
dispatch BGP. Peabody
Internet-Draft February 24, 2020
Updates: 4122 (if approved)
Intended status: Standards Track
Expires: August 27, 2020

UUID Format Update
draft-peabody-dispatch-new-uuid-format-00

Abstract

 This document presents a new UUID format (version 6) which is suited
 for use as a database key.

 A common case for modern applications is to create a unique
 identifier to be used as a primary key in a database table that is
 ordered by creation time, difficult to guess and has a compact text
 format. None of the existing UUID versions fulfill each of these
 requirements. This document is a proposal to update RFC4122 with a
 new UUID version that addresses these concerns.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Peabody Expires August 27, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft new-uuid-format February 2020

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Background . 2
3. Summary of Changes . 5
3.1. Version 6 . 5
3.2. Timestamp . 5
3.3. Clock Sequence and Node Parts 5
3.4. Alternate Text Formats 6
3.4.1. Base64 Text (Variant A) 7
3.4.2. Base32 Text . 7

4. Uniquness Service . 7
5. Acknowledgements . 8
6. IANA Considerations . 8
7. Security Considerations 8
8. Normative References . 8

 Author's Address . 8

1. Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

 A lot of things have changed in the time since UUIDs were originally
 created. Modern applications have a need to use (and many have
 already implemented) UUIDs as database primary keys. However some
 properties of the existing specification are not well suited to this
 task.

 The motivation for using UUIDs as database keys stems primarily from
 the fact that applications are increasingly distributed in nature.
 Simplistic "auto increment" schemes with integers in sequence do not
 work well in a distributed system since the effort required to
 synchronize such numbers across a network can easily become not worth
 it. The fact that UUIDs can be used to create unique and reasonably
 short values in distributed systems without requiring synchronization
 makes them a good candidate for use as a database key in such
 environments.

https://datatracker.ietf.org/doc/html/rfc2119

Peabody Expires August 27, 2020 [Page 2]

Internet-Draft new-uuid-format February 2020

 However, most of the existing UUID versions have poor database index
 locality. Meaning new values created in succession are not close to
 each other in the index and thus require inserts to be performed at
 random locations. The negative performance effects of which on
 common structures used for this (B-tree and its variants) can be
 dramatic. Newly inserted values should be time-ordered to address
 this. Version 1 UUIDs are time-ordered, but have other issues (see
 next).

 A point of convenience and simplicity of implementation is that
 custom sort ordering logic should not be needed to put time ordered
 values in sequence. It is possible to sort Version 1 UUIDs by time
 but it requires breaking the bytes of the UUID into various pieces to
 determine the order (from the timestamp). Implementations would be
 simplified with a sort order where the UUID can simply be treated as
 an opaque sequence of bytes and ordered as such. This covers the
 first 64 bits of the UUID.

 The latter portion (the last 64 bits) are in essence used to provide
 uniqueness.

 Privacy and network security issues arise from using a MAC address in
 the node field of Version 1 UUIDs. Exposed MAC addresses can be used
 to locate machines to attack and can reveal various information about
 such machines (minimally manufacturer, potentially other details).

 The use of MAC addresses in UUID Version 1, and the other hashing
 schemes used in the various versions, points to a more basic issue:
 There is no known way to guarantee "universal uniqueness". In fact,
 uniqueness needs are application-specific. MAC addresses in the node
 field might be okay for some applications. Others might be okay with
 using cryptographically secure random numbers (possibly with
 increased risk of collision). Still others might already have a
 predefined means to determine uniqueness for the application in
 question, such as a server node number. In an attempt to ensure
 uniqueness, the existing UUID format over-specifies exactly how this
 uniqueness is determined. This document posits the idea that while
 such mechanisms as MAC address may be okay for certain applications,
 it should be treated as a suggestion, not a requirement for proper
 implementation. Many applications will work perfectly well with more
 narrow and simpler uniqueness mechanisms (like using an existing node
 ID from whatever cluster the server is already in) and that this
 should be allowed as long as the uniqueness properties are clearly
 specified in the implementation. I.e. "using this field type as a
 database primary key will produce UUIDs which are unique within this
 database cluster" should be perfectly acceptable. Some other
 unnecessary requirement of global/universal uniqueness should not be
 needed for the implementation to be considered correct.

Peabody Expires August 27, 2020 [Page 3]

Internet-Draft new-uuid-format February 2020

 The property of "unguessability" is also application-specific. Some
 applications may desire increased security by using UUIDs which are
 difficult to guess (this way for example rate-limiting can be used to
 greatly reduce the probabililty of someone correctly guessing a new
 identifier or at least make it harder/take longer to do so). While
 applications should of course be using proper security measures, and
 relying solely on the unguessability of an identifier for security
 purposes is ill-advised, it is certainly not wrong to use this
 property as an additional layer of security. Examples of measures
 used to increase unguessability would be using cryptographically
 secure random data in the node and/or clock sequence fields (latter
 64 bits), or using such random data in the subsecond portion of the
 timestamp (if subsecond time ordering is less important than
 unguessability for the application in question). The specification
 should indicate that such variations are acceptable as they do not
 change the format in an incompatible way.

 Using a UUID as a database key generally requires communicating that
 UUID to other applications. The database server will store the value
 internally. It may be referenced in a query language (e.g. SQL),
 and/or transmitted in some database driver protocol. Other software,
 often written in another language, frequently then needs to store
 this identifier in its own memory and potentially perform its own
 operations like sorting and searching with it. And such identifiers
 are also commonly then used in protocols like HTTP where they
 indicate a particular resource. Sometimes they are typed in by
 humans. Sometimes constraints exist on which bytes may be used (such
 as an HTTP URL path). In most cases, shorter is better.

 For these reasons, having a compact textual format is important. The
 existing hex format is already in wide use, so keeping it for
 backward compatibility makes sense. However an encoding using a
 base32 alphabet would be more compact and still be case-insensitive.
 A base64 alphabet would be even more compact (but require case-
 sensitivity). This document proposes both as options. This would
 allow applications to use a more compact text format for the
 situations needing textual representation (i.e. you can just put this
 value in URL and it is not unnecessarily long and does not require
 escaping). The alphabets used for base32 and base64 encoding should
 be in ASCII numeric value sequence so the text forms can also be
 sorted correctly as raw bytes. (This is not a property of the Base32
 and Base64 standards from [RFC4648], however there are several
 variations in use so introducing a new one here for the express
 purpose of correct sorting would seem to be acceptable.)

https://datatracker.ietf.org/doc/html/rfc4648

Peabody Expires August 27, 2020 [Page 4]

Internet-Draft new-uuid-format February 2020

3. Summary of Changes

 The following is a summary of proposed changes to the UUID
 specification in [RFC4122]. Each is given as a statement of the
 problem or limitation to which it is addressed, along with a
 description of the proposed change.

3.1. Version 6

 A UUID version 6 is proposed. It is ordered by creation time, sorts
 correctly as raw bytes, does not require use of a MAC address in the
 node section and has options for a compact text format.

3.2. Timestamp

 The timestamp value from [RFC4122] (60-bit number of 100- nanosecond
 intervals since 00:00:00.00, 15 October 1582) is workable but the
 sequence in which the bytes are encoded (the lowest bytes first)
 results in unnecessary additional logic to sort correctly by
 timestamp. Ordering by timestamp is important for the use case of
 UUIDs as primary keys in a database since it improves locality by
 grouping new records close to each other (this can have major
 performance implications in large tables).

 The proposed change is to encode the timestamp value into the same 60
 bits as in [RFC4122] but in big-endian byte ordering. This way an
 application can sort by timestamp by simply treating the UUID as an
 opaque bunch of bytes.

3.3. Clock Sequence and Node Parts

 The latter 64 bits of a UUID per [RFC4122] are the clock sequence and
 node fields. The node field is problematic as it encourages
 applications to use their MAC address which may present a security
 problem (it is not always appropriate to reveal the network address
 of a machine as it could make it the target of an attack or provide
 information about its manufacturer or other details). A lesser
 concern is that it also incidentally produces UUID with the same 6
 bytes at the end and are visually more difficult to distinguish when
 looking at them in a list.

 Seeing as the entire point of these last 64 bits is to ensure
 uniqueness, this document proposes that the strict definitions of
 clock sequence and node be relaxed. Instead implementations would be
 permitted to fill this section with random bytes and/or include an
 application defined value for uniqueness (such as a node number of a
 machine in a cluster).

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Peabody Expires August 27, 2020 [Page 5]

Internet-Draft new-uuid-format February 2020

 Note for discussion: Another point to consider is that there is no
 known way to fully guarantee that that duplicate identifiers will not
 be created unless some per-determined outside source of uniqueness is
 employed. (Such as for version 1 UUIDs the MAC address.) However,
 applications each have their own requirements for uniqueness.
 Uniqueness within a single database cluster for example is acceptable
 in many cases. A specification that forces all UUIDs to be globally
 unique when it is not needed might not be a good idea. Identifiers
 are only as universally unique as their input, so it might be better
 to just clearly state this and say that it's fine if UUIDs are only
 guaranteed to be unique within a specific context if it makes sense
 for that application.

3.4. Alternate Text Formats

 The existing UUID text format is hex encoded plus four hyphens. For
 many applications this is unnecessarily verbose. The same
 information can be encoded into significantly fewer bytes using a
 base 64 or base 32 alphabet.

 Many applications have a need to use the unique identifier of a
 database record in a URL (e.g. in an HTTP request either in the path
 or a query parameter). It can also be useful as a file name. Being
 able to use a UUID for this purpose without having to escape certain
 characters it is a useful property.

 This document proposes alternate alphabets for encoding UUIDs which
 are convenient for use in URLs and file names, and also sort
 correctly when treated as raw bytes. Some applications may not have
 the ability (or want) to encode and decode UUIDs from text to binary
 and thus having the text format also sort correctly as raw bytes is
 useful.

 The standard Base64 and Base32 specifications in [RFC4648] do not
 have these properties, thus different alphabets are given for each.

 Situations which require understanding the encoding SHOULD specify
 which encoding is used. For example, a database field which uses
 UUID version 6 with "b64a" encoding (see below), could be specified
 as type "UUID6B64A", which would result in binary storage according
 to UUID version 6, and otherwise read and write the value to/from
 applications in the b64a text format shown below. Note also that the
 length can be easily used to positively distinguish if a value is
 text or binary form. A 16-byte value will necessarily be raw
 unencoded bytes whereas text forms will be longer.

https://datatracker.ietf.org/doc/html/rfc4648

Peabody Expires August 27, 2020 [Page 6]

Internet-Draft new-uuid-format February 2020

3.4.1. Base64 Text (Variant A)

 UUIDs encoded in this form use the "url-safe base64" alphabet: "A" to
 "Z", "a" to "z", "0" to "9" and "-" and "_", but in ASCII value
 sequence. No padding characters are used.

 The name "b64a" (not case sensitive) can be used by implementations
 to refer to this encoding.

 Note: It might be useful to add another variation ("b64b") with a
 different alphabet. Hyphen and underscore are useful in a lot of
 places but there might be some others that are better for specific
 cases.

3.4.2. Base32 Text

 Base32 can be useful if case-insensitivity is required.

 UUIDs encoded in this form use digits "2" through "7" followed by "A"
 through "Z" (same alphabet as in [RFC4648] but in ASCII value
 sequence). Case is not sensitive. Implementations MAY choose to
 output lower case letters and doing so is also correct.
 Implementations which parse UUIDs encoded in this way MUST be case
 insensitive. No padding characters are used. Unless there is a
 sepcific reason for an implementation to do otherwise, it SHOULD
 output lower case base32 characters. The motivation for this it will
 increase the number of situations where UUIDs encoded in base32 and
 then used in different environments (some of which may be case
 sensitive, some not) are handled correctly by default. For example
 file names are case sensitive on some file systems and not on others.
 Preferring one specific (lower) case allows these to be used
 interchangably with predictable results.

 The name "b32a" (not case sensitive) can be used by implementations
 to refer to this encoding.

4. Uniquness Service

 An idea for discssion is that for applications which truly require
 globally unique identifiers one possible solution would be for
 someone to maintain a service which allocates numbers by time. In
 essense and for example "give me a 32-bit number that will be unique
 for the time range of midnight to midnight tomorrow". Such a service
 would be relaitvely easy to create. The effort required to maintain
 it depends largely on how much it is used. Applications using the
 same endpoint for this service would be guaranteed unique UUIDs.
 Companies could host their own too. I'm not sure if this sort of
 thing would be worth the effort but it's another idea for how to

https://datatracker.ietf.org/doc/html/rfc4648

Peabody Expires August 27, 2020 [Page 7]

Internet-Draft new-uuid-format February 2020

 address the global uniqueness issue for applications that really need
 it.

5. Acknowledgements

 TODO: Acknowledgements for prior work and discussion.

6. IANA Considerations

 TBD

7. Security Considerations

 TODO: Provide additional information on "unguessability" as needed.

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

Author's Address

 Brad G. Peabody

 Email: brad@peabody.io

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648

Peabody Expires August 27, 2020 [Page 8]

