrimental impact of such
   reordering.

5.3.2.  Mitigation

   One option to help address the head of line blocking would be to run
   multiple tunnels, one for throughput sensitive flows and one for
   latency sensitive flows.  This can help to reduce the amount of time
   that a latency sensitive flow can possibly be blocked on recovery for
   any other flow.  Latency sensitive flows should take extra care to
   ensure that only the necessary amount of data is in flight at any
   given time.

   Explicit Congestion Notification (ECN) ([RFC3168], [RFC5562]) could
   also be used to communicate between outer and inner TCP contexts
   during any recovery scenario.  In a strategy similar to that taken by
   tunnelling of ECN fields in IP-in-IP tunnels [RFC6040], if an
   implementation supports such behavior, any ECN markings communicated
   to the outer TCP context by the network could be passed through to
   any inner TCP contexts transported by a given packet.  Alternately,
   an implementation could elect to pass through such markings to all
   inner TCP contexts if a greater reduction in sending rate was deemed
   to be necessary.

6.  Security Considerations

   Any attacker on the path that observes the encapsulation could
   potentially discard packets from the outer TCP context and cause
   significant delays due to head of line blocking.  However, an
   attacker in a position to arbitrarily discard packets could have a
   similar effect on the inner TCP context directly or on any other
   encapsulation schemes.

7.  IANA Considerations

   This document has no request to IANA.
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