
Internet Engineering Task Force P. Bryan, Ed.
Internet-Draft Salesforce.com
Intended status: Informational August 6, 2012
Expires: February 7, 2013

A Convention for HTTP Access to JSON Resources
draft-pbryan-http-json-resource-03

Abstract

 A convention for accessing JSON representations of resources via
 HTTP, promoting a uniform interface across multiple resources and
 reuse of software components.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 7, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bryan Expires February 7, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP-JSON-Resource August 2012

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Resources . 3
4. Version Control . 3
5. Operations . 4
5.1. Create . 4
5.2. Read . 5
5.3. Update . 6
5.4. Delete . 7
5.5. Patch . 7
5.6. Query . 8
5.7. Action . 9

6. Request Context . 10
7. Access Control . 10
8. Resource Validation . 11
9. Resource Metadata . 11
9.1. Header . 11
9.2. Object Members . 11

10. Error Response . 11
10.1. Members . 12

11. Modifying a Resource Identifier 12
12. IANA Considerations . 12
13. Security Considerations 12
14. Acknowledgements . 12
15. Normative References . 13
Appendix A. Questions and Answers 13
Appendix B. Examples . 14

 Author's Address . 14

Bryan Expires February 7, 2013 [Page 2]

Internet-Draft HTTP-JSON-Resource August 2012

1. Introduction

 JavaScript Object Notation (JSON) [RFC4627] is a common format for
 the representation of structured data. Hypertext Transfer Protocol
 (HTTP) [RFC2616] is the standard protocol for providing access to
 resources.

 This document codifies a convention for accessing JSON
 representations of resources via HTTP. This promotes a uniform
 interface across multiple resources and reuse of conforming server
 and client software components.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This document expresses the structure of Request-URIs in examples
 using URI Template [RFC6570] syntax.

3. Resources

 A resource accessed through this convention is represented as a JSON
 value with an "application/json" (or derivative) Internet media type.

 An accessible resource is a member of a collection of resources. A
 collection of resources MUST have a unique location, which is
 expressed as a part of the Request-URI of HTTP requests. The server
 implementation determines the location of a resource collection.

 Each resource MUST have a unique identifier within a collection. The
 server implementation MAY establish restrictions on what identifiers
 can be used, and reject requests that have identifiers that do not
 conform with a 403 Forbidden status code.

4. Version Control

 A server MAY implement version control for resources, and use it as
 the basis of an optimistic concurrency control mechanism. If version
 control is implemented for a given resource, the server MUST expose
 the resource version in responses, and clients SHOULD use
 preconditions when performing operations that modify such resources.

 The server expresses the resource version in an "ETag" response

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6570

Bryan Expires February 7, 2013 [Page 3]

Internet-Draft HTTP-JSON-Resource August 2012

 header, and the "_rev" metadata member in JSON object entity
 responses. The client expresses resource version in the "If-Match"
 and "If-None-Match" precondition request headers.

 If a server implements version control for a resource, and the
 version specified by a client in a request does not match the current
 version of the resource, then the server SHOULD respond with a 412
 Precondition Failed error status code.

 If a server implements version control for a resource and the
 resource version is not specified by a client for an operation that
 modifies the resource, the server MAY allow the operation, or reject
 it with a 428 Precondition Required status code, per [RFC6585].

 The server implementation determines how a resource version is
 computed; it MUST ensure that different values of a given resource
 results in different versions. Clients SHOULD treat a resource
 version provided by a server as opaque.

5. Operations

 This convention provides a uniform set of operations, all of which
 are implemented through existing HTTP methods. The operations are:
 create, read, update, delete, patch, query, and action. The server
 MAY conditionally implement any operation.

5.1. Create

 The "create" operation allows a client to create a new resource in a
 collection. A resource is created in one of two ways: if the client
 is requesting a specific identifier, then the resource is created via
 the HTTP PUT method; if the server is to select its own identifier,
 then the resource is created via the POST method. The PUT method
 SHOULD be preferred over POST.

5.1.1. PUT Request

 Using the PUT method, the identifier of the resource to create is
 specified in the Request-URI of the HTTP request. The server MAY
 override the requested identifier of the resource and select a
 suitable identifier of its own.

 To unambiguously request resource creation, the "If-None-Match"
 header MUST contain the value "*". If no precondition header
 unambiguously requests resource creation or update, the server MAY
 employ its own means of determining how to interpret the PUT method.

https://datatracker.ietf.org/doc/html/rfc6585

Bryan Expires February 7, 2013 [Page 4]

Internet-Draft HTTP-JSON-Resource August 2012

 PUT /{collection}/{id} HTTP/1.1
 Content-Type: application/json
 If-None-Match: *
 ...

 [JSON representation of resource to create]

5.1.2. POST Request

 Using the POST method, the identifier of the resource is not
 specified. The Request-URI of the request MUST NOT contain a query
 component, to distinguish it from an action operation. The server
 MUST select a suitable identifier for the created resource.

 POST /{collection} HTTP/1.1
 Content-Type: application/json
 ...

 [Resource representation]

5.1.3. Response

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: [location of resource]
 ETag: "[resource version]"
 ...

 [Resource metadata object]

 The "Location" header field contains a URI that identifies the newly
 created resource. The optional "ETag" header field contains the
 version of the newly created resource. The resource metadata object
 also contains the identifier and optional version of the newly
 created resource.

 If version control is implemented for a given resource, the server
 MUST expose the new resource version in the ETag header of the
 response.

5.2. Read

 The "read" operation allows a client to read a representation of a
 resource from the server. It is implemented using the HTTP GET
 method. The client MUST NOT include a query component in the
 Request-URI, to distinguish it from a query operation.

 If the resulting representation of the resource is a JSON object, it

Bryan Expires February 7, 2013 [Page 5]

Internet-Draft HTTP-JSON-Resource August 2012

 SHOULD contain the JSON "_id" member, and also the "_rev" member if
 resource version is supported by the server implementation.

5.2.1. Request

 GET /{collection}/{id} HTTP/1.1
 ...

5.2.2. Response

 HTTP/1.1 200 OK
 Content-Type: application/json
 ETag: "[resource version]"
 ...

 [Resource representation]

 If version control is implemented for a given resource, the server
 MUST expose the resource version in the ETag header of the response.

5.3. Update

 The "update" operation allows a client to update the representation
 of a resource on the server. It is performed using the HTTP PUT
 method. To cause the PUT method to unambiguously request a resource
 update, the "If-Match" header MUST contain the current version of the
 resource. If no precondition header unambiguously requests resource
 creation or update, the server MAY employ its own means of
 determining how to interpret the PUT method.

5.3.1. Request

 PUT /{collection}/{id} HTTP/1.1
 Content-Type: application/json
 If-Match: "[resource version]"
 ...

 [Resource representation]

Bryan Expires February 7, 2013 [Page 6]

Internet-Draft HTTP-JSON-Resource August 2012

5.3.2. Response

 HTTP/1.1 200 OK
 Content-Type: application/json
 ETag: "[resource version]"
 ...

 [Resource metadata object]

 If version control is implemented for a given resource, the server
 MUST expose the updated resource version in the ETag header of the
 response.

5.4. Delete

 The "delete" operation allows a client to delete a resource, or
 optionally an all resources within a collection. It is performed
 using the HTTP DELETE method.

 To delete a single resource, both the collection location and
 resource identifier MUST be specified in the Request-URI of the HTTP
 request. To delete all the resources within a collection, the
 collection location MUST be specified.

 If deleting all resources within a collection is not supported by the
 server implementation, the server SHOULD respond to such requests
 with a 403 Forbidden error status code.

5.4.1. Request

 DELETE /{collection}/{id} HTTP/1.1
 If-Match: "[resource version]"
 ...

5.4.2. Response

 HTTP/1.1 204 No Content
 ...

5.5. Patch

 The "patch" operation allows a client to apply a set of partial
 modifications to a resource on the server. This is particularly
 useful if the client does not have permission to modify resources in
 their entirety.

 The "patch" operation is performed using the HTTP PATCH method, per

Bryan Expires February 7, 2013 [Page 7]

Internet-Draft HTTP-JSON-Resource August 2012

 [RFC5789]. The supported patch document format(s) to apply the
 partial modifications are determined by the server implementation.

5.5.1. Request

 PATCH /{collection}/{id} HTTP/1.1
 If-Match: "[resource version]"
 ...

 [Patch document content]

5.5.2. Response

 HTTP/1.1 200 OK
 Content-Type: application/json
 ETag: "[resource version]"
 ...

 [Resource metadata object]

 If version control is implemented for a given resource, the server
 MUST expose the updated resource version in the ETag header of the
 response.

5.6. Query

 The "query" operation performs a parametric query of a resource or
 collection, and responds with a corresponding result. The execution
 of a query MUST NOT incur side effects. It is implemented using the
 HTTP GET method. The client MUST include a query component in the
 Request-URI to distinguish it from a read operation.

 To query a single resource, both the collection location and resource
 identifier MUST be specified in the Request-URI of the HTTP request.
 To query an entire collection, the collection location MUST be
 specified.

5.6.1. Request

 GET /{collection}/{id}?{query} HTTP/1.1
 ...

https://datatracker.ietf.org/doc/html/rfc5789

Bryan Expires February 7, 2013 [Page 8]

Internet-Draft HTTP-JSON-Resource August 2012

5.6.2. Response

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 [Query result value]

 The structure of the query result value is determined by the server
 implementation.

5.7. Action

 The "action" operation performs a parametric action on a resource or
 collection, and responds with an optional result. The execution of
 an action MAY incur side effects.

 The operation is implemented via the HTTP POST request. The Request-
 URI MUST contain a query component, to distinguish it from a create
 operation. The request MAY include an entity body.

 To perform an action on a single resource, both the collection
 location and resource identifier MUST be specified in the Request-
 URI. To perform an action on an entire collection, the collection
 location MUST be specified.

 If the response contains a result value, then the server SHOULD
 respond with a 200 OK status code; otherwise it SHOULD respond with a
 204 No Content status code.

5.7.1. Request (with entity body)

 POST /{component}/{id}?{query} HTTP/1.1
 Content-Type: [entity body content type]
 ...

 [Entity body]

5.7.2. Request (without entity body)

 POST /{component}/{id}?{query} HTTP/1.1
 ...

Bryan Expires February 7, 2013 [Page 9]

Internet-Draft HTTP-JSON-Resource August 2012

5.7.3. Response

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 [JSON action result]

 If the response contains a result, then the server SHOULD respond
 with a 200 OK status code; otherwise it SHOULD respond with a 204 No
 Content status code.

 The structure of the action response value (if any) is determined by
 the server implementation. If version control is implemented for a
 resource the action is being performed on, the server MAY expose the
 updated resource version in the ETag header of the response.

6. Request Context

 A server MAY require some form of request context be established by
 the client prior to allowing access to resources. How such context
 is established, persisted and transmitted is out of the scope of this
 convention, and SHOULD be specified by the server implementation.

 If inadequate request context has been established, the server SHOULD
 indicate this with a 401 Unauthorized error status code, unless there
 is another means of indicating this condition which is consistent
 with the required request context.

7. Access Control

 The server implementation MAY enforce access control policies that
 restrict what resources a client can access and/or on what JSON
 values within each resource may be accessed.

 If a sufficient request context has been established, but such
 context does not permit the requested access to a resource, the
 server SHOULD reject such requests with a 403 Forbidden error status
 code and some detail in a response error object describing the nature
 of the rejection.

 The server implementation MAY amend representations of resources to
 conform to access control policies, and SHOULD specify under what
 conditions such amendments are applied.

Bryan Expires February 7, 2013 [Page 10]

Internet-Draft HTTP-JSON-Resource August 2012

8. Resource Validation

 The server MAY enforce validation rules on resource representations
 provided by the client. If such a validation fails, the server
 SHOULD indicate this with a 403 Forbidden error status code and some
 detail in a response error object describing the nature of the
 validation failure.

9. Resource Metadata

 Most responses to requests contain metadata about the resource being
 accessed. The metadata is included an HTTP ETag response header as
 well as members within a JSON object resource representation,
 including a JSON object specifically intended to contain only
 metadata (referred to within this document as a "resource metadata
 object").

9.1. Header

 ETag
 The current version of a resource, if version control is implemented
 for the resource.

9.2. Object Members

 "_id": string, required
 The identifier of the resource, relative to the collection it is a
 member of.

 "_rev": string, optional
 The current version of the resource, if version control is
 implemented for the resource.

10. Error Response

 In the event of an error, a 4xx or 5xx HTTP status code SHOULD BE
 included in the response, with an entity body containing a JSON
 object that has minimally an "error" member.

 The server implementation MAY provide additional members in the error
 object, which provide additional context and description of the
 nature of the error. Any such additional members SHOULD be specified
 by the server implementation.

Bryan Expires February 7, 2013 [Page 11]

Internet-Draft HTTP-JSON-Resource August 2012

 {
 "error": string,
 ...
 }

10.1. Members

 "error": string, required
 A mnemonic error code that expresses the type of error that occurred.
 The error code values and their associated meanings SHOULD be
 specified by the server implementation.

11. Modifying a Resource Identifier

 The server MAY allow the update and/or patch operations to modify the
 identifier of a resource within the collection if the resource has a
 JSON object representation. If such modification is disallowed, the
 server SHOULD respond with a 403 Forbidden status code.

 To indicate a request to modify the resource identifier, the "_id"
 metadata member should be included in the request entity and differ
 from the existing resource identifier in the Request-URI.

 If the server successfully modifies the resource identifier, instead
 of responding with a 200 OK status code, the server MUST respond with
 a 201 Created status code, with a Location header containing the URI
 of the newly created resource.

 If there is already a resource with the requested identifier, the
 server MUST respond with a 409 Conflict status code indicating it
 could not be modified. If the server rejects the identifier as
 invalid, the server SHOULD respond with a 403 Forbidden status code.

12. IANA Considerations

 This document has no IANA actions.

13. Security Considerations

 TBD.

14. Acknowledgements

 The following individuals contributed ideas, feedback and wording to

Bryan Expires February 7, 2013 [Page 12]

Internet-Draft HTTP-JSON-Resource August 2012

 this specification:

 Alin Brici, Andi Egloff, Kornel Lesinski, Eve Maler, Ryder Ross,
 David Zarlengo, David Zuelke.

 This convention was influenced by various projects that expose HTTP-
 based data access interfaces, especially those that managed JSON-
 based representations, notably CouchDB.

15. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, April 2012.

Appendix A. Questions and Answers

 Why this convention?

 HTTP-based APIs seem to be repeatedly following similar patterns,
 but with enough differences to preclude common programmatic
 implementations. The intent of this convention is to provide a
 basic set of rules upon which a more application-specific
 interface can be specified (principle: DRY).

 Is this a RESTful interface?

 This convention strays from a pure REST interface, as it
 prescribes a specific (JSON) representation for resources, and
 arguably fails to adhere to the principle of hypermedia as the
 engine of application state (HATEOS).

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6585

Bryan Expires February 7, 2013 [Page 13]

Internet-Draft HTTP-JSON-Resource August 2012

 What kind of interface is it?

 It may be better classified as a resource-oriented interface. It
 establishes a uniform interface (set of operations), and maps
 between those operations and the standard methods provided by
 HTTP.

 Why are ETags coupled to resource version, not entity value?

 Entity tags in HTTP are intended to be used to compare two or more
 entities for the same resource. Since this convention establishes
 an exclusive representation of the resource (JSON), entity tag
 should be safely associable with resource version. RFC 2616
 provides support for this practice in section 14.24 by stating,
 "It is also used, on updating requests, to prevent inadvertent
 modification of the wrong version of a resource."

 Why are "query" and "action" operations abstract?

 Queries and actions are too domain-specific to allow any more
 specificity than is expressed in this convention. Therefore, this
 convention does not attempt to define query/action semantics
 beyond the fact that they are parametric.

Appendix B. Examples

 TBD.

Author's Address

 Paul C. Bryan (editor)
 Salesforce.com

 Phone: +1 604 783 1481
 Email: pbryan@anode.ca

https://datatracker.ietf.org/doc/html/rfc2616

Bryan Expires February 7, 2013 [Page 14]

