
Network Working Group T. Pauly
Internet-Draft E. Kinnear
Intended status: Informational Apple Inc.
Expires: January 3, 2019 July 02, 2018

TCP Encapsulation Considerations
draft-pauly-tsvwg-tcp-encapsulation-00

Abstract

 Network protocols other than TCP, such as UDP, are often blocked or
 suboptimally handled by network middleboxes. One strategy that
 applications can use to continue to send non-TCP traffic on such
 networks is to encapsulate datagrams or messages within in a TCP
 stream. However, encapsulating datagrams within TCP streams can lead
 to performance degradation. This document provides guidelines for
 how to use TCP for encapsulation, a summary of performance concerns,
 and some suggested mitigations for these concerns.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Pauly & Kinnear Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft TCP Encapsulation July 2018

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Motivations for Encapsulation 3
2.1. UDP Blocking . 3
2.2. UDP NAT Timeouts . 3

3. Encapsulation Formats . 3
3.1. Multiplexing Flows 4

4. Deployment Considerations 5
5. Performance Considerations 5
5.1. Loss Recovery . 6
5.1.1. Concern . 6
5.1.2. Mitigation . 6

5.2. Bufferbloat . 7
5.2.1. Concern . 7
5.2.2. Mitigation . 8

5.3. Head of Line Blocking 8
5.3.1. Concern . 8
5.3.2. Mitigation . 9

6. Security Considerations 9
7. IANA Considerations . 9
8. Informative References 9

 Authors' Addresses . 10

1. Introduction

 TCP streams are sometimes used as a mechanism for encapsulating
 datagrams or messages, which is referred to in this document as "TCP
 encapsulation". Encapsulation may be used to transmit data over
 networks that block or suboptimally handle non-TCP traffic. The
 current motivations for using encapsulation generally revolve around
 the treatment of UDP packets (Section 2).

 Implementing a TCP encapsulation strategy consists of mapping
 datagram messages into a stream protocol, often with a length-value
 record format (Section 3). While these formats are described here as
 applying to encapsulating datagrams in a TCP stream, the formats are
 equally suited to encapsulating datagrams within any stream
 abstraction. For example, the same format may be used for both raw
 TCP streams and TLS streams running over TCP.

Pauly & Kinnear Expires January 3, 2019 [Page 2]

Internet-Draft TCP Encapsulation July 2018

2. Motivations for Encapsulation

 The primary motivations for enabling TCP encapsulation that will be
 explored in this document relate mainly to the treatment of UDP
 packets on a given network. UDP can be used for real-time network
 traffic, as a mechanism for deploying non-TCP transport protocols,
 and as a tunneling protocol that is compatible with Network Address
 Translators (NATs).

2.1. UDP Blocking

 Some network middleboxes block any IP packets that do not appear to
 be used for HTTP traffic, either as a security mechanism to block
 unknown traffic or as a way to restrict access to whitelisted
 services. Network applications that rely on UDP to transmit data
 will be blocked by these middleboxes. In this case, the application
 can attempt to use TCP encapsulation to transmit the same data over a
 TCP stream.

2.2. UDP NAT Timeouts

 Other networks may not altogether block non-TCP traffic, but instead
 make other protocols unsuitable for use. For example, many Network
 Address Translation (NAT) devices will maintain TCP port mappings for
 long periods of time, since the end of a TCP stream can be detected
 by the NAT. Since UDP packet flows do not signal when no more
 packets will be sent, NATs often use short timeouts for UDP port
 mappings. Thus, applications can attempt to use TCP encapsulation
 when long-lived flows are required on networks with NATs.

3. Encapsulation Formats

 The simplest approach for encapsulating datagram messages within a
 TCP stream is to use a length-value record format. That is, a header
 consisting of a length field, followed by the datagram message
 itself.

 For example, if an encapsulation protocol uses a 16-bit length field
 (allowing up to 65536 bytes of datagram payload), it will use a
 format like the following:

Pauly & Kinnear Expires January 3, 2019 [Page 3]

Internet-Draft TCP Encapsulation July 2018

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Length |
 +-+
 | |
 ~ Datagram Payload ~
 | |
 +-+

 The format of the length header field could be longer or shorter
 depending on the needs of the protocol. 16 bits is most appropriate
 when encapsulating datagrams that would otherwise be sent directly in
 IP packets, since the payload length field for an IP header is also
 16 bits.

 The length field must be specified to either include itself in the
 length of the entire record, or to only describe the length of the
 payload field. The protocol used for encapsulating IKE and ESP
 packets in TCP [RFC8229] does include the length field itself in the
 length of the record. This may be slightly easier for
 implementations to parse out records, since they will not need to add
 the length of the length field when finding record offsets within a
 stream.

3.1. Multiplexing Flows

 Since TCP encapsulation is used to avoid failures caused by NATs or
 firewalls, some implementations re-use one TCP port or one
 established TCP stream for multiple kinds of encapsulated traffic.
 Using a single port or stream allows re-use of NAT bindings and
 reduces the chance that a firewall will block some flows, but not
 others.

 If multiple kinds of traffic are multiplexed on the same listening
 TCP port, individual streams opened to that port need to be
 differentiated. This may require adding a one-time header that is
 sent on the stream to indicate the type of encapsulated traffic that
 will follow. For example, TCP encapsulated IKE [RFC8229] uses a
 stream prefix to differentiate its encapsulation strategy from
 proprietary Virtual Private Network (VPN) protocols.

 Multiplexing multiple kinds of datagrams, or independent flows of
 datagrams, over a single TCP stream requires adding a per-record type
 field or marker to the encapsulation record format. For ease of
 parsing records, this value should be placed after the length field
 of the record format. For example, various ESP packet flows are
 identified by the four-byte Security Parameter Index (SPI) that

https://datatracker.ietf.org/doc/html/rfc8229
https://datatracker.ietf.org/doc/html/rfc8229

Pauly & Kinnear Expires January 3, 2019 [Page 4]

Internet-Draft TCP Encapsulation July 2018

 comprises the first bytes of the datagram payload, while IKE packets
 in the same TCP encapsulated stream are differentiated by using all
 zeros for the first four bytes.

4. Deployment Considerations

 In general, any new TCP encapsulation protocol should allocate a new
 TCP port. If TCP is being used to encapsulate traffic that is
 normally sent over UDP, then the the most obvious port choice for the
 TCP encapsulated version is the equivalent port value in the TCP port
 namespace.

 Simply using TCP instead of UDP may be enough in some cases to
 mitigate the connectivity problems of using UDP with NATs and other
 middleboxes. However, it may be useful to also add a layer of
 encryption to the stream using TLS to obfuscate the contents of the
 stream. This may be done for security and privacy reasons, or to
 prevent middleboxes from mishandling encapsulated traffic or
 ossifying around a particular format for encapsulation.

5. Performance Considerations

 Many encapsulation or tunnelling protocols utilize an underlying
 transport like UDP, which does not provide stateful features such as
 loss recovery or congestion control. Because encapsulation using TCP
 involves an additional layer of state that is shared among all
 traffic inside the tunnel, there are additional performance
 considerations to address.

 Even though this document describes encapsulating datagrams or
 messages inside a TCP stream, some protocols, such as ESP, themselves
 often encapsulate additional TCP streams, such as when transmitting
 data for a VPN protocol [RFC8229]. This introduces several potential
 sources of suboptimal behavior, as multiple TCP contexts act upon the
 same traffic.

 For the purposes of this discussion, we will refer to the TCP
 encapsulation context as the "outer" TCP context, while the TCP
 context applicable to any encapsulated protocol will be referred to
 as the "inner" TCP context.

 The use of an outer TCP context may cause signals from the network to
 be hidden from the inner TCP contexts. Depending on the signals that
 the inner TCP contexts use for indicating congestion, events that
 would otherwise result in a modification of behavior may go
 unnoticed, or may build up until a large modification of behavior is
 necessary. Generally, the main areas of concern are signals that

https://datatracker.ietf.org/doc/html/rfc8229

Pauly & Kinnear Expires January 3, 2019 [Page 5]

Internet-Draft TCP Encapsulation July 2018

 inform loss recovery, Bufferbloat and delay avoidance, and head of
 line blocking between streams.

5.1. Loss Recovery

5.1.1. Concern

 The outer TCP context experiences packet loss on the network
 directly, while any inner TCP contexts present observe the effects of
 that loss on the delivery of their packets by the encapsulation
 layer. Furthermore, inner TCP contexts still observe direct network
 effects for any network segments that are traversed outside of the
 encapsulation, as is common with a VPN.

 In this way, the outer TCP context masks packet loss from the inner
 contexts by retransmitting encapsulated segments to recover from
 those losses. An inner context observes this as a delay while the
 packets are retransmitted rather than a loss. This can lead to
 spurious retransmissions if the recovery of the lost packets takes
 longer than the inner context's retransmission timeout (RTO). Since
 the outer context is retransmitting the packets to make up for the
 losses, the spurious retransmissions waste bandwidth that could be
 used for packets that advance the progress of the flows being
 encapsulated. A RTO event on an inner TCP context also hinders
 performance beyond generating spurious retransmissions, as many TCP
 congestion control algorithms dramatically reduce the sending rate
 after an RTO is observed.

 When recovery from a loss event on the outer TCP context completes,
 the network or endpoint on the other end of the encapsulation will
 receive a potentially large burst of packets as the retransmitted
 packets fill in any gaps and the entire set of pending data can be
 delivered.

 If content from multiple inner flows is shared within a single TCP
 packet in the outer context, the effects of lost packets from the
 outer context will be experienced by more than one inner flow at a
 time. However, this loss is actually shared by all inner flows,
 since forward progress for the entire encapsulation tunnel is
 generally blocked until the lost segments can be filled in. This is
 discussed further in Section 5.3.

5.1.2. Mitigation

 Generally, TCP congestion controls and loss recovery algorithms are
 capable of recovering from loss events very efficiently, and the
 inner TCP contexts observe brief periods of added delay without much
 penalty.

Pauly & Kinnear Expires January 3, 2019 [Page 6]

Internet-Draft TCP Encapsulation July 2018

 A TCP congestion control should be selected and tuned to be able to
 gracefully handle extremely variable RTT values, which may already
 the case for some congestion controls, as RTT variance is often
 greatly increased in mobile and cellular networks.

 Additionally, use of a TCP congestion control that considers delay to
 be a sign of congestion may help the coordination between inner and
 outer TCP contexts. LEDBAT [RFC6817] and BBR
 [I-D.cardwell-iccrg-bbr-congestion-control] are two examples of delay
 based congestion control that an inner TCP context could use to
 properly interpret loss events experienced by the outer TCP context.
 Care must be taken to ensure that any TCP congestion control in use
 is also appropriate for an inner context to use on any network
 segments that are traversed outside of the encapsulation.

 Since any losses will be handled by the outer TCP context, it might
 seem reasonable to modify the the inner TCP contexts' loss recovery
 algorithms to prevent retransmissions, there are often network
 segments outside of the encapsulated segments that still rely on the
 inner contexts' loss recovery algorithms. Instead, spurious
 retransmissions can be reduced by ensuring that RTO values are tuned
 such that the outer TCP context will fully time out before any inner
 TCP contexts.

5.2. Bufferbloat

5.2.1. Concern

 "Bufferbloat", or delay introduced by consistently full large buffers
 along a network path [TSV2011] [BB2011], can increase observed RTTs
 along a network path, which can harm the performance of latency
 sensitive applications. Any spurious retransmissions sent on the
 network take place in queues that would otherwise be filled by useful
 data. In this case, any retransmission sent by an inner TCP context
 for a loss or timeout along the network segments also covered by the
 outer TCP context is considered to be spurious. This can pose a
 performance problem for implementations that rely on interactive data
 transfer.

 Additionally, because there may be multiple inner TCP contexts being
 multiplexed over a single outer TCP context, even a minor reduction
 in sending rate by each of the inner contexts can result in a
 dramatic decrease in data sent through the outer context. Similarly,
 an increase in sending rate is also amplified.

https://datatracker.ietf.org/doc/html/rfc6817

Pauly & Kinnear Expires January 3, 2019 [Page 7]

Internet-Draft TCP Encapsulation July 2018

5.2.2. Mitigation

 Great care should be taken in tuning the inner TCP congestion control
 to avoid spurious retransmissions as much as possible. However, in
 order to provide effective loss recovery for the segments of the
 network outside the tunnel, the set of parameters used for tuning
 needs to be viable both inside and outside the tunnel. Adjusting the
 retransmission timeout (RTO) value for the TCP congestion control on
 the inner TCP context to be greater than that of the out TCP context
 will often help to reduce the number of spurious retransmissions
 generated while the outer TCP context attempts to catch up with lost
 or reordered packets.

 In most cases, fast retransmit will be sufficient to recover from
 losses on network segments after the inner flows leave the tunnel,
 although loss events that trigger a full RTO on those last-mile
 segments will carry a higher penalty with such tuning. However, in
 many deployments, the last-mile segments will often observe lower
 loss rates than the first-mile segments, leading to a balance that
 often favors spurious retransmission avoidance on the first-mile over
 loss recovery speed on the last-mile.

5.3. Head of Line Blocking

5.3.1. Concern

 Because TCP provides in-order delivery and reliability, even if there
 are multiple flows being multiplexed over the encapsulation layer,
 loss events, spurious retransmissions, or other recovery efforts will
 cause data for all other flows to back up and not be delivered to the
 client. In deployments where there are additional network segments
 to traverse beyond the encapsulation boundary, this may mean that
 flows are not delivered onto those segments until recovery for the
 outer TCP context is complete.

 With UDP encapsulation, packet reordering and loss did not
 necessarily prevent data from being delivered, even if it was
 delivered out of order. Because TCP groups all data being
 encapsulated into one outer congestion control and loss recovery
 context, this may cause significant delays for flows not directly
 impacted by a recovery event.

 Reordering on the network will also cause problems in this case, as
 it will often trigger fast retransmissions on the outer TCP context,
 blocking all inner contexts from being able to deliver data until the
 retransmissions are complete. However, a well behaved TCP will
 reorder the data that arrived out of order and deliver it before the

Pauly & Kinnear Expires January 3, 2019 [Page 8]

Internet-Draft TCP Encapsulation July 2018

 retransmissions arrive, reducing the detrimental impact of such
 reordering.

5.3.2. Mitigation

 One option to help address the head of line blocking would be to run
 multiple tunnels, one for throughput sensitive flows and one for
 latency sensitive flows. This can help to reduce the amount of time
 that a latency sensitive flow can possibly be blocked on recovery for
 any other flow. Latency sensitive flows should take extra care to
 ensure that only the necessary amount of data is in flight at any
 given time.

 Explicit Congestion Notification (ECN) ([RFC3168], [RFC5562]) could
 also be used to communicate between outer and inner TCP contexts
 during any recovery scenario. In a strategy similar to that taken by
 tunnelling of ECN fields in IP-in-IP tunnels [RFC6040], if an
 implementation supports such behavior, any ECN markings communicated
 to the outer TCP context by the network could be passed through to
 any inner TCP contexts transported by a given packet. Alternately,
 an implementation could elect to pass through such markings to all
 inner TCP contexts if a greater reduction in sending rate was deemed
 to be necessary.

6. Security Considerations

 Any attacker on the path that observes the encapsulation could
 potentially discard packets from the outer TCP context and cause
 significant delays due to head of line blocking. However, an
 attacker in a position to arbitrarily discard packets could have a
 similar effect on the inner TCP context directly or on any other
 encapsulation schemes.

7. IANA Considerations

 This document has no request to IANA.

8. Informative References

 [BB2011] "Bufferbloat: Dark Buffers in the Internet", n.d..

 [I-D.cardwell-iccrg-bbr-congestion-control]
 Cardwell, N., Cheng, Y., Yeganeh, S., and V. Jacobson,
 "BBR Congestion Control", draft-cardwell-iccrg-bbr-

congestion-control-00 (work in progress), July 2017.

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00

Pauly & Kinnear Expires January 3, 2019 [Page 9]

Internet-Draft TCP Encapsulation July 2018

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP",

RFC 3168, DOI 10.17487/RFC3168, September 2001,
 <https://www.rfc-editor.org/info/rfc3168>.

 [RFC5562] Kuzmanovic, A., Mondal, A., Floyd, S., and K.
 Ramakrishnan, "Adding Explicit Congestion Notification
 (ECN) Capability to TCP's SYN/ACK Packets", RFC 5562,
 DOI 10.17487/RFC5562, June 2009,
 <https://www.rfc-editor.org/info/rfc5562>.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <https://www.rfc-editor.org/info/rfc6040>.

 [RFC6817] Shalunov, S., Hazel, G., Iyengar, J., and M. Kuehlewind,
 "Low Extra Delay Background Transport (LEDBAT)", RFC 6817,
 DOI 10.17487/RFC6817, December 2012,
 <https://www.rfc-editor.org/info/rfc6817>.

 [RFC8229] Pauly, T., Touati, S., and R. Mantha, "TCP Encapsulation
 of IKE and IPsec Packets", RFC 8229, DOI 10.17487/RFC8229,
 August 2017, <https://www.rfc-editor.org/info/rfc8229>.

 [TSV2011] "Bufferbloat: Dark Buffers in the Internet", March 2011.

Authors' Addresses

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: tpauly@apple.com

 Eric Kinnear
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014
 United States of America

 Email: ekinnear@apple.com

https://datatracker.ietf.org/doc/html/rfc3168
https://www.rfc-editor.org/info/rfc3168
https://datatracker.ietf.org/doc/html/rfc5562
https://www.rfc-editor.org/info/rfc5562
https://datatracker.ietf.org/doc/html/rfc6040
https://www.rfc-editor.org/info/rfc6040
https://datatracker.ietf.org/doc/html/rfc6817
https://www.rfc-editor.org/info/rfc6817
https://datatracker.ietf.org/doc/html/rfc8229
https://www.rfc-editor.org/info/rfc8229

Pauly & Kinnear Expires January 3, 2019 [Page 10]

