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Abstract

The adoption of artificial intelligence (AI) in network management

(NM) solutions is becoming a reality. It is mainly supported by the

need to resolve complex problems arisen from the acceptance of SDN/

NFV technologies as well as network slicing. Thus, the AINEMA

framework, as discussed in this document, is required to keep focus

and organize the efforts on applying AI to NM. This is enlarged by

the inclusion of external events in NM operations as well as the

consideration of a full intelligence process instead of simple AI-

based guesses. Such process will be highly based in reasoning and

formal and target-based intelligence analysis and decision. This

will allow computer and network system infrastructures to grow in

complexity. The same applies to user demands. The construction and

maintenance of AINEMA requires a comprehensive inclusion of several

mechanisms. For instance, although there has been a lot of effort to

make Machine Learning (ML) solutions reliable and acceptable, other

mechanisms have been forgotten. It is the particular case of

reasoning, which is the key within AINEMA. It will provide enormous

benefits to NM solutions by, for example, inferring new knowledge

and applying different kind of rules (e.g. logical) to choose from

several actions. While ML solutions work with data, so their only

requirement from the network infrastructure is data retrieval,

AINEMA will work in collaboration to the network it is managing.

This makes the challenges arisen from intelligent reasoning

essential for the evolution of NM. They will be addressed within the

context of AINEMA.
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1. Introduction

The current network ecosystem is quickly evolving from an almost

fixed network to a highly flexible, powerful, and somehow hybrid

system. Network slicing, Software Defined Networking (SDN), and

Network Function Virtualization (NFV) provide the basis for such

evolution. The need to automate the management and control of such

systems has motivated the move towards autonomic networking (ANIMA)

and the inclusion of AI solutions alongside the management plane of

the network, enough justified by the increasing size and complexity

of the network, which exposes complex problems that must be resolved

in scales that escape human possibilities. Therefore, in order to

allow current computer and network system infrastructures to

constantly grow in complexity, in parallel to the demands of users,

the AI solutions must work together with other network management

solutions.

However, exploiting the possibilities of AI is not an easy task.

There has been a lot of effort to make Machine Learning (ML)

solutions reliable and acceptable but, at the same time, other

mechanisms have been forgotten. It is the particular case of

reasoning. Although it can provide enormous benefits to management

solutions by, for example, inferring new knowledge and applying

different kind of rules (e.g. logical) to choose from several

actions, it has received little attention. While ML solutions work

with data, so their only requirement from the network infrastructure

is data retrieval, reasoning solutions work in collaboration to the

network they are managing. This makes the challenges arisen from

intelligent reasoning to be a key for the evolution of network

management towards the full adoption of AI.

The present document aims to gather the necessary information for

getting the most benefits from the application of intelligent
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reasoning to network management, including, but not limited to,

defining the gaps that must be covered for reasoning to be correctly

integrated into network management solutions.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Background

3.1. Virtual Computer and Network Systems

The continuous search for efficiency and cost reduction to get the

most optimum exploitation of available resources (e.g. CPU power and

electricity) has conducted current physical infrastructures to move

towards virtualization infrastructures. Also, this trend enables end

systems to be centralized and/or distributed, so that they are

deployed to best accomplish customer requirements in terms of

resources and qualities.

One of the key functional requirements imposed to computer and

network virtualization is a high degree of flexibility and

reliability. Both qualities are subject to the underlying

technologies but, while the latter has been always enforced to

computer and network systems, flexibility is a relatively new

requirement, which would not have been imposed without the backing

of virtualization and cloud technologies.

3.2. SDN and NFV

SDN and NFV are conceived to bring high degree of flexibility and

conceptual centralization qualities to the network. On the one hand,

with SDN, the network can be programmed to implement a dynamic

behavior that changes its topology and overall qualities. Moreover,

with NFV the functions that are typically provided by physical

network equipment are now implemented as virtual appliances that can

be deployed and linked together to provide customized network

services. SDN and NFV complements to each other to actually

implement the network aspect of the aforementioned virtual computer

and network systems.

Although centralization can lead us to think on the single-point-of-

failure concept, it is not the case for these technologies.

Conceptual centralization highly differs from centralized

deployment. It brings all benefits from having a single point of

decision but retaining the benefits from distributed systems. For

instance, control decisions in SDN can be centralized while the

mechanisms that enforce such decisions into the network (SDN
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controllers) can be implemented as highly distributed systems. The

same approach can be applied to NFV. Network functions can be

implemented in a central computing facility, but they can also take

advantage of several replication and distribution techniques to

achieve the properties of distributed systems. Nevertheless, NFV

also allows the deployment of functions on top of distributed

systems, so they benefit from both distribution alternatives at the

same time.

3.3. Management and Control

The introduction of virtualization into the computer and network

system landscape has increased the complexity of both underlying and

overlying systems. On the one hand, virtualizing underlying systems

adds extra functions that must be managed properly to ensure the

correct operation of the whole system, which not just encompasses

underlying elements but also the virtual elements running on top of

them. Such functions are used to actually host the overlying virtual

elements, so there is an indirect management operation that involves

virtual systems. Moreover, such complexities are inherited by final

systems that get virtualized and deployed on top of those

virtualization infrastructures.

In parallel, virtual systems are empowered with additional, and

widely exploited, functionality that must be managed correctly. It

is the case of the dynamic adaptation of virtual resources to the

specific needs of their operation environments, or even the

composition of distributed elements across heterogeneous underlying

infrastructures, and probably providers.

Taking both complex functions into account, either separately or

jointly, makes clear that management requirements have greatly

surpassed the limits of humans, so automation has become essential

to accomplish most common tasks.

3.4. Network Slice Controller (NSC)

The network slice controller (NSC, see [I-D.ietf-teas-ietf-network-

slices]) is basically a component in the data plane and has the

roles of data packet processing. Moreover, it provides an interface

to export its functions for interacting with control and management

components, so that it is quite relevant for implementing the

requirements described above within the network slicing domain.

Furthermore, an NSC might be required to support handling services

provided on network slices in addition to controlling them because

an NSC is the edge node on an end-to-end network slice (E2E-NS).
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Therefore, the NSC exposes the following requirements:

Data plane for NSs as infrastructure.

Control/management plane for NSs as infrastructure.

Data plane for services on NSs.

Control/management plane for services on NSs.

In summary, NSC provides the required functions for the enforcement

of AI decisions in multi-domain (and federated) network slices, so

it will play a key role in general network management.

3.5. Artificial Intelligence and Machine Learning

ML is not AI. AI has a broader spectrum of methods, some of them are

already exploited in the network for a long time. Perception,

reasoning, and planning are still not fully exploited in the

network.

3.6. Briefing Artificial Intelligence

Intelligence does not directly imply intelligent. On the one hand,

intelligence emphasizes data gathering and management, which can be

processed by systematic methods or intelligent methods. On the other

hand, intelligent emphasizes the reasoning and understanding of data

to actually "posses" the intelligence.

The justification of applying AI in network (and) management is

sometimes overseen. First, management decisions are more and more

complex. We have moved from asking simple questions ("Is there a

problem in my system?") to much more complex ones ("Where should I

migrate this VM to accomplish my goals?"). Moreover, operation

environments are more and more dynamic. On the one hand,

softwarization and programmability elevate flexibility and allow

networks to be totally adapted to their static and/or dynamic

requirements. On the other hand, network virtualization highly

enables network automation.

The new functions and possibilities allow network devices to become

autonomic. However, they must take complex decisions by themselves,

without human intervention, realizing the "dream" of Zero-Touch

Networks, which exploit fully programmable elements and advanced

automation methods (ETSI ZSM). Nevertheless, we have to remember

that AI methods are just resources, not solutions. They will not

replace the human decisions, just complement and "automate" them.
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4. AI Framework for NM

The basic concept is to develop a generic, scalable, deployable and

trustworthy AI framework for network management (AINEMA). The

framework will be used to design, deploy, instantiate, scale and

validate AI solutions for network operation, administration and

management (OAM). The framework will particularly target E2E network

management. The framework is underpinned by the principle that a

generic and scalable AI framework will allow for more general-

purpose AI solutions to network OAM, which can be scaled from one

network domain to multiple network domains, and to multi-site and

multi-tenant scenarios.

The key components of such a framework are:

The data framework. It is responsible for acquiring, modelling,

storing, and distributing data, both historical, collected off-

line, and real-time, on-line, from different parts of a network

in a unified and efficient manner. It also provides the internal

communication layer to the AI framework and serves as the

communication path between the AI framework and network

orchestration entities.

The AI modules. They contain the AI functions that individually

or collectively accomplish local, E2E or global intelligent tasks

for network OAM.

The AI hub. It receives data, knowledge, and localized decisions

from AI modules and outputs desired actions as recommendations to

network management entities. The AI hub is also in charge of the

life cycle management of the AI modules.
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Figure 1: AINEMA Workflow

4.1. AINEMA Operation

The correct and pertinent operation of AINEMA provides enormous

benefits, mainly in terms of making complex management operations

feasible and improving the performance of typically expensive tasks.

By taking advantage of these benefits, the amount of data that can

be analyzed to make decisions on the network can be hugely

increased.

As shown in Figure 1 AINEMA makes possible to leverage intelligence

for network management operations. Instead of just being focused on

the analysis of performance measurements retrieved from the managed

network and the subsequent decision (proaction or reaction), the

+----------+   +--------+   +-------+   +----------+   +---------+

| External |   | Monit. |   |       |   |  AINEMA  |   | Underl. |

|  Event   |   | Elem.  |   | Admin |   | Analyzer |   | SDN/NFV |

| Detector |   |        |   |       |   | +Decider |   | Ctrl.   |

+----------+   +--------+   +-------+   +----------+   +---------+

      |             |           |             |             |

      |             |           | Requirem.   |             |

      |             |           +------------>|             |

      |             |           |             |             |

      |             | Telemetry |             |             |

      |             | Data or   |             |             |

      |             | Knowledge |             |             |

      |             +------------------------>|             |

      |             |           |             |             |

      | Obserations |           |             |             |

      | and Event   |           |             |             |

      | Notificati. |           |             |             |

      +-------------------------------------->|             |

      |             |           |             |             |

      |             |           |           Take            |

      |             |           |         Decision          |

      |             |           |             |             |

      |             |           |             | Request     |

      |             |           |             | Change      |

      |             |           |             +------------>|

      |             |           |             |             |

      |             |           |             | Monitor     |

      |             |           |             | Change      |

      |             |           |             | (Closed     |

      |             |           |             | Loop)       |

      |             |           |             |<----------->|

      |             |           |             |             |
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extension of management operation enabled by AINEMA encompasses

different sub-processes.

First, AINEMA has a sub-process for retrieving the performance

measurements from the managed network. This is the same found in

typical management processes. Moreover, AINEMA encourages the

application of the same ML techniques to obtain some insight of the

situation of the managed network.

Second, AINEMA incorporates a reasoning sub-process. It receives

both the output of the previous sub-process and additional context

information, which can be provided by an external event detector, as

described below. Then, this sub-process finds out and particularizes

the rules that are governing the situation described above. Such

rules are semantically constructed and will abstract the situation

of the network in terms of logical and other semantic concepts,

together with actions and transformations that can be applied to

those rules. All such constructions will be stored in the

Intelligent Network Management Knowledge Base (INMKB), which will

follow a pre-determined ontology and will also extend the knowledge

by applying basic and atomic logic inference statements.

Third, AINEMA defines the solving sub-process. It works as follows.

Once obtained the abstracted situation of the managed network and

the rules to it, the solving subprocess builds a graph with all

semantic constructions. It reflects the managed network, since all

network elements have their semantic counterpart, but it also has

all situations, rules, actions, and even the measurements. The

solving sub-process applies ontology transformations to find a graph

that is acceptable in terms of the associated situation and its

adherence to administrative goals.

Fourth, AINEMA incorporates the planning sub-process. It receives

the solution graph obtained by the previous sub-process and makes a

linear plan of actions to execute in order to enforce the required

changes into the network. The actions used by this planning sub-

process are the building blocks of the plan. Each block will be

defined with a precondition, invariant, and postcondition. A

planning algorithm should be used to obtain such plan of actions by

linking the building blocks so they can be enforced to finally adapt

the managed network to get the desired situation.

All these processes must be executed in parallel, using strong

inter-process communication and synchronization constraints.

Moreover, the requests to the underlying infrastructure for the

adaptation of the managed network will be sent to the corresponding

controllers without waiting for finishing the deliberation cycle.

This way, the time required by the whole cycle is highly reduced.
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This can be possible because of the assumptions and anticipations

tied to AINEMA and the intelligence it denotes.

4.2. Closed Loop

AINEMA follows the closed loop methodology to achieve and assess the

accomplishment of network management goals. It ensures that the

state of the network is continuously within the working parameters

desired by its administrators. This is enforced among all management

cycles along the full life-cycle of the network.

To obtain the benefits from integrating AI within the closed loop,

AINEMA processes must be re-wired to connect their outputs to their

inputs, so obtaining feedback analysis. Moreover, an additional

process must be defined for ensuring that the objectives defined in

the last steps of AINEMA are actually present in the near future

situation of the managed network.

In addition, the data plane elements, such as the NSC described

above, must provide some capabilities to make them coherent to the

closed control loop. Particularly, they must provide symmetric

enforcement and telemetry interfaces, so that the elements composing

the managed network can be modified and monitored using the same

identifiers and having the same assumptions about their topology and

context. For instance, NSC must be able to provide the needed

functionality to enable AINEMA to request NSC to set up and connect

the necessary structures for telemetry collection and request slice

switching.

4.3. Network Intelligence: From Data to Wisdom

Enabling AINEMA with full intelligence process extends the analytics

and decision power beyond current AI and ML solutions. Instead of

just analyzing observations, the incorporation of intelligence

processes to AINEMA makes hypotheses on the current and projected

situation of the managed system and finds evidences to justify it.

This process is much faster and much more effective than relying on

data. This is because the hypotheses will be formally formulated

within the scope and policies established by administrators.

Several hypotheses can be formulated in parallel. After gathering

evidences for all of them, the one that has the strongest evidences

can be taken as real and the potential effects can be coutermeasured

or prevented (anticipated) as dicussed below. As AI methods gain

access to a huge amount of intelligence data from the systems they

manage, they become more and more able to take strategic decisions,

mainly deriving such data to knowledge towards wisdom. This supports

the well known DIKW process (Data, Information, Knowledge, Wisdom)

¶
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that enables elements to operate autonomously, subject to the goals

established by administrators.

In such way, AI methods can be guided by the events or situations

found in underlying networks in a constantly evolving model. We can

call it the Knowledge (and Intelligence) Driven Network. In this new

network architecture, the structure itself of the network results

from reasoning on intelligence data. The network adapts to new

situations without requiring human involvement but administrative

policies are still enforced to decisions. Nevertheless, intelligence

data must be managed properly to exploit all its potential. Data

with high accuracy and high frequency will be processed in real-

time. Meanwhile, fast and scalable methods for information retrieval

and decision enfrocement become essential to the objectives of the

network.

To achieve such goals, AI algorithms must be adapted to work on

network problems. Joint physical and virtual network elements can

form a multi-agent system focused on achieving such system goals. It

can be applied to several use-cases. For instance, it can be used

for predicting traffic behaviour, iterative network optimization,

and assessment of administrative policies.

4.4. External Event Detectors

Current mechanisms for automated management and control rely only on

the continuous monitoring of the resources they control or the

underlying infrastructure that host them. However, there are several

other sources of information that can be exploited to make the

systems more robust and efficient. It is the case of the

notifications that can be provided by physical or virtual elements

or devices that are watching for specific events, hence called

external event detectors.

The external event detectors are a huge source of intelligence data

that can be used as evidence to demonstrate the hypotheses

formulated by AINEMA. More specifically, although the notifications

provided by these external event detectors are related to successes

that occur outside the boundaries of the controlled system, such

successes can affect the typical operation of controlled systems.

For instance, a heavy rainfall or snowfall can be detected and

correlated to a huge increase in the amount of requests experienced

by some emergency support service. Therefore, the evidence they

provide can be even stronger than performance measurements obtained

by the managed system and, in general, they will be used for

anticipating requirements much more effectively.
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4.5. Anticipation of Network Requirements

One of the main goals of the MANO mechanisms is to ensure the

virtual computer and network system they manage meets the

requirements established by their owners and administrators. It is

currently achieved by observing and analyzing the performance

measurements obtained either by directly asking the resources

forming the managed system of by asking the controllers of the

underlying infrastructure that hosts such resources. Thus, under

changing or eventual situations, the managed system must be adapted

to cope with the new requirements, increasing the amount of

resources assigned to it, or to make efficient use of available

infrastructures, reducing the amount of resources assigned to it.

However, the time required by the infrastructure to make effective

the adaptations requested by the MANO mechanisms is longer than the

time required by client requests to overload the system and make it

discard further client requests. This situation is generally

undesired but particularly dangerous for some systems, such as the

emergency support system mentioned above. Therefore, in order to

avoid the disruption of the service, the change in requirements must

be anticipated to ensure that any adaptation has finished as soon as

possible, preferably before the target system gets overloaded or

underloaded.

AINEMA exploits ARCA (Section 7). ARCA is integrated to NFV-MANO to

implement a closed loop network management that integrates external

events. ARCA provides to AINEMA the ability to correlate previous

external events (causes) with current performance measurements

(effects). It also is able to find the preventive actions

(anticipated countermeasures) required to avoid the effects once the

causes have been detected. Thus, AINEMA is able to enforce the

necessary adaptations to avoid failure of the managed system

beforehand, particularly before the system performance metrics have

actually changed.

The following abstract algorithm formalizes the workflow expected to

be followed by the different implementations of the operation

proposed here.

¶
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This algorithm considers both internal and external events to

determine the necessary control and management actions to achieve

the proper anticipation of resources assigned to the target system.

We propose the different implementations to follow the same approach

so they can guess what to expect when they interact. For instance, a

consumer, such as an Application Service Provider (ASP), can expect

some specific behavior of the Virtual Network Operator (VNO) from

which it is consuming resources. This helps both the ASP and VNO to

properly address resource fluctuations.

4.6. Intelligent Reasoning

It is trivial for anybody to understand that the behavior or the

network results from user activity. For instance, more users means

more traffic. However, it is not commonly considered that user

activity has a direct dependency on events that occur outside the

boundaries of the networks they use. For example, if a video becomes

trendy, the load of the network that hosts the video increases, but

also the load of any network with users watching the video. In the

same way, if a natural incident occurs (e.g. heavy rainfall,

earthquake), people try to contact their relatives and the load of a

telephony network increases. From this we can easily find out that

there is a clear causality relation between events occurring in the

while TRUE do

    event = GetExternalEventInformation()

    if event != NONE then

        anticipated_resource_amount = Anticipator.Get(event)

        if IsPolicyCompliant(anticipated_resource_amount) then

            current_resource_amount = anticipated_resource_amount

            anticipation_time = NOW

        end if

    end if

    anticipated_event = event

    if anticipated_event != NONE and

            (NOW - anticipation_time) > EXPIRATION_TIME then

        current_resource_amount = DEFAULT_RESOURCE_AMOUNT

        anticipated_event = NONE

    end if

    state = GetSystemState()

    if not IsAcceptable(state, current_resource_amount) then

        current_resource_amount = GetResourceAmountForState(state)

        if anticipated_event is not NONE then

            Anticipator.Set

                (anticipated_event, current_resource_amount)

            anticipated_event = NONE

        end if

    end if

end while

¶
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real and digital world and the behaviour of the network (aka. The

Internet).

Network management outcomes, in terms of system stability,

performance, reliability, etc., would greatly improve by exploiting

such causality relation. An easy and straightforward way to do so is

to apply AI reasoning methods. These methods can be used to "guess"

the effect for a given cause. Moreover, reasoning can be used to

choose the specific events that can impact the system, so being the

cause for some effect.

Meanwhile, reasoning on network behavior from performance

measurements and external events places some challenges. First,

external event information must cross the administrative domain of

the network to which it is relevant. This means that there must be

interfaces and security policies that regulate how information is

exchanged between the external event detecthor, which can be some

sensor deployed in some "smart" place (e.g. smart city, smart

building), and the management solution, which resides inside the

administrative domain of the managed network. This function must be

highly conformed and regulated, and the protocols used to achieve it

must be widely accepted and tested, in order for it to exploit the

overall potential of external events.

Second, enough meta-data must be associated to performance

measurements to clearly identify all aspects of the effects, so that

they can be traced back to the causes (events). Such meta-data must

follow an ontology (information model) that is somewhat common and

widely accepted or, at leaset, to be able to easily transform it

among the different formats and models used by different vendors and

software.

Third, the management ontology must be extended by all concepts from

the boundaries of the managed network, its external environment

(surroundings), and any entity that, albeit being far away, can

impact on the function of the managed network.

5. Gaps and Standardization Issues

Several gaps and standardization issues arise from applying AI and

reasoning to network management solutions:

Methods from different providers/vendors must be able to coexist

and work together, either directly or by means of a translator.

They must, however, use the same concepts, albeit using different

naming, so they actually share a common ontology.

Information retrieval must be assessed for quality so that the

outputs from AI reasoning, and thus management solutions, can be

reliable.
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Ontological concepts must be consistent so that the types and

qualities of information that is retrieved from a system or

object are as expected.

The protocols used to communicate (or disseminate, or publish)

the information must respond to the constraints of their target

usage.

6. AINEMA Information Model

In this section we introduce the basic information model needed by

AINEMA to support reasoning on external events. It basically

includes the concepts and structures used to describe external

events and notify (communicate) them to the interested sink, the

network controller/manager, through the control and management

plane, depending on the specific instantiation of the system.

6.1. Tree Structure

The main models included in the tree structure of the module are the

events and notifications. On the one hand, events are structured in

payloads and the content of events itself (external-events). On the

other hand, there is only one notification, which is the event

itself.

6.1.1. event-payloads

The event payloads are, for the time being, composed of three types.

First, we have defined the basic payload, which is intended to carry

any arbitrary data. Second, we have defined the seismometer payload

to carry information about seisms. Third, we have defined the

bigdata payload that carries notifications coming from BigData

sources.

*

¶

*

¶

¶

module: ietf-nmrg-nict-ainema

  +--rw events

     +--rw event-payloads

     +--rw external-events

  notifications:

    +---n event

¶

¶

+--rw event-payloads

   +--rw event-payloads-basic

   +--rw event-payloads-seismometer

   +--rw event-payloads-bigdata

¶
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6.1.1.1. basic

The basic payload is able to hold any data type, so it has a union

of several types. It is intended to be used by any source of events

that is (still) not covered by other model. In general, any source

of telemetry information (e.g. OpenStack [OPENSTACK] controllers)

can use this model as such sources can encode on it their

information, which typically is very simple and plain. Therefore,

the current model is tightly interrelated to a framework to retrieve

network telemetry (see RFC 9232 [RFC9232]).

6.1.1.2. seismometer

The seismometer model includes the main information related to a

seism, such as the location of the incident and its magnitude.

Additional fields can be defined in the future by extending this

model.

6.1.1.3. bigdata

The bigdata model includes a description of an event (or incident)

and its estimated general severity, unrelated to the system. The

description is an arbitrary string of characters that would normally

carry information that describes the event using some higher level

format, such as Turtle or N3 for carrying RDF knowlege items.

6.1.2. external-events

+--rw event-payloads-basic* [plid]

   +--rw plid    string

   +--rw data?   union

¶

¶

+--rw event-payloads-seismometer* [plid]

   +--rw plid         string

   +--rw location?    string

   +--rw magnitude?   uint8

¶

¶

+--rw event-payloads-bigdata* [plid]

   +--rw plid           string

   +--rw description?   string

   +--rw severity?      uint8

¶

¶

+--rw external-events* [id]

   +--rw id           string

   +--rw source?      string

   +--rw context?     string

   +--rw sequence?    int64

   +--rw timestamp?   yang:date-and-time

   +--rw payload?     binary

¶



The model defined to encode external events, which encapsulates the

payloads introduced above, is completed with an identifier of the

message, a string describing the source of the event, a sequence

number and a timestamp. Additionaly it includes a string describing

the context of the event. It is intended to communicate the required

information about the system that detected the event, its location,

etc. As the description of the BigData payload, this field can be

formated with a high level format, such as RDF.

6.1.3. notifications/event

The event notification inherits all the fields from the model of

external events defined above. It is intended to allow software and

hardware elements to send, receive, and interpret not just the

events that have been detected and notified by, for instance, a

sensor, but also the notifications issued by the underlying

infrastructure controllers, such as the OpenStack Controller.

6.2. YANG Module

.

¶

notifications:

  +---n event

     +--ro id?          string

     +--ro source?      string

     +--ro context?     string

     +--ro sequence?    int64

     +--ro timestamp?   yang:date-and-time

     +--ro payload?     binary

¶

¶

¶



module ietf-nmrg-nict-ainema {

  namespace "urn:ietf:params:xml:ns:yang:ietf-nmrg-nict-ainema";

  prefix rant;

  import ietf-yang-types { prefix yang; }

  grouping external-event-information {

    leaf id { type string; }

    leaf source { type string; }

    leaf context { type string; }

    leaf sequence { type int64; }

    leaf timestamp { type yang:date-and-time; }

    leaf payload { type binary; }

  }

  grouping event-payload-basic {

    leaf plid { type string; }

    leaf data { type union { type string; type binary; } }

  }

  grouping event-payload-seismometer {

    leaf plid { type string; }

    leaf location { type string; }

    leaf magnitude { type uint8; }

  }

  grouping event-payload-bigdata {

    leaf plid { type string; }

    leaf description { type string; }

    leaf severity { type uint8; }

  }

  notification event {

    uses external-event-information;

  }

  container events {

    container event-payloads {

      list event-payloads-basic {

        key "plid";

        uses event-payload-basic;

      }

      list event-payloads-seismometer {

        key "plid";

        uses event-payload-seismometer;

      }

      list event-payloads-bigdata {

        key "plid";

        uses event-payload-bigdata;

      }



    }

    list external-events {

      key "id";

      uses external-event-information;

    }

  }

}

¶



Collector

Analyzer

.

7. The Autonomic Resource Control Architecture (ARCA)

As deeply discussed in ICIN 2018 [ICIN-2018], ARCA leverages the

elastic adaptation of resources assigned to virtual computer and

network systems by calculating or estimating their requirements from

the analysis of load measurements and the detection of external

events. These events can be notified by physical elements (things,

sensors) that detect changes on the environment, as well as software

elements that analyze digital information, such as connectors to

sources or analyzers of Big Data. For instance, ARCA is able to

consider the detection of an earthquake or a heavy rainfall to

overcome the damages it can make to the controlled system.

The policies that ARCA must enforce will be specified by

administrators during the configuration of the control/management

engine. Then, ARCA continues running autonomously, with no more

human involvement unless some parameter must be changed. ARCA will

adopt the required control and management operations to adapt the

controlled system to the new situation or requirements. The main

goal of ARCA is thus to reduce the time required for resource

adaptation from hours/minutes to seconds/milliseconds. With the

aforementioned statements, system administrators are able to specify

the general operational boundaries in terms of lower and upper

system load thresholds, as well as the minimum and maximum amount of

resources that can be allocated to the controlled system to overcome

any eventual situation, including the natural crossing of such

thresholds.

ARCA functional goal is to run autonomously while the performance

goal is to keep the resources assigned to the controlled resources

as close as possible to the optimum (e.g. 5 % from the optimum)

while avoiding service disruption as much as possible, keeping

client request discard rate as low as possible (e.g. below 1 %). To

achieve both goals, ARCA relies on the Autonomic Computing (AC)

paradigm, in the form of interconnected micro-services. Therefore,

ARCA includes the four main elements and activities defined by AC,

incarnated as:

Is responsible of gathering and formatting the

heterogeneous observations that will be used in the control

cycle.

Correlates the observations to each other in order to find

the situation of the controlled system, especially the current

load of the resources allocated to the system and the occurrence

of an incident that can affect to the normal operation of the

system, such as an earthquake that increases the traffic in an

¶
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Decider

Enforcer

emergency-support system, which is the main target scenario

studied in this paper.

Determines the necessary actions to adjust the resources to

the load of the controlled system.

Requests the underlying and overlying infrastructure, such

as OpenStack, to make the necessary changes to reflect the

effects of the decided actions into the system.

Being a micro-service architecture means that the different

components are executed in parallel. This allows such components to

operate in two ways. First, their operation can be dispatched by

receiving a message from the previous service or an external

service. Second, the services can be self-dispatched, so they can

activate some action or send some message without being previously

stimulated by any message. The overall control process loops

indefinitely and it is closed by checking that the expected effects

of an action are actually taking place. The coherence among the

distributed services involved in the ARCA control process is ensured

by enforcing a common semantic representation and ontology to the

messages they exchange.

ARCA semantics are built with the Resource Description Framework

(RDF) and the Web Ontology Language (OWL), which are well known and

widely used standards for the semantic representation and management

of knowledge. They provide the ability to represent new concepts

without requiring to change the software, just plugin extensions to

the ontology. ARCA stores all its knowledge is stored in the

Knowledge Base (KB), which is queried and kept up-to-date by the

analyzer and decider micro-services. It is implemented by Apache

Jena Fuseki, which is a high-performance RDF data store that

supports SPARQL through an HTTP/REST interface. Being de-facto

standards, both technologies enable ARCA to be easily integrated to

virtualization platforms like OpenStack.

8. ARCA Integration With ETSI-NFV-MANO

In this section we describe how to fit ARCA on a general SDN/NFV

underlying infrastructure and introduce a showcase experiment that

demonstrates its operation on an OpenStack-based experimentation

platform. We first describe the integration of ARCA with the NFV-

MANO reference architecture. We contextualize the significance of

this integration by describing an emergency support scenario that

clearly benefits from it. Then we proceed to detail the elements

forming the OpenStack platform and finally we discuss some initial

results obtained from them.
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8.1. Functional Integration

The most important functional blocks of the NFV reference

architecture promoted by ETSI (see ETSI-NFV-MANO [ETSI-NFV-MANO])

are the system support functions for operations and business (OSS/

BSS), the element management (EM) and, obviously. the Virtual

Network Functions (VNFs). But these functions cannot exist without

being instantiated on a specific infrastructure, the NFV

infrastructure (NFVI), and all of them must be coordinated,

orchestrated, and managed by the general NFV-MANO functions.

Both the NFVI and the NFV-MANO elements are subdivided into several

sub-components. The NFVI has the underlying physical computing,

storage, and network resources, which are sliced (see [I-D.ietf-

teas-ietf-network-slices]) and virtualized to conform the virtual

computing, storage, and network resources that will host the VNFs.

In addition, the NFV-MANO is subdivided in the NFV Orchestrator

(NFVO), the VNF manager (VNFM) and the Virtual Infrastructure

Manager (VIM). As their name indicates, all high-level elements and

sub-components have their own and very specific objective in the NFV

architecture.

During the design of ARCA we enforced both operational and

interfacing aspects to its main objectives. From the operational

point of view, ARCA processes observations to manage virtual

resources, so it plays the role of the VIM mentioned above.

Therefore, ARCA has been designed with appropriate interfaces to fit

in the place of the VIM. This way, ARCA provides the NFV reference

architecture with the ability to react to external events to adapt

virtual computer and network systems, even anticipating such

adaptations as performed by ARCA itself. However, some interfaces

must be extended to fully enable ARCA to perform its work within the

NFV architecture.

Once ARCA is placed in the position of the VIM, it enhances the

general NFV architecture with its autonomic management capabilities.

In particular, it discharges some responsibilities from the VNFM and

NFVO, so they can focus on their own business while the virtual

resources are behaving as they expect (and request). Moreover, ARCA

improves the scalability and reliability of the managed system in

case of disconnection from the orchestration layer due to some

failure, network split, etc. It is also achieved by the autonomic

capabilities, which, as described above, are guided by the rules and

policies specified by the administrators and, here, communicated to

ARCA through the NFVO. However, ARCA will not be limited to such

operation so, more generally, it will accomplish the requirements

established by the Virtual Network Operators (VNOs), which are the

owners of the slice of virtual resources that is managed by a

particular instance of NFV-MANO, and therefore ARCA.
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In addition to the operational functions, ARCA incorporates the

necessary mechanisms to engage the interfaces that enable it to

interact with other elements of the NFV-MANO reference architecture.

More specifically, ARCA is bound to the Or-Vi (see ETSI-NFV-IFA-005

[ETSI-NFV-IFA-005]) and the Nf-Vi (see ETSI-NFV-IFA-004 [ETSI-NFV-

IFA-004] and ETSI-NFV-IFA-019 [ETSI-NFV-IFA-019]). The former is the

point of attachment between the NFVO and the VIM while the latter is

the point of attachment between the NFVI and the VIM. In our current

design we decided to avoid the support for the point of attachment

between the VNFM and the VIM, called Vi-Vnfm (see ETSI-NFV-IFA-006

[ETSI-NFV-IFA-006]). We leave it for future evolutions of the

proposed integration, that will be enabled by a possible solution

that provides the functions of the VNFM required by ARCA.

Through the Or-Vi, ARCA receives the instructions it will enforce to

the virtual computer and network system it is controlling. As

mentioned above, these are specified in the form of rules and

policies, which are in turn formatted as several statements and

embedded into the Or-Vi messages. In general, these will be high-

level objectives, so ARCA will use its reasoning capabilities to

translate them into more specific, low-level objectives. For

instance, the Or-Vi can specify some high-level statement to avoid

CPU overloading and ARCA will use its innate and acquired knowledge

to translate it to specific statements that specify which parameters

it has to measure (CPU load from assigned servers) and which are

their desired boundaries, in the form of high threshold and low

threshold. Moreover, the Or-Vi will be used by the NFVO to specify

which actions can be used by ARCA to overcome the violation of the

mentioned policies.

All information flowing the Or-Vi interface is encoded and formatted

by following a simple but highly extensible ontology and exploiting

the aforementioned semantic formats. This ensures that the

interconnected system is able to evolve, including the replacement

of components, updating (addition or removal) the supported concepts

to understand new scenarios, and connecting external tools to

further enhance the management process. The only requirement to

ensure this feature is to ensure that all elements support the

mentioned ontology and semantic formats. Although it is not a

finished task, the development of semantic technologies allows the

easy adaptation and translation of existing information formats, so

it is expected that more and more software pieces become easily

integrable with the ETSI-NFV-MANO [ETSI-NFV-MANO] architecture.

In contrast to the Or-Vi interface, the Nf-Vi interface exposes more

precise and low-level operations. Although this makes it easier to

be integrated to ARCA, it also makes it to be tied to specific

implementations. In other words, building a proxy that enforces the

aforementioned ontology to different interface instances to
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homogenize them adds undesirable complexity. Therefore, new

components have been specifically developed for ARCA to be able to

interact with different NFVIs. Nevertheless, this specialization is

limited to the collector and enforcer. Moreover, it allows ARCA to

have optimized low-level operations, with high improvement of the

overall performance. This is the case of the specific

implementations of the collector and enforcer used with Mininet and

Docker, which are used as underlying infrastructures in previous

experiments described in ICIN 2017 [ICIN-2017]. Moreover, as

discussed in the following section, this is also the case of the

implementations of the collector and enforcer tied to OpenStack

telemetry and compute interfaces, respectively. Hence it is

important to ensure that telemetry is properly addressed, so we

insist in the need to adopt a common framework in such endpoint (see

RFC 9232 [RFC9232]).

Although OpenStack still lacks some functionality regarding the

construction of specific virtual networks, we use it as the NFVI

functional block in the integrated approach. Therefore, OpenStack is

the provider of the underlying SDN/NFV infrastructure and we

exploited its APIs and SDK to achieve the integration. More

specifically, in our showcase we use the APIs provided by

Ceilometer, Gnocchi, and Compute services as well as the SDK

provided for Python. All of them are gathered within the Nf-Vi

interface. Moreover, we have extended the Or-Vi interface to connect

external elements, such as the physical or environmental event

detectors and Big Data connectors, which is becoming a mandatory

requirement of the current virtualization ecosystem and it conforms

our main extension to the NFV architecture.

8.2. Target Experiment and Scenario

From the beginning of our work on the design of ARCA we are

targeting real-world scenarios, so we get better suited

requirements. In particular we work with a scenario that represents

an emergency support service that is hosted on a virtual computer

and network system, which is in turn hosted on the distributed

virtualization infrastructure of a medium-sized organization. The

objective is to clearly represent an application that requires high

dynamicity and high degree of reliability. The emergency support

service accomplishes this by being barely used when there is no

incident but also being heavily loaded when there is an incident.

Both the underlying infrastructure and virtual network share the

same topology. They have four independent but interconnected network

domains that form part of the same administrative domain

(organization). The first domain hosts the systems of the

headquarters (HQ) of the owner organization, so the VNFs it hosts

(servants) implement the emergency support service. We defined them
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as ``servants'' because they are Virtual Machine (VM) instances that

work together to provide a single service by means of backing the

Load Balancer (LB) instances deployed in the separate domains. The

amount of resources (servants) assigned to the service will be

adjusted by ARCA, attaching or detaching servants to meet the load

boundaries specified by administrators.

The other domains represent different buildings of the organization

and will host the clients that access to the service when an

incident occurs. They also host the necessary LB instances, which

are also VNFs that are controlled by ARCA to regulate the access of

clients to servants. All domains will have physical detectors to

provide external information that can (and will) be correlated to

the load of the controlled virtual computer and network system and

thus will affect to the amount of servants assigned to it. Although

the underlying infrastructure, the servants, and the ARCA instance

are the same as those those used in the real world, both clients and

detectors will be emulated. Anyway, this does not reduce the

transferability of the results obtained from our experiments as it

allows to expand the amount of clients beyond the limits of most

physical infrastructures.

Each underlying OpenStack domain will be able to host a maximum of

100 clients, as they will be deployed on a low profile virtual

machine (flavor in OpenStack). In general, clients will be

performing requests at a rate of one request every ten seconds, so

there would be a maximum of 30 requests per second. However, under

the simulated incident, the clients will raise their load to reach a

common maximum of 1200 requests per second. This mimics the shape

and size of a real medium-size organization of about 300 users that

perform a maximum of four requests per second when they need some

support.

The topology of the underlying network is simplified by connecting

the four domains to the same, high-performance switch. However, the

topology of the virtual network is built by using direct links

between the HQ domain and the other three domains. These are

complemented by links between domains 2 and 3, and between domains 3

and 4. This way, the three domains have three paths to reach the HQ

domain: a direct path with just one hop, and two indirect paths with

two and three hops, respectively.

During the execution of the experiment, the detectors notify the

incident to the controller as soon as it happens. However, although

the clients are stimulated at the same time, there is some delay

between the occurrence of the incident and the moment the network

service receives the increase in the load. One of the main targets

of our experiment is to study such delay and take advantage of it to
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anticipate the amount of servants required by the system. We discuss

it below.

In summary, this scenario highlights the main benefits of ARCA to

play the role of VIM and interacting with the underlying OpenStack

platform. This means the advancement towards an efficient use of

resources and thus reducing the CAPEX of the system. Moreover, as

the operation of the system is autonomic, the involvement of human

administrators is reduced and, therefore, the OPEX is also reduced.

8.3. OpenStack Platform

The implementation of the scenario described above reflects the

requirements of any edge/branch networking infrastructure, which are

composed of several distributed micro-data-centers deployed on the

wiring centers of the buildings and/or storeys. We chose to use

OpenStack to meet such requirements because it is being widely used

in production infrastructures and the resulting infrastructure will

have the necessary robustness to accomplish our objectives, at the

time it reflects the typical underlying platform found in any SDN/

NFV environment.

We have deployed four separate network domains, each one with its

own OpenStack instantiation. All domains are totally capable of

running regular OpenStack workload, i.e. executing VMs and networks,

but, as mentioned above, we designate the domain 1 to be the

headquarters of the organization. The different underlying networks

required by this (quite complex) deployment are provided by several

VLANs within a high-end L2 switch. This switch represents the

distributed network of the organization. Four separated VLANs are

used to isolate the traffic within each domain, by connecting an

interface of OpenStack's controller and compute nodes. These VLANs

therefore form the distributed data plane. Moreover, other VLAN is

used to carry the control plane as well as the management plane,

which are used by the NFV-MANO, and thus ARCA. It is instantiated in

the physical machine called ARCA Node, to exchange control and

management operations in relation to the collector and enforcer

defined in ARCA. This VLAN is shared among all OpenStack domains to

implement the global control of the virtualization environment

pertaining to the organization. Finally, other VLAN is used by the

infrastructure to interconnect the data planes of the separated

domains and also to allow all elements of the infrastructure to

access the Internet to perform software installation and updates.

Installation of OpenStack is provided by the Red Hat OpenStack

Platform, which is tightly dependent on the Linux operating system

and closely related to the software developed by the OpenStack Open

Source project. It provides a comprehensive way to install the whole

platform while being easily customized to meet our specific
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requirements, while it is also backed by operational quality

support.

The ARCA node is also based on Linux but, since it is not directly

related to the OpenStack deployment, it is not based on the same

distribution. It is just configured to be able to access the control

and management interfaces offered by OpenStack, and therefore it is

connected to the VLAN that hosts the control and management planes.

On this node we deploy the NFV-MANO components, including the micro-

services that form an ARCA instance.

In summary, we dedicate nine physical computers to the OpenStack

deployment, all are Dell PowerEdge R610 with 2 x Xeon 5670 2.96 GHz

(6 core / 12 thread) CPU, 48 GiB RAM, 6 x 146 GiB HD at 10 kRPM, and

4 x 1 GE NIC. Moreover, we dedicate an additional computer with the

same specification to the ARCA Node. We dedicate a less powerful

computer to implement the physical router because it will not be

involved in the general execution of OpenStack nor in the specific

experiments carried out with it. Finally, as detailed above, we

dedicate a high-end physical switch, an HP ProCurve 1810G-24, to

build the interconnection networks.

8.4. Initial Results

Using the platform described above we execute an initial but long-

lasting experiment based on the target scenario introduced at the

beginning of this section. The objective of this experiment is

twofold. First, we aim to demonstrate how ARCA behaves in a real

environment. Second, we aim to stress the coupling points between

ARCA and OpenStack, which will raise the limitations of the existing

interfaces.

With such objectives in mind, we define a timeline that will be

followed by both clients and external event detectors. It forces the

virtualized system to experience different situations, including

incidents of many severities. When an incident is found in the

timeline, the detectors notify it to the ARCA-based VIM and the

clients change their request rates, which will depend on the

severity of the incident. This behavior is widely discussed in ICIN

2018 [ICIN-2018], remarking how users behave after occurring a

disaster or another similar incident.

The ARCA-based VIM will know the occurrence of the incident from two

sources. First, it will receive the notification from the event

detectors. Second, it will notice the change of the CPU load of the

servants assigned to the target service. In this situation, ARCA has

different opportunities to overcome the possible overload (or

underload) of the system. We explore the anticipation approach

deeply discussed in ICIN 2018 [ICIN-2018]. Its operation is enclosed
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in the analyzer and decider and it is based on an algorithm that is

divided in two sub-algorithms.

The first sub-algorithm reacts to the detection of the incident and

ulterior correlation of its severity to the amount of servants

required by the system. This sub-algorithm hosts the regression of

the learner, which is based on the SVM/SVR technique, and predicts

the necessary resources from two features: the severity of the

incident and the time elapsed from the moment it happened. The

resulting amount of servants is established as the minimum amount

that the VIM can use.

The second sub-algorithm is fed with the CPU load measurements of

the servants assigned to the service, as reported by the OpenStack

platform. With this information it checks whether the system is

within the operating parameters established by the NFVO. If not, it

adjusts the resources assigned to the system. It also uses the

minimum amount established by the other sub-algorithm as the basis

for the assignation. After every correction, this algorithm learns

the behavior by adding new correlation vectors to the SVM/SVR

structure.

When the experiment is running, the collector component of the ARCA-

based VIM is attached to the telemetry interface of OpenStack by

using the SDK to access the measurement data generated by Ceilometer

and stored by Gnocchi. In addition, it is attached to the external

event detectors in order to receive their notifications. On the

other hand, the enforcer component is attached to the Compute

interface of OpenStack by also using its SDK to request the

infrastructure to create, destroy, query, or change the status of a

VM that hosts a servant of the controlled system. Finally, the

enforcer also updates the lists of servers used by the load

balancers to distribute the clients among the available resources.

During the execution of the experiment we make the ARCA-based VIM to

report the severity of the last incident, if any, the time elapsed

since it occurred, the amount of servants assigned to the controlled

system, the minimum amount of servants to be assigned, as determined

by the anticipation algorithm, and the average load of all servants.

In this instance, the severities are spread between 0 (no incident)

and 4 (strongest incident), the elapsed times are less than 35

seconds, and the minimum server assignation (MSA) is below 10,

although the hard maximum is 15.

With such measurements we illustrate how the learned correlation of

the three features (dimensions) mentioned above is achieved. Thus,

when there is no incident (severity = 0), the MSA is kept to the

minimum. In parallel, regardless of the severity level, the

algorithm learned that there is no need to increase the MSA for the
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first 5 or 10 seconds. This shows the behavior discussed in this

paper, that there is a delay between the occurrence of an event and

the actual need for updated amount of resources, and it forms one

fundamental aspect of our research.

By inspecting the results, we know that there is a burst of client

demands that is centered (peak) around 15 seconds after the

occurrence of an incident or any other change in the accounted

severity. We also know that the burst lasts longer for higher

severities, and it fluctuates a bit for the highest severities.

Finally, we can also notice that for the majority of severities, the

increased MSA is no longer required after 25 seconds from the time

the severity change was notified.

All that information becomes part of the knowledge of ARCA and it is

stored both by the internal structures of the SVM/SVR and, once

represented semantically, in the semantic database that manages the

knowledge base of ARCA. Thus, it is used to predict any future

behavior. For instance, is an incident of severity 3 has occurred 10

seconds ago, ARCA knows that it will need to set the MSA to 6

servants. In fact, this information has been used during the

experiment, so we can also know the accuracy of the algorithm by

comparing the anticipated MSA value with the required value (or even

the best value). However, the analysis of such information is left

for the future.

While preparing and executing the experiment we found several

limitation intrinsic to the current OpenStack platform. First,

regardless of the CPU and memory resources assigned to the

underlying controller nodes, the platform is unable to record and

deliver performance measurements at a lower interval than every 10

seconds, so it is currently not suitable for real time operations,

which is important for our long-term research objectives. Moreover,

we found that the time required by the infrastructure to create a

server that hosts a somewhat heavy servant is around 10 seconds,

which is too far from our targets. Although these limitations can be

improved in the future, they clearly justify that our anticipation

approach is essential for the proper working of a virtual system

and, thus, the integration of external information becomes mandatory

for future system management technologies, especially considering

the virtualization environments.

Finally, we found it difficult for the required measurements to be

pushed to external components, so we had to poll for them.

Otherwise, some component of ARCA must be instantiated along the

main OpenStack components and services so it has first-hand and

prompt access to such features. This way, ARCA could receive push

notifications with the measurements, as it is for the external

detectors. This is a key aspect that affects the placement of the
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[RFC2119]

[RFC9232]

[ETSI-NFV-IFA-004]

NFV-VIM, or some subpart of it, on the general architecture.

Therefore, for future iterations of the NFV reference architecture,

an integrated view between the VIM and the NFVI could be required to

reflect the future reality.

9. Relation to Other IETF/IRTF Initiatives

TBD

10. IANA Considerations

This memo includes no request to IANA.

11. Security Considerations

As with other AI mechanisms, the major security concern for the

adoption of intelligent reasoning on external events to manage

network slices and SDN/NFV systems is that the boundaries of the

control and management planes are crossed to introduce information

from outside. Such communications must be highly and heavily secured

since some malfunction or explicit attacks might compromise the

integrity and execution of the controlled system. However, it is up

to implementers to deploy the necessary countermeasures to avoid

such situations. From the design point of view, since all oprations

are performed within the control and/or management planes, the

security level of reasoning solutions is inherited and thus

determined by the security masures established by the systems

conforming such planes.
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