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1. Introduction

Many things have changed in the time since UUIDs were originally

created. Modern applications have a need to create and utilize UUIDs

as the primary identifier for a variety of different items in

complex computational systems, including but not limited to database

keys, file names, machine or system names, and identifiers for

event-driven transactions.¶



One area UUIDs have gained popularity is as database keys. This

stems from the increasingly distributed nature of modern

applications. In such cases, "auto increment" schemes often used by

databases do not work well, as the effort required to coordinate

unique numeric identifiers across a network can easily become a

burden. The fact that UUIDs can be used to create unique, reasonably

short values in distributed systems without requiring

synchronization makes them a good alternative, but UUID versions 1-5

lack certain other desirable characteristics:

Non-time-ordered UUID versions such as UUIDv4 have poor

database index locality. Meaning new values created in

succession are not close to each other in the index and thus

require inserts to be performed at random locations. The

negative performance effects of which on common structures used

for this (B-tree and its variants) can be dramatic.

The 100-nanosecond, Gregorian epoch used in UUIDv1 timestamps

is uncommon and difficult to represent accurately using a

standard number format such as [IEEE754].

Introspection/parsing is required to order by time sequence; as

opposed to being able to perform a simple byte-by-byte

comparison.

Privacy and network security issues arise from using a MAC

address in the node field of Version 1 UUIDs. Exposed MAC

addresses can be used as an attack surface to locate machines

and reveal various other information about such machines

(minimally manufacturer, potentially other details).

Additionally, with the advent of virtual machines and

containers, MAC address uniqueness is no longer guaranteed.

Many of the implementation details specified in [RFC4122]

involve trade offs that are neither possible to specify for all

applications nor necessary to produce interoperable

implementations.

[RFC4122] does not distinguish between the requirements for

generation of a UUID versus an application which simply stores

one, which are often different.

Due to the aforementioned issue, many widely distributed database

applications and large application vendors have sought to solve the

problem of creating a better time-based, sortable unique identifier

for use as a database key. This has lead to numerous implementations

over the past 10+ years solving the same problem in slightly

different ways.
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UUID

CSPRNG

MAC

MSB

DBMS

While preparing this specification the following 16 different

implementations were analyzed for trends in total ID length, bit

Layout, lexical formatting/encoding, timestamp type, timestamp

format, timestamp accuracy, node format/components, collision

handling and multi-timestamp tick generation sequencing.

[ULID] by A. Feerasta

[LexicalUUID] by Twitter

[Snowflake] by Twitter

[Flake] by Boundary

[ShardingID] by Instagram

[KSUID] by Segment

[Elasticflake] by P. Pearcy

[FlakeID] by T. Pawlak

[Sonyflake] by Sony

[orderedUuid] by IT. Cabrera

[COMBGUID] by R. Tallent

[SID] by A. Chilton

[pushID] by Google

[XID] by O. Poitrey

[ObjectID] by MongoDB

[CUID] by E. Elliott

An inspection of these implementations and the issues described

above has led to this document which attempts to adapt UUIDs to

address these issues.

2. Terminology

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.2. Abbreviations

The following abbreviations are used in this document:

Universally Unique Identifier [RFC4122]

Cryptographically Secure Pseudo-Random Number Generator

Media Access Control

Most Significant Bit

Database Management System
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UUID version 6 (UUIDv6)

UUID version 7 (UUIDv7)

UUID version 8 (UUIDv8)

Max UUID

3. Summary of Changes

The following UUIDs are hereby introduced:

A re-ordering of UUID version 1 so it is sortable as an opaque

sequence of bytes. Easy to implement given an existing UUIDv1

implementation. See Section 5.1

An entirely new time-based UUID bit layout sourced from the

widely implemented and well known Unix Epoch timestamp source.

See Section 5.2

A free-form UUID format which has no explicit requirements except

maintaining backward compatibility. See Section 5.3

A specialized UUID which is the inverse of [RFC4122], 

Section 4.1.7 See Section 5.4

3.1. changelog

RFC EDITOR PLEASE DELETE THIS SECTION.

draft-03

- Reworked the draft body to make the content more concise

- UUIDv6 section reworked to just the reorder of the timestamp

- UUIDv7 changed to simplify timestamp mechanism to just

millisecond Unix timestamp

- UUIDv8 relaxed to be custom in all elements except version and

variant

- Introduced Max UUID.

- Added C code samples in Appendix.

- Added test vectors in Appendix.

- Version and Variant section combined into one section.

- Changed from pseudo-random number generators to

cryptographically secure pseudo-random number generator (CSPRNG).

- Combined redundant topics from all UUIDs into sections such as

Timestamp granularity, Monotonicity and Counters, Collision

Resistance, Sorting, and Unguessability, etc.

- Split Encoding and Storage into Opacity and DBMS and Database

Considerations

- Reworked Global Uniqueness under new section Global and Local

Uniqueness

- Node verbiage only used in UUIDv6 all others reference random/

rand instead
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- Clock sequence verbiage changed simply to counter in any

section other than UUIDv6

- Added Abbreviations section

- Updated IETF Draft XML Layout

- Added information about little-endian UUIDs

draft-02

- Added Changelog

- Fixed misc. grammatical errors

- Fixed section numbering issue

- Fixed some UUIDvX reference issues

- Changed all instances of "motonic" to "monotonic"

- Changed all instances of "#-bit" to "# bit"

- Changed "proceeding" verbiage to "after" in section 7

- Added details on how to pad 32 bit Unix timestamp to 36 bits in

UUIDv7

- Added details on how to truncate 64 bit Unix timestamp to 36

bits in UUIDv7

- Added forward reference and bullet to UUIDv8 if truncating 64

bit Unix Epoch is not an option.

- Fixed bad reference to non-existent "time_or_node" in section

4.5.4

draft-01

- Complete rewrite of entire document.

- The format, flow and verbiage used in the specification has

been reworked to mirror the original RFC 4122 and current IETF

standards.

- Removed the topics of UUID length modification, alternate UUID

text formats, and alternate UUID encoding techniques.

- Research into 16 different historical and current

implementations of time-based universal identifiers was completed

at the end of 2020 in attempt to identify trends which have

directly influenced design decisions in this draft document

(https://github.com/uuid6/uuid6-ietf-draft/tree/master/research)

- Prototype implementation have been completed for UUIDv6,

UUIDv7, and UUIDv8 in various languages by many GitHub community

members. (https://github.com/uuid6/prototypes)

4. Variant and Version Fields

The variant bits utilized by UUIDs in this specification remain in

the same octet as originally defined by [RFC4122], Section 4.1.1.

The next table details Variant 10xx (8/9/A/B) and the new versions

defined by this specification. A complete guide to all versions

within this variant has been includes in Appendix C.1.
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Msb0 Msb1 Msb2 Msb3 Version Description

0 1 1 0 6
Reordered Gregorian time-based UUID

specified in this document.

0 1 1 1 7
Unix Epoch time-based UUID specified

in this document.

1 0 0 0 8
Reserved for custom UUID formats

specified in this document

Table 1: New UUID variant 10xx (8/9/A/B) versions defined by this

specification

For UUID version 6, 7 and 8 the variant field placement from 

[RFC4122] are unchanged. An example version/variant layout for

UUIDv6 follows the table where M is the version and N is the

variant.

Figure 1: UUIDv6 Variant Examples

5. New Formats

The UUID format is 16 octets; the variant bits in conjunction with

the version bits described in the next section in determine finer

structure.

5.1. UUID Version 6

UUID version 6 is a field-compatible version of UUIDv1, reordered

for improved DB locality. It is expected that UUIDv6 will primarily

be used in contexts where there are existing v1 UUIDs. Systems that

do not involve legacy UUIDv1 SHOULD consider using UUIDv7 instead.

Instead of splitting the timestamp into the low, mid and high

sections from UUIDv1, UUIDv6 changes this sequence so timestamp

bytes are stored from most to least significant. That is, given a 60

bit timestamp value as specified for UUIDv1 in [RFC4122], 

Section 4.1.4, for UUIDv6, the first 48 most significant bits are

stored first, followed by the 4 bit version (same position),

followed by the remaining 12 bits of the original 60 bit timestamp.

The clock sequence bits remain unchanged from their usage and

position in [RFC4122], Section 4.1.5.

The 48 bit node SHOULD be set to a pseudo-random value however

implementations MAY choose to retain the old MAC address behavior

¶

00000000-0000-6000-8000-000000000000

00000000-0000-6000-9000-000000000000

00000000-0000-6000-A000-000000000000

00000000-0000-6000-B000-000000000000

xxxxxxxx-xxxx-Mxxx-Nxxx-xxxxxxxxxxxx
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time_high:

time_mid:

time_low_and_version:

clk_seq_hi_res:

clock_seq_low:

node:

from [RFC4122], Section 4.1.6 and [RFC4122], Section 4.5. For more

information on MAC address usage within UUIDs see the Section 8

The format for the 16-byte, 128 bit UUIDv6 is shown in Figure 1

Figure 2: UUIDv6 Field and Bit Layout

The most significant 32 bits of the 60 bit starting timestamp.

Occupies bits 0 through 31 (octets 0-3)

The middle 16 bits of the 60 bit starting timestamp. Occupies

bits 32 through 47 (octets 4-5)

The first four most significant bits MUST contain the UUIDv6

version (0110) while the remaining 12 bits will contain the least

significant 12 bits from the 60 bit starting timestamp. Occupies

bits 48 through 63 (octets 6-7)

The first two bits MUST be set to the UUID variant (10) The

remaining 6 bits contain the high portion of the clock sequence.

Occupies bits 64 through 71 (octet 8)

The 8 bit low portion of the clock sequence. Occupies bits 72

through 79 (octet 9)

48 bit spatially unique identifier Occupies bits 80 through 127

(octets 10-15)

With UUIDv6 the steps for splitting the timestamp into time_high and

time_mid are OPTIONAL since the 48 bits of time_high and time_mid

will remain in the same order. An extra step of splitting the first

48 bits of the timestamp into the most significant 32 bits and least

¶

¶

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |                           time_high                           |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |           time_mid            |      time_low_and_version     |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |clk_seq_hi_res |  clk_seq_low  |         node (0-1)            |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |                         node (2-5)                            |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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unix_ts_ms:

ver:

rand_a:

var:

rand_b:

significant 16 bits proves useful when reusing an existing UUIDv1

implementation.

5.2. UUID Version 7

UUID version 7 features a time-ordered value field derived from the

widely implemented and well known Unix Epoch timestamp source, the

number of milliseconds seconds since midnight 1 Jan 1970 UTC, leap

seconds excluded. As well as improved entropy characteristics over

versions 1 or 6.

Implementations SHOULD utilize UUID version 7 over UUID version 1

and 6 if possible.

Figure 3: UUIDv7 Field and Bit Layout

48 bit big-endian unsigned number of Unix epoch timestamp as per 

Section 6.1.

4 bit UUIDv7 version set as per Section 4

12 bits pseudo-random data to provide uniqueness as per Section

6.2 and Section 6.6.

The 2 bit variant defined by Section 4.

The final 62 bits of pseudo-random data to provide uniqueness as

per Section 6.2 and Section 6.6.

5.3. UUID Version 8

UUID version 8 provides an RFC-compatible format for experimental or

vendor-specific use cases. The only requirement is that the variant

¶

¶

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           unix_ts_ms                          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          unix_ts_ms           |  ver  |       rand_a          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|var|                        rand_b                             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                            rand_b                             |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶
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custom_a:

ver:

custom_b:

var:

custom_c:

and version bits MUST be set as defined in Section 4. UUIDv8's

uniqueness will be implementation-specific and SHOULD NOT be

assumed.

The only explicitly defined bits are the Version and Variant leaving

120 bits for implementation specific time-based UUIDs. To be clear:

UUIDv8 is not a replacement for UUIDv4 where all 122 extra bits are

filled with random data.

Some example situations in which UUIDv8 usage could occur:

An implementation would like to embed extra information within

the UUID other than what is defined in this document.

An implementation has other application/language restrictions

which inhibit the use of one of the current UUIDs.

Figure 4: UUIDv8 Field and Bit Layout

The first 48 bits of the layout that can be filled as an

implementation sees fit.

The 4 bit version field as defined by Section 4

12 more bits of the layout that can be filled as an

implementation sees fit.

The 2 bit variant field as defined by Section 4.

The final 62 bits of the layout immediatly following the var

field to be filled as an implementation sees fit.

¶
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*

¶

*
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 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           custom_a                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|          custom_a             |  ver  |       custom_b        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|var|                       custom_c                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           custom_c                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶
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Reliability:

Source:

Sub-second Precision and Accuracy:

5.4. Max UUID

The Max UUID is special form of UUID that is specified to have all

128 bits set to 1. This UUID can be thought of as the inverse of Nil

UUID defined in [RFC4122], Section 4.1.7

Figure 5: Max UUID Format

6. UUID Best Practices

The minimum requirements for generating UUIDs are described in this

document for each version. Everything else is an implementation

detail and up to the implementer to decide what is appropriate for a

given implementation. That being said, various relevant factors are

covered below to help guide an implementer through the different

trade-offs among differing UUID implementations.

6.1. Timestamp Granularity

UUID timestamp source, precision and length was the topic of great

debate while creating this specification. As such choosing the right

timestamp for your application is a very important topic. This

section will detail some of the most common points on this topic.

Implementations SHOULD use the current timestamp from a reliable

source to provide values that are time-ordered and continually

increasing. Care SHOULD be taken to ensure that timestamp changes

from the environment or operating system are handled in a way

that is consistent with implementation requirements. For example,

if it is possible for the system clock to move backward due to

either manual adjustment or corrections from a time

synchronization protocol, implementations must decide how to

handle such cases. (See Altering, Fuzzing, or Smearing bullet

below.)

UUID version 1 and 6 both utilize a Gregorian epoch timestamp

while UUIDv7 utilizes a Unix Epoch timestamp. If other timestamp

sources or a custom timestamp epoch are required UUIDv8 SHOULD be

leveraged.

Many levels of precision exist for timestamps: milliseconds,

microseconds, nanoseconds, and beyond. Additionally fractional

representations of sub-second precision may be desired to mix

various levels of precision in a time-ordered manner.

¶
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Length:

Altering, Fuzzing, or Smearing:

Padding:

Truncating:

Furthermore, system clocks themselves have an underlying

granularity and it is frequently less than the precision offered

by the operating system. With UUID version 1 and 6, 100-

nanoseconds of precision are present while UUIDv7 features fixed

millisecond level of precision within the Unix epoch that does

not exceed the granularity capable in most modern systems. For

other levels of precision UUIDv8 SHOULD be utilized.

The length of a given timestamp directly impacts how long a given

UUID will be valid. That is, how many timestamp ticks can be

contained in a UUID before the maximum value for the timestamp

field is reached. Care should be given to ensure that the proper

length is selected for a given timestamp. UUID version 1 and 6

utilize a 60 bit timestamp and UUIDv7 features a 48 bit

timestamp.

Implementations MAY alter the actual timestamp. Some examples

included security considerations around providing a real clock

value within a UUID, to correct inaccurate clocks or to handle

leap seconds. This specification makes no requirement or

guarantee about how close the clock value needs to be to actual

time.

When timestamp padding is required, implementations MUST pad the

most significant bits (left-most) bits with zeros. An example is

padding the most significant, left-most bits of a 32 bit Unix

timestamp with zero's to fill out the 48 bit timestamp in UUIDv7.

Similarly, when timestamps need to be truncated: the lower, least

significant bits MUST be used. An example would be truncating a

64 bit Unix timestamp to the least significant, right-most 48

bits for UUIDv7.

6.2. Monotonicity and Counters

Monotonicity is the backbone of time-based sortable UUIDs. Naturally

time-based UUIDs from this document will be monotonic due to an

embedded timestamp however implementations can guarantee additional

monotonicity via the concepts covered in this section.

Additionally, care MUST be taken to ensure UUIDs generated in

batches are also monotonic. That is, if one-thousand UUIDs are

generated for the same timestamp; there is sufficient logic for

organizing the creation order of those one-thousand UUIDs. For batch

¶
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Fixed-Length Dedicated Counter Bits (Method 1):

Monotonic Random (Method 2):

Plus One Increment (Type A):

Random Increment (Type B):

UUID creation implementions MAY utilize a monotonic counter which

SHOULD increment for each UUID created during a given timestamp.

For single-node UUID implementations that do not need to create

batches of UUIDs, the embedded timestamp within UUID version 1, 6,

and 7 can provide sufficient monotonicity guarantees by simply

ensuring that timestamp increments before creating a new UUID. For

the topic of Distributed Nodes please refer to Section 6.3

Implementations SHOULD choose one method for single-node UUID

implementations that require batch UUID creation.

This references the practice of allocating a specific number of

bits in the UUID layout to the sole purpose of tallying the total

number of UUIDs created during a given UUID timestamp tick.

Positioning of a fixed bit-length counter SHOULD be immediatly

after the embedded timestamp. This promotes sortability and

allows random data generation for each counter increment. With

this method rand_a section of UUIDv7 MAY be utilized as fixed-

length dedicated counter bits. In the event more counter bits are

required the most significant, left-most, bits of rand_b MAY be

leveraged as additional counter bits.

With this method the random data is extended to also double as a

counter. This monotonic random can be thought of as a "randomly

seeded counter" which MUST be incremented in the least

significant position for each UUID created on a given timestamp

tick. UUIDv7's rand_b section SHOULD be utilized with this method

to handle batch UUID generation during a single timestamp tick.

The following sub-topics cover methods behind incrementing either

type of counter method:

With this increment logic the counter method is incremented by

one for every UUID generation. When this increment method is

utilized with Fixed-Length Dedicated Counter the trailing random

generated for each new UUID can help produce unguessable UUIDs.

When this increment method is utilized with Monotonic Random

Counters the resulting values are easily guessable.

Implementations that favor unguessiblity SHOULD NOT utilize this

method with the monotonic random method.

With this increment the actual increment of the counter MAY be a

random integer of any desired length larger than zero. When this

increment method is utilized with Fixed-Length Dedicated Counters

¶
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Fixed-Length Dedicated Counter Seeding:

Fixed-Length Dedicated Counter Length:

Counter Rollover Guards:

the random increments MAY deplete the counter bit space

(including any rollover guards) faster than the desired if a

counter of adequate length is not selected. When this increment

method is utilized with Monotonic Random Counters the counter

ensures the UUIDs retain the required level of unguessability

characters provided by the underlying entropy.

The following sub-topics cover topics related solely with creating

reliable fixed-length dedicated counters:

Implementations utilizing fixed-length counter method SHOULD

randomly initialize the counter with each new timestamp tick.

However, when the timestamp has not incremented; the counter

SHOULD be frozen and incremented via the desired increment logic.

When utilizing a randomly seeded counter alongside Method 1; the

random MAY be regenerated with each counter increment without

impacting sortability. The downside is that Method 1 is prone to

overflows if a counter of adequate length is not selected or the

random data generated leaves little room for the required number

of increments. Implementations utilizing fixed-length counter

method MAY also choose to randomly initialize a portion counter

rather than the entire counter. For example, a 24 bit counter

could have the 23 bits in least-significant, right-most, position

randomly initialized. The remaining most significant, left-most

counter bits are initialized as zero for the sole purpose of

guarding against counter rollovers.

Care MUST be taken to select a counter bit-length that can

properly handle the level of timestamp precision in use. For

example, millisecond precision SHOULD require a larger counter

than a timestamp with nanosecond precision. General guidance is

that the counter SHOULD be at least 12 bits but no longer than 42

bits. Care SHOULD also be given to ensure that the counter length

selected leaves room for sufficient entropy in the random portion

of the UUID after the counter. This entropy helps improve the

unguessability characteristics of UUIDs created within the batch.

The following sub-topics cover rollover handling with either type of

counter method:

The technique from Fixed-Length Dedicated Counter Seeding which

describes allocating a segment of the fixed-length counter as a

rollover guard is also recommended and SHOULD be employed to help

mitigate counter rollover issues. This same technique can be

leveraged with Monotonic random counter methods by ensuring the

total length of a possible increment in the least significant,

¶
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Counter Rollover Handling:

Centralized Registry:

right most position is less than the total length of the random

being incremented. As such the most significant, left-most, bits

can be incremented as rollover guarding.

Counter rollovers SHOULD be handled by the application to avoid

sorting issues. The general guidance is that applications that

care about absolute monotonicity and sortability SHOULD freeze

the counter and wait for the timestamp to advance which ensures

monotonicity is not broken.

Implementations MAY use the following logic to ensure UUIDs

featuring embedded counters are monotonic in nature:

Compare the current timestamp against the previously stored

timestamp.

If the current timestamp is equal to the previous timestamp;

increment the counter according to the desired method and type.

If the current timestamp is greater than the previous

timestamp; re-initialize the desired counter method to the new

timestamp and generate new random bytes (if the bytes were

frozen or being used as the seed for a monotonic counter).

Implementations SHOULD check if the the currently generated UUID is

greater than the previously generated UUID. If this is not the case

then any number of things could have occurred. Such as, but not

limited to, clock rollbacks, leap second handling or counter

rollovers. Applications SHOULD embed sufficient logic to catch these

scenarios and correct the problem ensuring the next UUID generated

is greater than the previous.

6.3. Distributed UUID Generation

Some implementations MAY desire to utilize multi-node, clustered,

applications which involve two or more nodes independently

generating UUIDs that will be stored in a common location. While

UUIDs already feature sufficient entropy to ensure that the chances

of collision are low as the total number of nodes increase; so does

the likelihood of a collision. This section will detail the

approaches that MAY be utilized by multi-node UUID implementations

in distributed environments.

With this method all nodes tasked with creating UUIDs consult a

central registry and confirm the generated value is unique. As

applications scale the communication with the central registry

could become a bottleneck and impact UUID generation in a

negative way. Utilization of shared knowledge schemes with

¶
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Node IDs:

Low Impact

High Impact:

central/global registries is outside the scope of this

specification.

With this method, a pseudo-random Node ID value is placed within

the UUID layout. This identifier helps ensure the bit-space for a

given node is unique, resulting in UUIDs that do not conflict

with any other UUID created by another node with a different node

id. Implementations that choose to leverage an embedded node id

SHOULD utilize UUIDv8. The node id SHOULD NOT be an IEEE 802 MAC

address as per Section 8. The location and bit length are left to

implementations and are outside the scope of this specification.

Furthermore, the creation and negotiation of unique node ids

among nodes is also out of scope for this specification.

Utilization of either a Centralized Registry or Node ID are not

required for implementing UUIDs in this specification. However

implementations SHOULD utilize one of the two aforementioned methods

if distributed UUID generation is a requirement.

6.4. Collision Resistance

Implementations SHOULD weigh the consequences of UUID collisions

within their application and when deciding between UUID versions

that use entropy (random) versus the other components such as 

Section 6.1 and Section 6.2. This is especially true for distributed

node collision resistance as defined by Section 6.3.

There are two example scenarios below which help illustrate the

varying seriousness of a collision within an application.

A UUID collision generated a duplicate log entry which results in

incorrect statistics derived from the data. Implementations that

are not negatively affected by collisions may continue with the

entropy and uniqueness provided by the traditional UUID format.

A duplicate key causes an airplane to receive the wrong course

which puts people's lives at risk. In this scenario there is no

margin for error. Collisions MUST be avoided and failure is

unacceptable. Applications dealing with this type of scenario

MUST employ as much collision resistance as possible within the

given application context.

6.5. Global and Local Uniqueness

UUIDs created by this specification MAY be used to provide local

uniqueness guarantees. For example, ensuring UUIDs created within a

local application context are unique within a database MAY be

¶
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sufficient for some implementations where global uniqueness outside

of the application context, in other applications, or around the

world is not required.

Although true global uniqueness is impossible to guarantee without a

shared knowledge scheme; a shared knowledge scheme is not required

by UUID to provide uniqueness guarantees. Implementations MAY

implement a shared knowledge scheme introduced in Section 6.3 as

they see fit to extend the uniqueness guaranteed this specification

and [RFC4122].

6.6. Unguessability

Implementations SHOULD utilize a cryptographically secure pseudo-

random number generator (CSPRNG) to provide values that are both

difficult to predict ("unguessable") and have a low likelihood of

collision ("unique"). CSPRNG ensures the best of Section 6.4 and 

Section 8 are present in modern UUIDs.

Advice on generating cryptographic-quality random numbers can be

found in [RFC4086]

6.7. Sorting

UUIDv6 and UUIDv7 are designed so that implementations that require

sorting (e.g. database indexes) SHOULD sort as opaque raw bytes,

without need for parsing or introspection.

Time ordered monotonic UUIDs benefit from greater database index

locality because the new values are near each other in the index. As

a result objects are more easily clustered together for better

performance. The real-world differences in this approach of index

locality vs random data inserts can be quite large.

UUIDs formats created by this specification SHOULD be

Lexicographically sortable while in the textual representation.

UUIDs created by this specification are crafted with big-ending byte

order (network byte order) in mind. If Little-endian style is

required a custom UUID format SHOULD be created using UUIDv8.

6.8. Opacity

UUIDs SHOULD be treated as opaque values and implementations SHOULD

NOT examine the bits in a UUID to whatever extent is possible.

However, where necessary, inspectors should refer to Section 4 for

more information on determining UUID version and variant.

¶
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6.9. DBMS and Database Considerations

For many applications, such as databases, storing UUIDs as text is

unnecessarily verbose, requiring 288 bits to represent 128 bit UUID

values. Thus, where feasible, UUIDs SHOULD be stored within database

applications as the underlying 128 bit binary value.

For other systems, UUIDs MAY be stored in binary form or as text, as

appropriate. The trade-offs to both approaches are as such:

Storing as binary requires less space and may result in faster

data access.

Storing as text requires more space but may require less

translation if the resulting text form is to be used after

retrieval and thus maybe simpler to implement.

DBMS vendors are encouraged to provide functionality to generate and

store UUID formats defined by this specification for use as

identifiers or left parts of identifiers such as, but not limited

to, primary keys, surrogate keys for temporal databases, foreign

keys included in polymorphic relationships, and keys for key-value

pairs in JSON columns and key-value databases. Applications using a

monolithic database may find using database-generated UUIDs (as

opposed to client-generate UUIDs) provides the best UUID

monotonicity. In addition to UUIDs, additional identifiers MAY be

used to ensure integrity and feedback.

7. IANA Considerations

This document has no IANA actions.

8. Security Considerations

MAC addresses pose inherent security risks and SHOULD not be used

within a UUID. Instead CSPRNG data SHOULD be selected from a source

with sufficient entropy to ensure guaranteed uniqueness among UUID

generation. See Section 6.6 for more information.

Timestamps embedded in the UUID do pose a very small attack surface.

The timestamp in conjunction with an embedded counter does signal

the order of creation for a given UUID and it's corresponding data

but does not define anything about the data itself or the

application as a whole. If UUIDs are required for use with any

security operation within an application context in any shape or

form then [RFC4122] UUIDv4 SHOULD be utilized.
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Appendix A. Example Code

A.1. Creating a UUIDv6 Value

This section details a function in C which converts from a UUID

version 1 to version 6:

Figure 6: UUIDv6 Function in C

¶

#include <stdio.h>

#include <stdint.h>

#include <inttypes.h>

#include <arpa/inet.h>

#include <uuid/uuid.h>

/* Converts UUID version 1 to version 6 in place. */

void uuidv1tov6(uuid_t u) {

  uint64_t ut;

  unsigned char *up = (unsigned char *)u;

  // load ut with the first 64 bits of the UUID

  ut = ((uint64_t)ntohl(*((uint32_t*)up))) << 32;

  ut |= ((uint64_t)ntohl(*((uint32_t*)&up[4])));

  // dance the bit-shift...

  ut =

    ((ut >> 32) & 0x0FFF) | // 12 least significant bits

    (0x6000) | // version number

    ((ut >> 28) & 0x0000000FFFFF0000) | // next 20 bits

    ((ut << 20) & 0x000FFFF000000000) | // next 16 bits

    (ut << 52); // 12 most significant bits

  // store back in UUID

  *((uint32_t*)up) = htonl((uint32_t)(ut >> 32));

  *((uint32_t*)&up[4]) = htonl((uint32_t)(ut));

}

https://github.com/ericelliott/cuid
https://standards.ieee.org/ieee/754/6210/


A.2. Creating a UUIDv7 Value

Figure 7: UUIDv7 Function in C

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <string.h>

#include <time.h>

// ...

// csprng data source

FILE *rndf;

rndf = fopen("/dev/urandom", "r");

if (rndf == 0) {

    printf("fopen /dev/urandom error\n");

    return 1;

}

// ...

// generate one UUIDv7E

uint8_t u[16];

struct timespec ts;

int ret;

ret = clock_gettime(CLOCK_REALTIME, &ts);

if (ret != 0) {

    printf("clock_gettime error: %d\n", ret);

    return 1;

}

uint64_t tms;

tms = ((uint64_t)ts.tv_sec) * 1000;

tms += ((uint64_t)ts.tv_nsec) / 1000000;

memset(u, 0, 16);

fread(&u[6], 10, 1, rndf); // fill everything after the timestamp with random bytes

*((uint64_t*)(u)) |= htonll(tms << 16); // shift time into first 48 bits and OR into place

u[8] = 0x80 | (u[8] & 0x3F); // set variant field, top two bits are 1, 0

u[6] = 0x70 | (u[6] & 0x0F); // set version field, top four bits are 0, 1, 1, 1



A.3. Creating a UUIDv8 Value

UUIDv8 will vary greatly from implementation to implementation. A

good candidate use case for UUIDv8 is to embed exotic timestamps

like the one found in this example which employs approximately 0.25

milliseconds and approximately 5 microseconds per timestamp tick as

a 48 bit value.

Figure 8: UUIDv8 Function in C

Appendix B. Test Vectors

Both UUIDv1 and UUIDv6 test vectors utilize the same 60 bit

timestamp: 0x1EC9414C232AB00 (138648505420000000) Tuesday, February

22, 2022 2:22:22.000000 PM GMT-05:00

Both UUIDv1 and UUIDv6 utilize the same values in clk_seq_hi_res,

clock_seq_low, and node. All of which have been generated with

random data.

¶

#include <stdint.h>

#include <stdio.h>

#include <time.h>

int main() {

  struct timespec tp;

  clock_gettime(CLOCK_REALTIME, &tp);

  uint64_t timestamp = (uint64_t)tp.tv_sec << 12;

  // compute 12 bit (~0.25 msec precision) fraction from nsecs

  timestamp |= ((uint64_t)tp.tv_nsec << 12) / 1000000000;

  printf("%08llx-%04llx\n", timestamp >> 16, timestamp & 0xFFFF);

  return 0;

}

¶

¶



Figure 9: Test Vector Timestamp Pseudo-code

B.1. Example of a UUIDv6 Value

Figure 10: UUIDv1 Example Test Vector

# Unix Nanosecond precision to Gregorian 100-nanosecond intervals

gregorian_100_ns = (Unix_64_bit_nanoseconds / 100) + gregorian_Unix_offset

# Gregorian to Unix Offset:

# The number of 100-ns intervals between the

# UUID epoch 1582-10-15 00:00:00 and the Unix epoch 1970-01-01 00:00:00.

# gregorian_Unix_offset = 0x01b21dd213814000 or 122192928000000000

# Unix 64 bit Nanosecond Timestamp:

# Unix NS: Tuesday, February 22, 2022 2:22:22 PM GMT-05:00

# Unix_64_bit_nanoseconds = 0x16D6320C3D4DCC00 or 1645557742000000000

# Work:

# gregorian_100_ns = (1645557742000000000 / 100) + 122192928000000000

# (138648505420000000 - 122192928000000000) * 100 = Unix_64_bit_nanoseconds

# Final:

# gregorian_100_ns = 0x1EC9414C232AB00 or 138648505420000000

# Original: 000111101100100101000001010011000010001100101010101100000000

# UUIDv1:   11000010001100101010101100000000|1001010000010100|0001|000111101100

# UUIDv6:   00011110110010010100000101001100|0010001100101010|0110|101100000000

----------------------------------------------

field                 bits    value_hex

----------------------------------------------

time_low              32      0xC232AB00

time_mid              16      0x9414

time_hi_and_version   16      0x11EC

clk_seq_hi_res         8      0xB3

clock_seq_low          8      0xC8

node                  48      0x9E6BDECED846

----------------------------------------------

total                128

----------------------------------------------

final_hex: C232AB00-9414-11EC-B3C8-9E6BDECED846



Figure 11: UUIDv6 Example Test Vector

B.2. Example of a UUIDv7 Value

This example UUIDv7 test vector utilizes a well-known 32 bit Unix

epoch with additional millisecond precision to fill the first 48

bits

rand_a and rand_b are filled with random data.

The timestamp is Tuesday, February 22, 2022 2:22:22.00 PM GMT-05:00

represented as 0x17F21CFD130 or 1645539742000

Figure 12: UUIDv7 Example Test Vector

B.3. Example of a UUIDv8 Value

This example UUIDv8 test vector utilizes a well-known 64 bit Unix

epoch with nanosecond precision, truncated to the least-significant,

right-most, bits to fill the first 48 bits through version.

-----------------------------------------------

field                 bits    value_hex

-----------------------------------------------

time_high              32      0x1EC9414C

time_mid               16      0x232A

time_low_and_version   16      0x6B00

clk_seq_hi_res          8      0xB3

clock_seq_low           8      0xC8

node                   48      0x9E6BDECED846

-----------------------------------------------

total                 128

-----------------------------------------------

final_hex: 1EC9414C-232A-6B00-B3C8-9E6BDECED846

¶

¶

¶

-------------------------------

field      bits    value

-------------------------------

unix_ts_ms   48    0x017F21CFD130

var           4    0x7

rand_a       12    0xCC3

var           2    b10

rand_b       62    0x18C4DC0C0C07398F

-------------------------------

total       128

-------------------------------

final: 017F21CF-D130-7CC3-98C4-DC0C0C07398F

¶



The next two segments of custom_b and custom_c are are filled with

random data.

Timestamp is Tuesday, February 22, 2022 2:22:22.000000 PM GMT-05:00

represented as 0x16D6320C3D4DCC00 or 1645557742000000000

It should be noted that this example is just to illustrate one

scenario for UUIDv8. Test vectors will likely be implementation

specific and vary greatly from this simple example.

Figure 13: UUIDv8 Example Test Vector

Appendix C. Version and Variant Tables

C.1. Variant 10xx Versions

Msb0 Msb1 Msb2 Msb3 Version Description

0 0 0 0 0 Unused

0 0 0 1 1
The Gregorian time-based UUID from

in [RFC4122], Section 4.1.3

0 0 1 0 2

DCE Security version, with embedded

POSIX UIDs from [RFC4122], 

Section 4.1.3

0 0 1 1 3

The name-based version specified in 

[RFC4122], Section 4.1.3 that uses

MD5 hashing.

0 1 0 0 4

The randomly or pseudo-randomly

generated version specified in 

[RFC4122], Section 4.1.3.

0 1 0 1 5

The name-based version specified in 

[RFC4122], Section 4.1.3 that uses

SHA-1 hashing.

0 1 1 0 6
Reordered Gregorian time-based UUID

specified in this document.

¶

¶

¶

-------------------------------

field      bits    value

-------------------------------

custom_a     48    0x320C3D4DCC00

ver           4    0x8

custom_b     12    0x75B

var           2    b10

custom_c     62    0xEC932D5F69181C0

-------------------------------

total       128

-------------------------------

final: 320C3D4D-CC00-875B-8EC9-32D5F69181C0

https://rfc-editor.org/rfc/rfc4122#section-4.1.3
https://rfc-editor.org/rfc/rfc4122#section-4.1.3
https://rfc-editor.org/rfc/rfc4122#section-4.1.3
https://rfc-editor.org/rfc/rfc4122#section-4.1.3
https://rfc-editor.org/rfc/rfc4122#section-4.1.3


Msb0 Msb1 Msb2 Msb3 Version Description

0 1 1 1 7
Unix Epoch time-based UUID specified

in this document.

1 0 0 0 8
Reserved for custom UUID formats

specified in this document.

1 0 0 1 9 Reserved for future definition.

1 0 1 0 10 Reserved for future definition.

1 0 1 1 11 Reserved for future definition.

1 1 0 0 12 Reserved for future definition.

1 1 0 1 13 Reserved for future definition.

1 1 1 0 14 Reserved for future definition.

1 1 1 1 15 Reserved for future definition.

Table 2: All UUID variant 10xx (8/9/A/B) version definitions.
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