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Abstract

   The adoption of AI in network management solutions is becoming a
   reality.  It is mainly supported by the need to resolve complex
   problems arisen from the acceptance of SDN/NFV technologies as well
   as network slicing.  This allows current computer and network system
   infrastructures to constantly grow in complexity, in parallel to the
   demands of users.  However, exploiting the possibilities of AI is not
   an easy task.  There has been a lot of effort to make Machine
   Learning (ML) solutions reliable and acceptable but, at the same
   time, other mechanisms have been forgotten.  It is the particular
   case of reasoning.  Although it can provide enormous benefits to
   management solutions by, for example, inferring new knowledge and
   applying different kind of rules (e.g. logical) to choose from
   several actions, it has received little attention.  While ML
   solutions work with data, so their only requirement from the network
   infrastructure is data retrieval, reasoning solutions work in
   collaboration to the network they are managing.  This makes the
   challenges arisen from intelligent reasoning to be a key for the
   evolution of network management towards the full adoption of AI.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 7, 2020.
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1.  Introduction

   The current network ecosystem is quickly evolving from an almost
   fixed network to a highly flexible, powerful, and somehow hybrid
   system.  Network slicing, Software Defined Networking (SDN), and
   Network Function Virtualization (NFV) provide the basis for such
   evolution.  The need to automate the management and control of such
   systems has motivated the move towards autonomic networking (ANIMA)
   and the inclusion of AI solutions alongside the management plane of
   the network, enough justified by the increasing size and complexity
   of the network, which exposes complex problems that must be resolved
   in scales that escape human possibilities.  Therefore, in order to
   allow current computer and network system infrastructures to
   constantly grow in complexity, in parallel to the demands of users,
   the AI solutions must work together with other network management
   solutions.

   However, exploiting the possibilities of AI is not an easy task.
   There has been a lot of effort to make Machine Learning (ML)
   solutions reliable and acceptable but, at the same time, other
   mechanisms have been forgotten.  It is the particular case of
   reasoning.  Although it can provide enormous benefits to management
   solutions by, for example, inferring new knowledge and applying
   different kind of rules (e.g. logical) to choose from several
   actions, it has received little attention.  While ML solutions work
   with data, so their only requirement from the network infrastructure
   is data retrieval, reasoning solutions work in collaboration to the
   network they are managing.  This makes the challenges arisen from
   intelligent reasoning to be a key for the evolution of network
   management towards the full adoption of AI.

   The present document aims to gather the necessary information for
   getting the most benefits from the application of intelligent
   reasoning to network management, including, but not limited to,
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   defining the gaps that must be covered for reasoning to be correctly
   integrated into network management solutions.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

3.  Background

3.1.  Virtual Computer and Network Systems

   The continuous search for efficiency and cost reduction to get the
   most optimum exploitation of available resources (e.g.  CPU power and
   electricity) has conducted current physical infrastructures to move
   towards virtualization infrastructures.  Also, this trend enables end
   systems to be centralized and/or distributed, so that they are
   deployed to best accomplish customer requirements in terms of
   resources and qualities.

   One of the key functional requirements imposed to computer and
   network virtualization is a high degree of flexibility and
   reliability.  Both qualities are subject to the underlying
   technologies but, while the latter has been always enforced to
   computer and network systems, flexibility is a relatively new
   requirement, which would not have been imposed without the backing of
   virtualization and cloud technologies.

3.2.  SDN and NFV

   SDN and NFV are conceived to bring high degree of flexibility and
   conceptual centralization qualities to the network.  On the one hand,
   with SDN, the network can be programmed to implement a dynamic
   behavior that changes its topology and overall qualities.  Moreover,
   with NFV the functions that are typically provided by physical
   network equipment are now implemented as virtual appliances that can
   be deployed and linked together to provide customized network
   services.  SDN and NFV complements to each other to actually
   implement the network aspect of the aforementioned virtual computer
   and network systems.

   Although centralization can lead us to think on the single-point-of-
   failure concept, it is not the case for these technologies.
   Conceptual centralization highly differs from centralized deployment.
   It brings all benefits from having a single point of decision but
   retaining the benefits from distributed systems.  For instance,
   control decisions in SDN can be centralized while the mechanisms that

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   enforce such decisions into the network (SDN controllers) can be
   implemented as highly distributed systems.  The same approach can be
   applied to NFV.  Network functions can be implemented in a central
   computing facility, but they can also take advantage of several
   replication and distribution techniques to achieve the properties of
   distributed systems.  Nevertheless, NFV also allows the deployment of
   functions on top of distributed systems, so they benefit from both
   distribution alternatives at the same time.

3.3.  Management and Control

   The introduction of virtualization into the computer and network
   system landscape has increased the complexity of both underlying and
   overlying systems.  On the one hand, virtualizing underlying systems
   adds extra functions that must be managed properly to ensure the
   correct operation of the whole system, which not just encompasses
   underlying elements but also the virtual elements running on top of
   them.  Such functions are used to actually host the overlying virtual
   elements, so there is an indirect management operation that involves
   virtual systems.  Moreover, such complexities are inherited by final
   systems that get virtualized and deployed on top of those
   virtualization infrastructures.

   In parallel, virtual systems are empowered with additional, and
   widely exploited, functionality that must be managed correctly.  It
   is the case of the dynamic adaptation of virtual resources to the
   specific needs of their operation environments, or even the
   composition of distributed elements across heterogeneous underlying
   infrastructures, and probably providers.

   Taking both complex functions into account, either separately or
   jointly, makes clear that management requirements have greatly
   surpassed the limits of humans, so automation has become essential to
   accomplish most common tasks.

3.4.  Slice Gateway (SLG)

   A slice gateway (SLG) (see [I-D.homma-nfvrg-slice-gateway]) is
   basically a component in the data plane and has the roles of data
   packet processing.  Moreover, it provides an interface to export its
   functions for interacting with control and management components, so
   that it is quite relevant for implementing the requirements described
   above within the network slicing domain.

   Furthermore, an SLG might be required to support handling services
   provided on network slices in addition to controlling them because an
   SLG is the edge node on an end-to-end network slice (E2E-NS).
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   Therefore, the SLG exposes the following requirements:

      Data plane for NSs as infrastructure.

      Control/management plane for NSs as infrastructure.

      Data plane for services on NSs.

      Control/management plane for services on NSs.

   In summary, SLG provides the required functions for the enforcement
   of AI decisions in multi-domain (and federated) network slices, so it
   will play a key role in general network management.

4.  Applying AI to Network Management

4.1.  Beyond Machine Learning

   ML is not AI.  AI has a broader spectrum of methods, some of them are
   already exploited in the network for a long time.  Perception,
   reasoning, and planning are still not fully exploited in the network.

4.2.  Briefing Artificial Intelligence

   Intelligence does not directly imply intelligent.  On the one hand,
   intelligence emphasizes data gathering and management, which can be
   processed by systematic methods or intelligent methods.  On the other
   hand, intelligent emphasizes the reasoning and understanding of data
   to actually "posses" the intelligence.

   The justification of applying AI in network (and) management is
   sometimes overseen.  First, management decisions are more and more
   complex.  We have moved from asking simple questions ("Is there a
   problem in my system?") to much more complex ones ("Where should I
   migrate this VM to accomplish my goals?").  Moreover, operation
   environments are more and more dynamic.  On the one hand,
   softwarization and programmability elevate flexibility and allow
   networks to be totally adapted to their static and/or dynamic
   requirements.  On the other hand, network virtualization highly
   enables network automation.

   The new functions and possibilities allow network devices to become
   autonomic.  However, they must take complex decisions by themselves,
   without human intervention, realizing the "dream" of Zero-Touch
   Networks (ZTM), which exploit fully programmable elements and
   advanced automation methods (ETSI ZSM).  Nevertheless, we have to
   remember that AI methods are just resources, not solutions.  They
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   will not replace the human decisions, just complement and "automate"
   them.

5.  Extended Management Operation

5.1.  Intelligent Network Management Process

   In general, the correct and pertinent application of AI to network
   management provides enormous benefits, mainly in terms of making
   complex management operations feasible and improving the performance
   of typically expensive tasks.  By taking advantage of these benefits,
   the amount of data that can be analyzed to make decisions on the
   network can be hugely increased.

   As a result, AI makes possible to enlarge the management process
   towards the Intelligent Network Management Process (INMP).  Instead
   of just being focused on the analysis of performance measurements
   retrieved from the managed network and the subsequent decision
   (proaction or reaction), the extension of management operation
   enabled by INMP encompasses different sub-processes.

   First, INMP has a sub-process for retrieving the performance
   measurements from the managed network.  This is the same found in
   typical management processes.  Moreover, INMP encourages the
   application of the same ML techniques to obtain some insight of the
   situation of the managed network.

   Second, INMP incorporates a reasoning sub-process.  It receives both
   the output of the previous sub-process and additional context
   information, which can be provided by an external event detector, as
   described below.  Then, this sub-process finds out and particularizes
   the rules that are governing the situation described above.  Such
   rules are semantically constructed and will abstract the situation of
   the network in terms of logical and other semantic concepts, together
   with actions and transformations that can be applied to those rules.
   All such constructions will be stored in the Intelligent Network
   Management Knowledge Base (INMKB), which will follow a pre-determined
   ontology and will also extend the knowledge by applying basic and
   atomic logic inference statements.

   Third, INMP defines the solving sub-process.  It works as follows.
   Once obtained the abstracted situation of the managed network and the
   rules to it, the solving subprocess builds a graph with all semantic
   constructions.  It reflects the managed network, since all network
   elements have their semantic counterpart, but it also has all
   situations, rules, actions, and even the measurements.  The solving
   sub-process applies ontology transformations to find a graph that is
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   acceptable in terms of the associated situation and its adherence to
   administrative goals.

   Fourth, INMP incorporates the planning sub-process.  It receives the
   solution graph obtained by the previous sub-process and makes a
   linear plan of actions to execute in order to enforce the required
   changes into the network.  The actions used by this planning sub-
   process are the building blocks of the plan.  Each block will be
   defined with a precondition, invariant, and postcondition.  A
   planning algorithm should be used to obtain such plan of actions by
   linking the building blocks so they can be enforced to finally adapt
   the managed network to get the desired situation.

   All these processes must be executed in parallel, using strong inter-
   process communication and synchronization constraints.  Moreover, the
   requests to the underlying infrastructure for the adaptation of the
   managed network will be sent to the corresponding controllers without
   waiting for finishing the deliberation cycle.  This way, the time
   required by the whole cycle is highly reduced.  This can be possible
   because of the assumptions and anticipations tied to INMP and the
   intelligence it denotes.

5.2.  Closed Loop Management Approach

   Beginning with INMP, a key approach for achieving proper network
   management goals is to follow the closed control loop methodology.
   It ensures that the objectives are not just accomplished at certain
   moment but kept in future cycles of both management and network life-
   cycle.

   To obtain the benefits from integrating AI within the closed loop,
   INMP processes must be re-wired to connect their outputs to their
   inputs, so obtaining feedback analysis.  Moreover, an additional
   process must be defined for ensuring that the objectives defined in
   the last steps of INMP are actually present in the near future
   situation of the managed network.

   In addition, the data plane elements, such as the SLG described
   above, must provide some capabilities to make them coherent to the
   closed control loop.  Particularly, they must provide symmetric
   enforcement and telemetry interfaces, so that the elements composing
   the managed network can be modified and monitored using the same
   identifiers and having the same assumptions about their topology and
   context.  For instance, SLG must be able to provide the needed
   functionality to enable INMP to request SLG to set up and connect the
   necessary structures for telemetry collection and request slice
   switching.
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6.  Deep Exploitation of AI in Network Management

6.1.  From Data to Wisdom

   As AI methods gain access to a huge amount of (intelligence) data
   from the systems they manage, they become more and more able to take
   strategic decisions, mainly deriving such data to knowledge towards
   wisdom.  This supports the well known DIKW process (Data,
   Information, Knowledge, Wisdom) that enables elements to operate
   autonomously, subject to the goals established by administrators.

   In such way, AI methods can be guided by the events or situations
   found in underlying networks in a constantly evolving model.  We can
   call it the Knowledge (and Intelligence) Driven Network.  In this new
   network architecture, the structure itself of the network results
   from reasoning on intelligence data.  The network adapts to new
   situations without requiring human involvement but administrative
   policies are still enforced to decisions.  Nevertheless, intelligence
   data must be managed properly to exploit all its potential.  Data
   with high accuracy and high frequency will be processed in real-time.
   Meanwhile, fast and scalable methods for information retrieval and
   decision enfrocement become essential to the objectives of the
   network.

   To achieve such goals, AI algorithms must be adapted to work on
   network problems.  Joint physical and virtual network elements can
   form a multi-agent system focused on achieving such system goals.  It
   can be applied to several use-cases.  For instance, it can be used
   for predicting traffic behaviour, iterative network optimization, and
   assessment of administrative policies.

6.2.  External Event Detectors

   As mentioned above, current mechanisms used to achieve automated
   management and control rely only on the continuous monitoring of the
   resources they control or the underlying infrastructure that host
   them.  However, there are several other sources of information that
   can be exploited to make the systems more robust and efficient.  It
   is the case of the notifications that can be provided by physical or
   virtual elements or devices that are watching for specific events,
   hence called external event detectors.

   More specifically, although the notifications provided by these
   external event detectors are related to successes that occur outside
   the boundaries of the controlled system, such successes can affect
   the typical operation of controlled systems.  For instance, a heavy
   rainfall or snowfall can be detected and correlated to a huge
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   increase in the amount of requests experienced by some emergency
   support service.

6.3.  Network Requirement Anticipation

   One of the main goals of the MANO mechanisms is to ensure the virtual
   computer and network system they manage meets the requirements
   established by their owners and administrators.  It is currently
   achieved by observing and analyzing the performance measurements
   obtained either by directly asking the resources forming the managed
   system of by asking the controllers of the underlying infrastructure
   that hosts such resources.  Thus, under changing or eventual
   situations, the managed system must be adapted to cope with the new
   requirements, increasing the amount of resources assigned to it, or
   to make efficient use of available infrastructures, reducing the
   amount of resources assigned to it.

   However, the time required by the infrastructure to make effective
   the adaptations requested by the MANO mechanisms is longer than the
   time required by client requests to overload the system and make it
   discard further client requests.  This situation is generally
   undesired but particularly dangerous for some systems, such as the
   emergency support system mentioned above.  Therefore, in order to
   avoid the disruption of the service, the change in requirements must
   be anticipated to ensure that any adaptation has finished as soon as
   possible, preferably before the target system gets overloaded or
   underloaded.

   Here we link the application of AI to network management to ARCA
   (Appendix B).  It is integrated to NFV-MANO to enable the latter to
   take advantage of the events notified by the external event
   detectors, by correlating them to the target amount of resources
   required by the managed system and enforcing the necessary
   adaptations beforehand, particularly before the system performance
   metrics have actually changed.
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   The following abstract algorithm formalizes the workflow expected to
   be followed by the different implementations of the operation
   proposed here.

   while TRUE do
       event = GetExternalEventInformation()
       if event != NONE then
           anticipated_resource_amount = Anticipator.Get(event)
           if IsPolicyCompliant(anticipated_resource_amount) then
               current_resource_amount = anticipated_resource_amount
               anticipation_time = NOW
           end if
       end if
       anticipated_event = event
       if anticipated_event != NONE and
               (NOW - anticipation_time) > EXPIRATION_TIME then
           current_resource_amount = DEFAULT_RESOURCE_AMOUNT
           anticipated_event = NONE
       end if
       state = GetSystemState()
       if not IsAcceptable(state, current_resource_amount) then
           current_resource_amount = GetResourceAmountForState(state)
           if anticipated_event is not NONE then
               Anticipator.Set
                   (anticipated_event, current_resource_amount)
               anticipated_event = NONE
           end if
       end if
   end while

   This algorithm considers both internal and external events to
   determine the necessary control and management actions to achieve the
   proper anticipation of resources assigned to the target system.  We
   propose the different implementations to follow the same approach so
   they can guess what to expect when they interact.  For instance, a
   consumer, such as an Application Service Provider (ASP), can expect
   some specific behavior of the Virtual Network Operator (VNO) from
   which it is consuming resources.  This helps both the ASP and VNO to
   properly address resource fluctuations.

6.4.  Intelligent Reasoning

   It is trivial for anybody to understand that the behavior or the
   network results from user activity.  For instance, more users means
   more traffic.  However, it is not commonly considered that user
   activity has a direct dependency on events that occur outside the
   boundaries of the networks they use.  For example, if a video becomes
   trendy, the load of the network that hosts the video increases, but
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   also the load of any network with users watching the video.  In the
   same way, if a natural incident occurs (e.g. heavy rainfall,
   earthquake), people try to contact their relatives and the load of a
   telephony network increases.  From this we can easily find out that
   there is a clear causality relation between events occurring in the
   real and digital world and the behaviour of the network (aka.  The
   Internet).

   Network management outcomes, in terms of system stability,
   performance, reliability, etc., would greatily improve by exploiting
   such causality relation.  An easy and straightforward way to do so is
   to apply AI reasoning methods.  These methods can be used to "guess"
   the effect for a given cause.  Moreover, reasoning can be used to
   choose the specific events that can impact the system, so being the
   cause for some effect.

   Meanwhile, reasoning on network behavior from performance
   measurements and external events places some challenges.  First,
   external event information must cross the administrative domain of
   the network to which it is relevant.  This means that there must be
   interfaces and security policies that regulate how information is
   exchanged between the external event detecthor, which can be some
   sensor deployed in some "smart" place (e.g. smart city, smart
   building), and the management solution, which resides inside the
   administrative domain of the managed network.  This function must be
   highly conformed and regulated, and the protocols used to achieve it
   must be widely accepted and tested, in order for it to exploit the
   overall potential of external events.

   Second, enough meta-data must be associated to performance
   measurements to clearly identify all aspects of the effects, so that
   they can be traced back to the causes (events).  Such meta-data must
   follow an ontology (information model) that is somewhat common and
   widely accepted or, at leaset, to be able to easily transform it
   among the different formats and models used by different vendors and
   software.

   Third, the management ontology must be extended by all concepts from
   the boundaries of the managed network, its external environment
   (surroundings), and any entity that, albeit being far away, can
   impact on the function of the managed network.

6.5.  Gaps and Standardization Issues

   Several gaps and standardization issues arise from applying AI and
   reasoning to network management solutions:
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      Methods from different providers/vendors must be able to coexist
      and work together, either directly or by means of a translator.
      They must, however, use the same concepts, albeit using different
      naming, so they actually share a common ontology.

      Information retrieval must be assessed for quality so that the
      outputs from AI reasoning, and thus management solutions, can be
      reliable.

      Ontological concepts must be consistent so that the types and
      qualities of information that is retrieved from a system or object
      are as expected.

      The protocols used to communicate (or disseminate, or publish) the
      information must respond to the constraints of their target usage.

7.  Relation to Other IETF/IRTF Initiatives

   TBD

8.  IANA Considerations

   This memo includes no request to IANA.

9.  Security Considerations

   As with other AI mechanisms, the major security concern for the
   adoption of intelligent reasoning on external events to manage
   network slices and SDN/NFV systems is that the boundaries of the
   control and management planes are crossed to introduce information
   from outside.  Such communications must be highly and heavily secured
   since some malfunction or explicit attacks might compromise the
   integrity and execution of the controlled system.  However, it is up
   to implementers to deploy the necessary countermeasures to avoid such
   situations.  From the design point of view, since all oprations are
   performed within the control and/or management planes, the security
   level of reasoning solutions is inherited and thus determined by the
   security masures established by the systems conforming such planes.
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Appendix A.  Information Model to Support Reasoning on External Events

   In this section we introduce the basic model needed to support
   reasoning on external events.  It basically includes the concepts and
   structures used to describe external events and notify (communicate)
   them to the interested sink, the network controller/manager, through
   the control and management plane, depending on the specific
   instantiation of the system.
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   module: ietf-nmrg-nict-ai-reasoning
     +--rw events
        +--rw event-payloads
        +--rw external-events

     notifications:
       +---n event

   The main models included in the tree structure of the module are the
   events and notifications.  On the one hand, events are structured in
   payloads and the content of events itself (external-events).  On the
   other hand, there is only one notification, which is the event
   itself.

A.1.1.  event-payloads

   +--rw event-payloads
      +--rw event-payloads-basic
      +--rw event-payloads-seismometer
      +--rw event-payloads-bigdata

   The event payloads are, for the time being, composed of three types.
   First, we have defined the basic payload, which is intended to carry
   any arbitrary data.  Second, we have defined the seismometer payload
   to carry information about seisms.  Third, we have defined the
   bigdata payload that carries notifications coming from BigData
   sources.

A.1.1.1.  basic

   +--rw event-payloads-basic* [plid]
      +--rw plid    string
      +--rw data?   union

   The basic payload is able to hold any data type, so it has a union of
   several types.  It is intended to be used by any source of events
   that is (still) not covered by other model.  In general, any source
   of telemetry information (e.g.  OpenStack [OPENSTACK] controllers)
   can use this model as such sources can encode on it their
   information, which typically is very simple and plain.  Therefore,
   the current model is tightly interrelated to a framework to retrieve
   network telemetry (see [I-D.song-ntf]).

A.1.1.2.  seismometer
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   +--rw event-payloads-seismometer* [plid]
      +--rw plid         string
      +--rw location?    string
      +--rw magnitude?   uint8

   The seismometer model includes the main information related to a
   seism, such as the location of the incident and its magnitude.
   Additional fields can be defined in the future by extending this
   model.

A.1.1.3.  bigdata

   +--rw event-payloads-bigdata* [plid]
      +--rw plid           string
      +--rw description?   string
      +--rw severity?      uint8

   The bigdata model includes a description of an event (or incident)
   and its estimated general severity, unrelated to the system.  The
   description is an arbitrary string of characters that would normally
   carry information that describes the event using some higher level
   format, such as Turtle or N3 for carrying RDF knowlege items.

A.1.2.  external-events

   +--rw external-events* [id]
      +--rw id           string
      +--rw source?      string
      +--rw context?     string
      +--rw sequence?    int64
      +--rw timestamp?   yang:date-and-time
      +--rw payload?     binary

   The model defined to encode external events, which encapsulates the
   payloads introduced above, is completed with an identifier of the
   message, a string describing the source of the event, a sequence
   number and a timestamp.  Additionaly it includes a string describing
   the context of the event.  It is intended to communicate the required
   information about the system that detected the event, its location,
   etc.  As the description of the BigData payload, this field can be
   formated with a high level format, such as RDF.

A.1.3.  notifications/event
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   notifications:
     +---n event
        +--ro id?          string
        +--ro source?      string
        +--ro context?     string
        +--ro sequence?    int64
        +--ro timestamp?   yang:date-and-time
        +--ro payload?     binary

   The event notification inherits all the fields from the model of
   external events defined above.  It is intended to allow software and
   hardware elements to send, receive, and interpret not just the events
   that have been detected and notified by, for instance, a sensor, but
   also the notifications issued by the underlying infrastructure
   controllers, such as the OpenStack Controller.

A.2.  YANG Module

   .

   module ietf-nmrg-nict-ai-reasoning {
     namespace "urn:ietf:params:xml:ns:yang:ietf-nmrg-nict-ainm";
     prefix rant;
     import ietf-yang-types { prefix yang; }

     grouping external-event-information {
       leaf id { type string; }
       leaf source { type string; }
       leaf context { type string; }
       leaf sequence { type int64; }
       leaf timestamp { type yang:date-and-time; }
       leaf payload { type binary; }
     }

     grouping event-payload-basic {
       leaf plid { type string; }
       leaf data { type union { type string; type binary; } }
     }

     grouping event-payload-seismometer {
       leaf plid { type string; }
       leaf location { type string; }
       leaf magnitude { type uint8; }
     }

     grouping event-payload-bigdata {
       leaf plid { type string; }
       leaf description { type string; }
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       leaf severity { type uint8; }
     }

     notification event {
       uses external-event-information;
     }

     container events {
       container event-payloads {
         list event-payloads-basic {
           key "plid";
           uses event-payload-basic;
         }
         list event-payloads-seismometer {
           key "plid";
           uses event-payload-seismometer;
         }
         list event-payloads-bigdata {
           key "plid";
           uses event-payload-bigdata;
         }
       }
       list external-events {
         key "id";
         uses external-event-information;
       }
     }

   }

   .

Appendix B.  The Autonomic Resource Control Architecture (ARCA)

   As deeply discussed in ICIN 2018 [ICIN-2018], ARCA leverages the
   elastic adaptation of resources assigned to virtual computer and
   network systems by calculating or estimating their requirements from
   the analysis of load measurements and the detection of external
   events.  These events can be notified by physical elements (things,
   sensors) that detect changes on the environment, as well as software
   elements that analyze digital information, such as connectors to
   sources or analyzers of Big Data.  For instance, ARCA is able to
   consider the detection of an earthquake or a heavy rainfall to
   overcome the damages it can make to the controlled system.

   The policies that ARCA must enforce will be specified by
   administrators during the configuration of the control/management
   engine.  Then, ARCA continues running autonomously, with no more
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   human involvement unless some parameter must be changed.  ARCA will
   adopt the required control and management operations to adapt the
   controlled system to the new situation or requirements.  The main
   goal of ARCA is thus to reduce the time required for resource
   adaptation from hours/minutes to seconds/milliseconds.  With the
   aforementioned statements, system administrators are able to specify
   the general operational boundaries in terms of lower and upper system
   load thresholds, as well as the minimum and maximum amount of
   resources that can be allocated to the controlled system to overcome
   any eventual situation, including the natural crossing of such
   thresholds.

   ARCA functional goal is to run autonomously while the performance
   goal is to keep the resources assigned to the controlled resources as
   close as possible to the optimum (e.g. 5 % from the optimum) while
   avoiding service disruption as much as possible, keeping client
   request discard rate as low as possible (e.g. below 1 %).  To achieve
   both goals, ARCA relies on the Autonomic Computing (AC) paradigm, in
   the form of interconnected micro-services.  Therefore, ARCA includes
   the four main elements and activities defined by AC, incarnated as:

   Collector Is responsible of gathering and formatting the
             heterogeneous observations that will be used in the control
             cycle.

   Analyzer  Correlates the observations to each other in order to find
             the situation of the controlled system, especially the
             current load of the resources allocated to the system and
             the occurrence of an incident that can affect to the normal
             operation of the system, such as an earthquake that
             increases the traffic in an emergency-support system, which
             is the main target scenario studied in this paper.

   Decider   Determines the necessary actions to adjust the resources to
             the load of the controlled system.

   Enforcer  Requests the underlying and overlying infrastructure, such
             as OpenStack, to make the necessary changes to reflect the
             effects of the decided actions into the system.

   Being a micro-service architecture means that the different
   components are executed in parallel.  This allows such components to
   operate in two ways.  First, their operation can be dispatched by
   receiving a message from the previous service or an external service.
   Second, the services can be self-dispatched, so they can activate
   some action or send some message without being previously stimulated
   by any message.  The overall control process loops indefinitely and
   it is closed by checking that the expected effects of an action are
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   actually taking place.  The coherence among the distributed services
   involved in the ARCA control process is ensured by enforcing a common
   semantic representation and ontology to the messages they exchange.

   ARCA semantics are built with the Resource Description Framework
   (RDF) and the Web Ontology Language (OWL), which are well known and
   widely used standards for the semantic representation and management
   of knowledge.  They provide the ability to represent new concepts
   without requiring to change the software, just plugin extensions to
   the ontology.  ARCA stores all its knowledge is stored in the
   Knowledge Base (KB), which is queried and kept up-to-date by the
   analyzer and decider micro-services.  It is implemented by Apache
   Jena Fuseki, which is a high-performance RDF data store that supports
   SPARQL through an HTTP/REST interface.  Being de-facto standards,
   both technologies enable ARCA to be easily integrated to
   virtualization platforms like OpenStack.

Appendix C.  ARCA Integration With ETSI-NFV-MANO

   In this section we describe how to fit ARCA on a general SDN/NFV
   underlying infrastructure and introduce a showcase experiment that
   demonstrates its operation on an OpenStack-based experimentation
   platform.  We first describe the integration of ARCA with the NFV-
   MANO reference architecture.  We contextualize the significance of
   this integration by describing an emergency support scenario that
   clearly benefits from it.  Then we proceed to detail the elements
   forming the OpenStack platform and finally we discuss some initial
   results obtained from them.

C.1.  Functional Integration

   The most important functional blocks of the NFV reference
   architecture promoted by ETSI (see ETSI-NFV-MANO [ETSI-NFV-MANO]) are
   the system support functions for operations and business (OSS/BSS),
   the element management (EM) and, obviously. the Virtual Network
   Functions (VNFs).  But these functions cannot exist without being
   instantiated on a specific infrastructure, the NFV infrastructure
   (NFVI), and all of them must be coordinated, orchestrated, and
   managed by the general NFV-MANO functions.

   Both the NFVI and the NFV-MANO elements are subdivided into several
   sub-components.  The NFVI has the underlying physical computing,
   storage, and network resources, which are sliced
   (see[I-D.qiang-coms-netslicing-information-model] and
   [I-D.geng-coms-architecture]) and virtualized to conform the virtual
   computing, storage, and network resources that will host the VNFs.
   In addition, the NFV-MANO is subdivided in the NFV Orchestrator
   (NFVO), the VNF manager (VNFM) and the Virtual Infrastructure Manager
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   (VIM).  As their name indicates, all high-level elements and sub-
   components have their own and very specific objective in the NFV
   architecture.

   During the design of ARCA we enforced both operational and
   interfacing aspects to its main objectives.  From the operational
   point of view, ARCA processes observations to manage virtual
   resources, so it plays the role of the VIM mentioned above.
   Therefore, ARCA has been designed with appropriate interfaces to fit
   in the place of the VIM.  This way, ARCA provides the NFV reference
   architecture with the ability to react to external events to adapt
   virtual computer and network systems, even anticipating such
   adaptations as performed by ARCA itself.  However, some interfaces
   must be extended to fully enable ARCA to perform its work within the
   NFV architecture.

   Once ARCA is placed in the position of the VIM, it enhances the
   general NFV architecture with its autonomic management capabilities.
   In particular, it discharges some responsibilities from the VNFM and
   NFVO, so they can focus on their own business while the virtual
   resources are behaving as they expect (and request).  Moreover, ARCA
   improves the scalability and reliability of the managed system in
   case of disconnection from the orchestration layer due to some
   failure, network split, etc.  It is also achieved by the autonomic
   capabilities, which, as described above, are guided by the rules and
   policies specified by the administrators and, here, communicated to
   ARCA through the NFVO.  However, ARCA will not be limited to such
   operation so, more generally, it will accomplish the requirements
   established by the Virtual Network Operators (VNOs), which are the
   owners of the slice of virtual resources that is managed by a
   particular instance of NFV-MANO, and therefore ARCA.

   In addition to the operational functions, ARCA incorporates the
   necessary mechanisms to engage the interfaces that enable it to
   interact with other elements of the NFV-MANO reference architecture.
   More specifically, ARCA is bound to the Or-Vi (see ETSI-NFV-IFA-005
   [ETSI-NFV-IFA-005]) and the Nf-Vi (see ETSI-NFV-IFA-004
   [ETSI-NFV-IFA-004] and ETSI-NFV-IFA-019 [ETSI-NFV-IFA-019]).  The
   former is the point of attachment between the NFVO and the VIM while
   the latter is the point of attachment between the NFVI and the VIM.
   In our current design we decided to avoid the support for the point
   of attachment between the VNFM and the VIM, called Vi-Vnfm (see ETSI-
   NFV-IFA-006 [ETSI-NFV-IFA-006]).  We leave it for future evolutions
   of the proposed integration, that will be enabled by a possible
   solution that provides the functions of the VNFM required by ARCA.

   Through the Or-Vi, ARCA receives the instructions it will enforce to
   the virtual computer and network system it is controlling.  As
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   mentioned above, these are specified in the form of rules and
   policies, which are in turn formatted as several statements and
   embedded into the Or-Vi messages.  In general, these will be high-
   level objectives, so ARCA will use its reasoning capabilities to
   translate them into more specific, low-level objectives.  For
   instance, the Or-Vi can specify some high-level statement to avoid
   CPU overloading and ARCA will use its innate and acquired knowledge
   to translate it to specific statements that specify which parameters
   it has to measure (CPU load from assigned servers) and which are
   their desired boundaries, in the form of high threshold and low
   threshold.  Moreover, the Or-Vi will be used by the NFVO to specify
   which actions can be used by ARCA to overcome the violation of the
   mentioned policies.

   All information flowing the Or-Vi interface is encoded and formatted
   by following a simple but highly extensible ontology and exploiting
   the aforementioned semantic formats.  This ensures that the
   interconnected system is able to evolve, including the replacement of
   components, updating (addition or removal) the supported concepts to
   understand new scenarios, and connecting external tools to further
   enhance the management process.  The only requirement to ensure this
   feature is to ensure that all elements support the mentioned ontology
   and semantic formats.  Although it is not a finished task, the
   development of semantic technologies allows the easy adaptation and
   translation of existing information formats, so it is expected that
   more and more software pieces become easily integrable with the ETSI-
   NFV-MANO [ETSI-NFV-MANO] architecture.

   In contrast to the Or-Vi interface, the Nf-Vi interface exposes more
   precise and low-level operations.  Although this makes it easier to
   be integrated to ARCA, it also makes it to be tied to specific
   implementations.  In other words, building a proxy that enforces the
   aforementioned ontology to different interface instances to
   homogenize them adds undesirable complexity.  Therefore, new
   components have been specifically developed for ARCA to be able to
   interact with different NFVIs.  Nevertheless, this specialization is
   limited to the collector and enforcer.  Moreover, it allows ARCA to
   have optimized low-level operations, with high improvement of the
   overall performance.  This is the case of the specific
   implementations of the collector and enforcer used with Mininet and
   Docker, which are used as underlying infrastructures in previous
   experiments described in ICIN 2017 [ICIN-2017].  Moreover, as
   discussed in the following section, this is also the case of the
   implementations of the collector and enforcer tied to OpenStack
   telemetry and compute interfaces, respectively.  Hence it is
   important to ensure that telemetry is properly addressed, so we
   insist in the need to adopt a common framework in such endpoint (see
   [I-D.song-ntf]).
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   Although OpenStack still lacks some functionality regarding the
   construction of specific virtual networks, we use it as the NFVI
   functional block in the integrated approach.  Therefore, OpenStack is
   the provider of the underlying SDN/NFV infrastructure and we
   exploited its APIs and SDK to achieve the integration.  More
   specifically, in our showcase we use the APIs provided by Ceilometer,
   Gnocchi, and Compute services as well as the SDK provided for Python.
   All of them are gathered within the Nf-Vi interface.  Moreover, we
   have extended the Or-Vi interface to connect external elements, such
   as the physical or environmental event detectors and Big Data
   connectors, which is becoming a mandatory requirement of the current
   virtualization ecosystem and it conforms our main extension to the
   NFV architecture.

C.2.  Target Experiment and Scenario

   From the beginning of our work on the design of ARCA we are targeting
   real-world scenarios, so we get better suited requirements.  In
   particular we work with a scenario that represents an emergency
   support service that is hosted on a virtual computer and network
   system, which is in turn hosted on the distributed virtualization
   infrastructure of a medium-sized organization.  The objective is to
   clearly represent an application that requires high dynamicity and
   high degree of reliability.  The emergency support service
   accomplishes this by being barely used when there is no incident but
   also being heavily loaded when there is an incident.

   Both the underlying infrastructure and virtual network share the same
   topology.  They have four independent but interconnected network
   domains that form part of the same administrative domain
   (organization).  The first domain hosts the systems of the
   headquarters (HQ) of the owner organization, so the VNFs it hosts
   (servants) implement the emergency support service.  We defined them
   as ``servants'' because they are Virtual Machine (VM) instances that
   work together to provide a single service by means of backing the
   Load Balancer (LB) instances deployed in the separate domains.  The
   amount of resources (servants) assigned to the service will be
   adjusted by ARCA, attaching or detaching servants to meet the load
   boundaries specified by administrators.

   The other domains represent different buildings of the organization
   and will host the clients that access to the service when an incident
   occurs.  They also host the necessary LB instances, which are also
   VNFs that are controlled by ARCA to regulate the access of clients to
   servants.  All domains will have physical detectors to provide
   external information that can (and will) be correlated to the load of
   the controlled virtual computer and network system and thus will
   affect to the amount of servants assigned to it.  Although the
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   underlying infrastructure, the servants, and the ARCA instance are
   the same as those those used in the real world, both clients and
   detectors will be emulated.  Anyway, this does not reduce the
   transferability of the results obtained from our experiments as it
   allows to expand the amount of clients beyond the limits of most
   physical infrastructures.

   Each underlying OpenStack domain will be able to host a maximum of
   100 clients, as they will be deployed on a low profile virtual
   machine (flavor in OpenStack).  In general, clients will be
   performing requests at a rate of one request every ten seconds, so
   there would be a maximum of 30 requests per second.  However, under
   the simulated incident, the clients will raise their load to reach a
   common maximum of 1200 requests per second.  This mimics the shape
   and size of a real medium-size organization of about 300 users that
   perform a maximum of four requests per second when they need some
   support.

   The topology of the underlying network is simplified by connecting
   the four domains to the same, high-performance switch.  However, the
   topology of the virtual network is built by using direct links
   between the HQ domain and the other three domains.  These are
   complemented by links between domains 2 and 3, and between domains 3
   and 4.  This way, the three domains have three paths to reach the HQ
   domain: a direct path with just one hop, and two indirect paths with
   two and three hops, respectively.

   During the execution of the experiment, the detectors notify the
   incident to the controller as soon as it happens.  However, although
   the clients are stimulated at the same time, there is some delay
   between the occurrence of the incident and the moment the network
   service receives the increase in the load.  One of the main targets
   of our experiment is to study such delay and take advantage of it to
   anticipate the amount of servants required by the system.  We discuss
   it below.

   In summary, this scenario highlights the main benefits of ARCA to
   play the role of VIM and interacting with the underlying OpenStack
   platform.  This means the advancement towards an efficient use of
   resources and thus reducing the CAPEX of the system.  Moreover, as
   the operation of the system is autonomic, the involvement of human
   administrators is reduced and, therefore, the OPEX is also reduced.

C.3.  OpenStack Platform

   The implementation of the scenario described above reflects the
   requirements of any edge/branch networking infrastructure, which are
   composed of several distributed micro-data-centers deployed on the
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   wiring centers of the buildings and/or storeys.  We chose to use
   OpenStack to meet such requirements because it is being widely used
   in production infrastructures and the resulting infrastructure will
   have the necessary robustness to accomplish our objectives, at the
   time it reflects the typical underlying platform found in any SDN/NFV
   environment.

   We have deployed four separate network domains, each one with its own
   OpenStack instantiation.  All domains are totally capable of running
   regular OpenStack workload, i.e. executing VMs and networks, but, as
   mentioned above, we designate the domain 1 to be the headquarters of
   the organization.  The different underlying networks required by this
   (quite complex) deployment are provided by several VLANs within a
   high-end L2 switch.  This switch represents the distributed network
   of the organization.  Four separated VLANs are used to isolate the
   traffic within each domain, by connecting an interface of OpenStack's
   controller and compute nodes.  These VLANs therefore form the
   distributed data plane.  Moreover, other VLAN is used to carry the
   control plane as well as the management plane, which are used by the
   NFV-MANO, and thus ARCA.  It is instantiated in the physical machine
   called ARCA Node, to exchange control and management operations in
   relation to the collector and enforcer defined in ARCA.  This VLAN is
   shared among all OpenStack domains to implement the global control of
   the virtualization environment pertaining to the organization.
   Finally, other VLAN is used by the infrastructure to interconnect the
   data planes of the separated domains and also to allow all elements
   of the infrastructure to access the Internet to perform software
   installation and updates.

   Installation of OpenStack is provided by the Red Hat OpenStack
   Platform, which is tightly dependent on the Linux operating system
   and closely related to the software developed by the OpenStack Open
   Source project.  It provides a comprehensive way to install the whole
   platform while being easily customized to meet our specific
   requirements, while it is also backed by operational quality support.

   The ARCA node is also based on Linux but, since it is not directly
   related to the OpenStack deployment, it is not based on the same
   distribution.  It is just configured to be able to access the control
   and management interfaces offered by OpenStack, and therefore it is
   connected to the VLAN that hosts the control and management planes.
   On this node we deploy the NFV-MANO components, including the micro-
   services that form an ARCA instance.

   In summary, we dedicate nine physical computers to the OpenStack
   deployment, all are Dell PowerEdge R610 with 2 x Xeon 5670 2.96 GHz
   (6 core / 12 thread) CPU, 48 GiB RAM, 6 x 146 GiB HD at 10 kRPM, and
   4 x 1 GE NIC.  Moreover, we dedicate an additional computer with the
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   same specification to the ARCA Node.  We dedicate a less powerful
   computer to implement the physical router because it will not be
   involved in the general execution of OpenStack nor in the specific
   experiments carried out with it.  Finally, as detailed above, we
   dedicate a high-end physical switch, an HP ProCurve 1810G-24, to
   build the interconnection networks.

C.4.  Initial Results

   Using the platform described above we execute an initial but long-
   lasting experiment based on the target scenario introduced at the
   beginning of this section.  The objective of this experiment is
   twofold.  First, we aim to demonstrate how ARCA behaves in a real
   environment.  Second, we aim to stress the coupling points between
   ARCA and OpenStack, which will raise the limitations of the existing
   interfaces.

   With such objectives in mind, we define a timeline that will be
   followed by both clients and external event detectors.  It forces the
   virtualized system to experience different situations, including
   incidents of many severities.  When an incident is found in the
   timeline, the detectors notify it to the ARCA-based VIM and the
   clients change their request rates, which will depend on the severity
   of the incident.  This behavior is widely discussed in ICIN 2018
   [ICIN-2018], remarking how users behave after occurring a disaster or
   another similar incident.

   The ARCA-based VIM will know the occurrence of the incident from two
   sources.  First, it will receive the notification from the event
   detectors.  Second, it will notice the change of the CPU load of the
   servants assigned to the target service.  In this situation, ARCA has
   different opportunities to overcome the possible overload (or
   underload) of the system.  We explore the anticipation approach
   deeply discussed in ICIN 2018 [ICIN-2018].  Its operation is enclosed
   in the analyzer and decider and it is based on an algorithm that is
   divided in two sub-algorithms.

   The first sub-algorithm reacts to the detection of the incident and
   ulterior correlation of its severity to the amount of servants
   required by the system.  This sub-algorithm hosts the regression of
   the learner, which is based on the SVM/SVR technique, and predicts
   the necessary resources from two features: the severity of the
   incident and the time elapsed from the moment it happened.  The
   resulting amount of servants is established as the minimum amount
   that the VIM can use.

   The second sub-algorithm is fed with the CPU load measurements of the
   servants assigned to the service, as reported by the OpenStack
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   platform.  With this information it checks whether the system is
   within the operating parameters established by the NFVO.  If not, it
   adjusts the resources assigned to the system.  It also uses the
   minimum amount established by the other sub-algorithm as the basis
   for the assignation.  After every correction, this algorithm learns
   the behavior by adding new correlation vectors to the SVM/SVR
   structure.

   When the experiment is running, the collector component of the ARCA-
   based VIM is attached to the telemetry interface of OpenStack by
   using the SDK to access the measurement data generated by Ceilometer
   and stored by Gnocchi.  In addition, it is attached to the external
   event detectors in order to receive their notifications.  On the
   other hand, the enforcer component is attached to the Compute
   interface of OpenStack by also using its SDK to request the
   infrastructure to create, destroy, query, or change the status of a
   VM that hosts a servant of the controlled system.  Finally, the
   enforcer also updates the lists of servers used by the load balancers
   to distribute the clients among the available resources.

   During the execution of the experiment we make the ARCA-based VIM to
   report the severity of the last incident, if any, the time elapsed
   since it occurred, the amount of servants assigned to the controlled
   system, the minimum amount of servants to be assigned, as determined
   by the anticipation algorithm, and the average load of all servants.
   In this instance, the severities are spread between 0 (no incident)
   and 4 (strongest incident), the elapsed times are less than 35
   seconds, and the minimum server assignation (MSA) is below 10,
   although the hard maximum is 15.

   With such measurements we illustrate how the learned correlation of
   the three features (dimensions) mentioned above is achieved.  Thus,
   when there is no incident (severity = 0), the MSA is kept to the
   minimum.  In parallel, regardless of the severity level, the
   algorithm learned that there is no need to increase the MSA for the
   first 5 or 10 seconds.  This shows the behavior discussed in this
   paper, that there is a delay between the occurrence of an event and
   the actual need for updated amount of resources, and it forms one
   fundamental aspect of our research.

   By inspecting the results, we know that there is a burst of client
   demands that is centered (peak) around 15 seconds after the
   occurrence of an incident or any other change in the accounted
   severity.  We also know that the burst lasts longer for higher
   severities, and it fluctuates a bit for the highest severities.
   Finally, we can also notice that for the majority of severities, the
   increased MSA is no longer required after 25 seconds from the time
   the severity change was notified.



Martinez-Julia & Homma  Expires September 7, 2020              [Page 28]



Internet-Draft  Intelligent Reasoning on External Events      March 2020

   All that information becomes part of the knowledge of ARCA and it is
   stored both by the internal structures of the SVM/SVR and, once
   represented semantically, in the semantic database that manages the
   knowledge base of ARCA.  Thus, it is used to predict any future
   behavior.  For instance, is an incident of severity 3 has occurred 10
   seconds ago, ARCA knows that it will need to set the MSA to 6
   servants.  In fact, this information has been used during the
   experiment, so we can also know the accuracy of the algorithm by
   comparing the anticipated MSA value with the required value (or even
   the best value).  However, the analysis of such information is left
   for the future.

   While preparing and executing the experiment we found several
   limitation intrinsic to the current OpenStack platform.  First,
   regardless of the CPU and memory resources assigned to the underlying
   controller nodes, the platform is unable to record and deliver
   performance measurements at a lower interval than every 10 seconds,
   so it is currently not suitable for real time operations, which is
   important for our long-term research objectives.  Moreover, we found
   that the time required by the infrastructure to create a server that
   hosts a somewhat heavy servant is around 10 seconds, which is too far
   from our targets.  Although these limitations can be improved in the
   future, they clearly justify that our anticipation approach is
   essential for the proper working of a virtual system and, thus, the
   integration of external information becomes mandatory for future
   system management technologies, especially considering the
   virtualization environments.

   Finally, we found it difficult for the required measurements to be
   pushed to external components, so we had to poll for them.
   Otherwise, some component of ARCA must be instantiated along the main
   OpenStack components and services so it has first-hand and prompt
   access to such features.  This way, ARCA could receive push
   notifications with the measurements, as it is for the external
   detectors.  This is a key aspect that affects the placement of the
   NFV-VIM, or some subpart of it, on the general architecture.
   Therefore, for future iterations of the NFV reference architecture,
   an integrated view between the VIM and the NFVI could be required to
   reflect the future reality.
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