
NMRG P. Martinez-Julia, Ed.
Internet-Draft NICT
Updates: draft-pedro-nmrg-intelligent- S. Homma

reasoning-00 (if approved) NTT
Intended status: Informational March 06, 2020
Expires: September 7, 2020

Intelligent Reasoning on External Events for Network Management
draft-pedro-nmrg-intelligent-reasoning-01

Abstract

 The adoption of AI in network management solutions is becoming a
 reality. It is mainly supported by the need to resolve complex
 problems arisen from the acceptance of SDN/NFV technologies as well
 as network slicing. This allows current computer and network system
 infrastructures to constantly grow in complexity, in parallel to the
 demands of users. However, exploiting the possibilities of AI is not
 an easy task. There has been a lot of effort to make Machine
 Learning (ML) solutions reliable and acceptable but, at the same
 time, other mechanisms have been forgotten. It is the particular
 case of reasoning. Although it can provide enormous benefits to
 management solutions by, for example, inferring new knowledge and
 applying different kind of rules (e.g. logical) to choose from
 several actions, it has received little attention. While ML
 solutions work with data, so their only requirement from the network
 infrastructure is data retrieval, reasoning solutions work in
 collaboration to the network they are managing. This makes the
 challenges arisen from intelligent reasoning to be a key for the
 evolution of network management towards the full adoption of AI.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2020.

Martinez-Julia & Homma Expires September 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/draft-pedro-nmrg-intelligent-reasoning-00
https://datatracker.ietf.org/doc/html/draft-pedro-nmrg-intelligent-reasoning-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Intelligent Reasoning on External Events March 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Background . 4
3.1. Virtual Computer and Network Systems 4
3.2. SDN and NFV . 4
3.3. Management and Control 5
3.4. Slice Gateway (SLG) 5

4. Applying AI to Network Management 6
4.1. Beyond Machine Learning 6
4.2. Briefing Artificial Intelligence 6

5. Extended Management Operation 7
5.1. Intelligent Network Management Process 7
5.2. Closed Loop Management Approach 8

6. Deep Exploitation of AI in Network Management 9
6.1. From Data to Wisdom 9
6.2. External Event Detectors 9
6.3. Network Requirement Anticipation 10
6.4. Intelligent Reasoning 11
6.5. Gaps and Standardization Issues 12

7. Relation to Other IETF/IRTF Initiatives 13
8. IANA Considerations . 13
9. Security Considerations 13
10. Acknowledgements . 13
11. References . 13
11.1. Normative References 14
11.2. Informative References 14

Appendix A. Information Model to Support Reasoning on External
 Events . 15

A.1. Tree Structure . 15
A.1.1. event-payloads 16
A.1.1.1. basic . 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Martinez-Julia & Homma Expires September 7, 2020 [Page 2]

Internet-Draft Intelligent Reasoning on External Events March 2020

A.1.1.2. seismometer 16
A.1.1.3. bigdata . 17

A.1.2. external-events 17
A.1.3. notifications/event 17

A.2. YANG Module . 18
Appendix B. The Autonomic Resource Control Architecture (ARCA) . 19
Appendix C. ARCA Integration With ETSI-NFV-MANO 21
C.1. Functional Integration 21
C.2. Target Experiment and Scenario 24
C.3. OpenStack Platform 25
C.4. Initial Results . 27

 Authors' Addresses . 29

1. Introduction

 The current network ecosystem is quickly evolving from an almost
 fixed network to a highly flexible, powerful, and somehow hybrid
 system. Network slicing, Software Defined Networking (SDN), and
 Network Function Virtualization (NFV) provide the basis for such
 evolution. The need to automate the management and control of such
 systems has motivated the move towards autonomic networking (ANIMA)
 and the inclusion of AI solutions alongside the management plane of
 the network, enough justified by the increasing size and complexity
 of the network, which exposes complex problems that must be resolved
 in scales that escape human possibilities. Therefore, in order to
 allow current computer and network system infrastructures to
 constantly grow in complexity, in parallel to the demands of users,
 the AI solutions must work together with other network management
 solutions.

 However, exploiting the possibilities of AI is not an easy task.
 There has been a lot of effort to make Machine Learning (ML)
 solutions reliable and acceptable but, at the same time, other
 mechanisms have been forgotten. It is the particular case of
 reasoning. Although it can provide enormous benefits to management
 solutions by, for example, inferring new knowledge and applying
 different kind of rules (e.g. logical) to choose from several
 actions, it has received little attention. While ML solutions work
 with data, so their only requirement from the network infrastructure
 is data retrieval, reasoning solutions work in collaboration to the
 network they are managing. This makes the challenges arisen from
 intelligent reasoning to be a key for the evolution of network
 management towards the full adoption of AI.

 The present document aims to gather the necessary information for
 getting the most benefits from the application of intelligent
 reasoning to network management, including, but not limited to,

Martinez-Julia & Homma Expires September 7, 2020 [Page 3]

Internet-Draft Intelligent Reasoning on External Events March 2020

 defining the gaps that must be covered for reasoning to be correctly
 integrated into network management solutions.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Background

3.1. Virtual Computer and Network Systems

 The continuous search for efficiency and cost reduction to get the
 most optimum exploitation of available resources (e.g. CPU power and
 electricity) has conducted current physical infrastructures to move
 towards virtualization infrastructures. Also, this trend enables end
 systems to be centralized and/or distributed, so that they are
 deployed to best accomplish customer requirements in terms of
 resources and qualities.

 One of the key functional requirements imposed to computer and
 network virtualization is a high degree of flexibility and
 reliability. Both qualities are subject to the underlying
 technologies but, while the latter has been always enforced to
 computer and network systems, flexibility is a relatively new
 requirement, which would not have been imposed without the backing of
 virtualization and cloud technologies.

3.2. SDN and NFV

 SDN and NFV are conceived to bring high degree of flexibility and
 conceptual centralization qualities to the network. On the one hand,
 with SDN, the network can be programmed to implement a dynamic
 behavior that changes its topology and overall qualities. Moreover,
 with NFV the functions that are typically provided by physical
 network equipment are now implemented as virtual appliances that can
 be deployed and linked together to provide customized network
 services. SDN and NFV complements to each other to actually
 implement the network aspect of the aforementioned virtual computer
 and network systems.

 Although centralization can lead us to think on the single-point-of-
 failure concept, it is not the case for these technologies.
 Conceptual centralization highly differs from centralized deployment.
 It brings all benefits from having a single point of decision but
 retaining the benefits from distributed systems. For instance,
 control decisions in SDN can be centralized while the mechanisms that

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Martinez-Julia & Homma Expires September 7, 2020 [Page 4]

Internet-Draft Intelligent Reasoning on External Events March 2020

 enforce such decisions into the network (SDN controllers) can be
 implemented as highly distributed systems. The same approach can be
 applied to NFV. Network functions can be implemented in a central
 computing facility, but they can also take advantage of several
 replication and distribution techniques to achieve the properties of
 distributed systems. Nevertheless, NFV also allows the deployment of
 functions on top of distributed systems, so they benefit from both
 distribution alternatives at the same time.

3.3. Management and Control

 The introduction of virtualization into the computer and network
 system landscape has increased the complexity of both underlying and
 overlying systems. On the one hand, virtualizing underlying systems
 adds extra functions that must be managed properly to ensure the
 correct operation of the whole system, which not just encompasses
 underlying elements but also the virtual elements running on top of
 them. Such functions are used to actually host the overlying virtual
 elements, so there is an indirect management operation that involves
 virtual systems. Moreover, such complexities are inherited by final
 systems that get virtualized and deployed on top of those
 virtualization infrastructures.

 In parallel, virtual systems are empowered with additional, and
 widely exploited, functionality that must be managed correctly. It
 is the case of the dynamic adaptation of virtual resources to the
 specific needs of their operation environments, or even the
 composition of distributed elements across heterogeneous underlying
 infrastructures, and probably providers.

 Taking both complex functions into account, either separately or
 jointly, makes clear that management requirements have greatly
 surpassed the limits of humans, so automation has become essential to
 accomplish most common tasks.

3.4. Slice Gateway (SLG)

 A slice gateway (SLG) (see [I-D.homma-nfvrg-slice-gateway]) is
 basically a component in the data plane and has the roles of data
 packet processing. Moreover, it provides an interface to export its
 functions for interacting with control and management components, so
 that it is quite relevant for implementing the requirements described
 above within the network slicing domain.

 Furthermore, an SLG might be required to support handling services
 provided on network slices in addition to controlling them because an
 SLG is the edge node on an end-to-end network slice (E2E-NS).

Martinez-Julia & Homma Expires September 7, 2020 [Page 5]

Internet-Draft Intelligent Reasoning on External Events March 2020

 Therefore, the SLG exposes the following requirements:

 Data plane for NSs as infrastructure.

 Control/management plane for NSs as infrastructure.

 Data plane for services on NSs.

 Control/management plane for services on NSs.

 In summary, SLG provides the required functions for the enforcement
 of AI decisions in multi-domain (and federated) network slices, so it
 will play a key role in general network management.

4. Applying AI to Network Management

4.1. Beyond Machine Learning

 ML is not AI. AI has a broader spectrum of methods, some of them are
 already exploited in the network for a long time. Perception,
 reasoning, and planning are still not fully exploited in the network.

4.2. Briefing Artificial Intelligence

 Intelligence does not directly imply intelligent. On the one hand,
 intelligence emphasizes data gathering and management, which can be
 processed by systematic methods or intelligent methods. On the other
 hand, intelligent emphasizes the reasoning and understanding of data
 to actually "posses" the intelligence.

 The justification of applying AI in network (and) management is
 sometimes overseen. First, management decisions are more and more
 complex. We have moved from asking simple questions ("Is there a
 problem in my system?") to much more complex ones ("Where should I
 migrate this VM to accomplish my goals?"). Moreover, operation
 environments are more and more dynamic. On the one hand,
 softwarization and programmability elevate flexibility and allow
 networks to be totally adapted to their static and/or dynamic
 requirements. On the other hand, network virtualization highly
 enables network automation.

 The new functions and possibilities allow network devices to become
 autonomic. However, they must take complex decisions by themselves,
 without human intervention, realizing the "dream" of Zero-Touch
 Networks (ZTM), which exploit fully programmable elements and
 advanced automation methods (ETSI ZSM). Nevertheless, we have to
 remember that AI methods are just resources, not solutions. They

Martinez-Julia & Homma Expires September 7, 2020 [Page 6]

Internet-Draft Intelligent Reasoning on External Events March 2020

 will not replace the human decisions, just complement and "automate"
 them.

5. Extended Management Operation

5.1. Intelligent Network Management Process

 In general, the correct and pertinent application of AI to network
 management provides enormous benefits, mainly in terms of making
 complex management operations feasible and improving the performance
 of typically expensive tasks. By taking advantage of these benefits,
 the amount of data that can be analyzed to make decisions on the
 network can be hugely increased.

 As a result, AI makes possible to enlarge the management process
 towards the Intelligent Network Management Process (INMP). Instead
 of just being focused on the analysis of performance measurements
 retrieved from the managed network and the subsequent decision
 (proaction or reaction), the extension of management operation
 enabled by INMP encompasses different sub-processes.

 First, INMP has a sub-process for retrieving the performance
 measurements from the managed network. This is the same found in
 typical management processes. Moreover, INMP encourages the
 application of the same ML techniques to obtain some insight of the
 situation of the managed network.

 Second, INMP incorporates a reasoning sub-process. It receives both
 the output of the previous sub-process and additional context
 information, which can be provided by an external event detector, as
 described below. Then, this sub-process finds out and particularizes
 the rules that are governing the situation described above. Such
 rules are semantically constructed and will abstract the situation of
 the network in terms of logical and other semantic concepts, together
 with actions and transformations that can be applied to those rules.
 All such constructions will be stored in the Intelligent Network
 Management Knowledge Base (INMKB), which will follow a pre-determined
 ontology and will also extend the knowledge by applying basic and
 atomic logic inference statements.

 Third, INMP defines the solving sub-process. It works as follows.
 Once obtained the abstracted situation of the managed network and the
 rules to it, the solving subprocess builds a graph with all semantic
 constructions. It reflects the managed network, since all network
 elements have their semantic counterpart, but it also has all
 situations, rules, actions, and even the measurements. The solving
 sub-process applies ontology transformations to find a graph that is

Martinez-Julia & Homma Expires September 7, 2020 [Page 7]

Internet-Draft Intelligent Reasoning on External Events March 2020

 acceptable in terms of the associated situation and its adherence to
 administrative goals.

 Fourth, INMP incorporates the planning sub-process. It receives the
 solution graph obtained by the previous sub-process and makes a
 linear plan of actions to execute in order to enforce the required
 changes into the network. The actions used by this planning sub-
 process are the building blocks of the plan. Each block will be
 defined with a precondition, invariant, and postcondition. A
 planning algorithm should be used to obtain such plan of actions by
 linking the building blocks so they can be enforced to finally adapt
 the managed network to get the desired situation.

 All these processes must be executed in parallel, using strong inter-
 process communication and synchronization constraints. Moreover, the
 requests to the underlying infrastructure for the adaptation of the
 managed network will be sent to the corresponding controllers without
 waiting for finishing the deliberation cycle. This way, the time
 required by the whole cycle is highly reduced. This can be possible
 because of the assumptions and anticipations tied to INMP and the
 intelligence it denotes.

5.2. Closed Loop Management Approach

 Beginning with INMP, a key approach for achieving proper network
 management goals is to follow the closed control loop methodology.
 It ensures that the objectives are not just accomplished at certain
 moment but kept in future cycles of both management and network life-
 cycle.

 To obtain the benefits from integrating AI within the closed loop,
 INMP processes must be re-wired to connect their outputs to their
 inputs, so obtaining feedback analysis. Moreover, an additional
 process must be defined for ensuring that the objectives defined in
 the last steps of INMP are actually present in the near future
 situation of the managed network.

 In addition, the data plane elements, such as the SLG described
 above, must provide some capabilities to make them coherent to the
 closed control loop. Particularly, they must provide symmetric
 enforcement and telemetry interfaces, so that the elements composing
 the managed network can be modified and monitored using the same
 identifiers and having the same assumptions about their topology and
 context. For instance, SLG must be able to provide the needed
 functionality to enable INMP to request SLG to set up and connect the
 necessary structures for telemetry collection and request slice
 switching.

Martinez-Julia & Homma Expires September 7, 2020 [Page 8]

Internet-Draft Intelligent Reasoning on External Events March 2020

6. Deep Exploitation of AI in Network Management

6.1. From Data to Wisdom

 As AI methods gain access to a huge amount of (intelligence) data
 from the systems they manage, they become more and more able to take
 strategic decisions, mainly deriving such data to knowledge towards
 wisdom. This supports the well known DIKW process (Data,
 Information, Knowledge, Wisdom) that enables elements to operate
 autonomously, subject to the goals established by administrators.

 In such way, AI methods can be guided by the events or situations
 found in underlying networks in a constantly evolving model. We can
 call it the Knowledge (and Intelligence) Driven Network. In this new
 network architecture, the structure itself of the network results
 from reasoning on intelligence data. The network adapts to new
 situations without requiring human involvement but administrative
 policies are still enforced to decisions. Nevertheless, intelligence
 data must be managed properly to exploit all its potential. Data
 with high accuracy and high frequency will be processed in real-time.
 Meanwhile, fast and scalable methods for information retrieval and
 decision enfrocement become essential to the objectives of the
 network.

 To achieve such goals, AI algorithms must be adapted to work on
 network problems. Joint physical and virtual network elements can
 form a multi-agent system focused on achieving such system goals. It
 can be applied to several use-cases. For instance, it can be used
 for predicting traffic behaviour, iterative network optimization, and
 assessment of administrative policies.

6.2. External Event Detectors

 As mentioned above, current mechanisms used to achieve automated
 management and control rely only on the continuous monitoring of the
 resources they control or the underlying infrastructure that host
 them. However, there are several other sources of information that
 can be exploited to make the systems more robust and efficient. It
 is the case of the notifications that can be provided by physical or
 virtual elements or devices that are watching for specific events,
 hence called external event detectors.

 More specifically, although the notifications provided by these
 external event detectors are related to successes that occur outside
 the boundaries of the controlled system, such successes can affect
 the typical operation of controlled systems. For instance, a heavy
 rainfall or snowfall can be detected and correlated to a huge

Martinez-Julia & Homma Expires September 7, 2020 [Page 9]

Internet-Draft Intelligent Reasoning on External Events March 2020

 increase in the amount of requests experienced by some emergency
 support service.

6.3. Network Requirement Anticipation

 One of the main goals of the MANO mechanisms is to ensure the virtual
 computer and network system they manage meets the requirements
 established by their owners and administrators. It is currently
 achieved by observing and analyzing the performance measurements
 obtained either by directly asking the resources forming the managed
 system of by asking the controllers of the underlying infrastructure
 that hosts such resources. Thus, under changing or eventual
 situations, the managed system must be adapted to cope with the new
 requirements, increasing the amount of resources assigned to it, or
 to make efficient use of available infrastructures, reducing the
 amount of resources assigned to it.

 However, the time required by the infrastructure to make effective
 the adaptations requested by the MANO mechanisms is longer than the
 time required by client requests to overload the system and make it
 discard further client requests. This situation is generally
 undesired but particularly dangerous for some systems, such as the
 emergency support system mentioned above. Therefore, in order to
 avoid the disruption of the service, the change in requirements must
 be anticipated to ensure that any adaptation has finished as soon as
 possible, preferably before the target system gets overloaded or
 underloaded.

 Here we link the application of AI to network management to ARCA
 (Appendix B). It is integrated to NFV-MANO to enable the latter to
 take advantage of the events notified by the external event
 detectors, by correlating them to the target amount of resources
 required by the managed system and enforcing the necessary
 adaptations beforehand, particularly before the system performance
 metrics have actually changed.

Martinez-Julia & Homma Expires September 7, 2020 [Page 10]

Internet-Draft Intelligent Reasoning on External Events March 2020

 The following abstract algorithm formalizes the workflow expected to
 be followed by the different implementations of the operation
 proposed here.

 while TRUE do
 event = GetExternalEventInformation()
 if event != NONE then
 anticipated_resource_amount = Anticipator.Get(event)
 if IsPolicyCompliant(anticipated_resource_amount) then
 current_resource_amount = anticipated_resource_amount
 anticipation_time = NOW
 end if
 end if
 anticipated_event = event
 if anticipated_event != NONE and
 (NOW - anticipation_time) > EXPIRATION_TIME then
 current_resource_amount = DEFAULT_RESOURCE_AMOUNT
 anticipated_event = NONE
 end if
 state = GetSystemState()
 if not IsAcceptable(state, current_resource_amount) then
 current_resource_amount = GetResourceAmountForState(state)
 if anticipated_event is not NONE then
 Anticipator.Set
 (anticipated_event, current_resource_amount)
 anticipated_event = NONE
 end if
 end if
 end while

 This algorithm considers both internal and external events to
 determine the necessary control and management actions to achieve the
 proper anticipation of resources assigned to the target system. We
 propose the different implementations to follow the same approach so
 they can guess what to expect when they interact. For instance, a
 consumer, such as an Application Service Provider (ASP), can expect
 some specific behavior of the Virtual Network Operator (VNO) from
 which it is consuming resources. This helps both the ASP and VNO to
 properly address resource fluctuations.

6.4. Intelligent Reasoning

 It is trivial for anybody to understand that the behavior or the
 network results from user activity. For instance, more users means
 more traffic. However, it is not commonly considered that user
 activity has a direct dependency on events that occur outside the
 boundaries of the networks they use. For example, if a video becomes
 trendy, the load of the network that hosts the video increases, but

Martinez-Julia & Homma Expires September 7, 2020 [Page 11]

Internet-Draft Intelligent Reasoning on External Events March 2020

 also the load of any network with users watching the video. In the
 same way, if a natural incident occurs (e.g. heavy rainfall,
 earthquake), people try to contact their relatives and the load of a
 telephony network increases. From this we can easily find out that
 there is a clear causality relation between events occurring in the
 real and digital world and the behaviour of the network (aka. The
 Internet).

 Network management outcomes, in terms of system stability,
 performance, reliability, etc., would greatily improve by exploiting
 such causality relation. An easy and straightforward way to do so is
 to apply AI reasoning methods. These methods can be used to "guess"
 the effect for a given cause. Moreover, reasoning can be used to
 choose the specific events that can impact the system, so being the
 cause for some effect.

 Meanwhile, reasoning on network behavior from performance
 measurements and external events places some challenges. First,
 external event information must cross the administrative domain of
 the network to which it is relevant. This means that there must be
 interfaces and security policies that regulate how information is
 exchanged between the external event detecthor, which can be some
 sensor deployed in some "smart" place (e.g. smart city, smart
 building), and the management solution, which resides inside the
 administrative domain of the managed network. This function must be
 highly conformed and regulated, and the protocols used to achieve it
 must be widely accepted and tested, in order for it to exploit the
 overall potential of external events.

 Second, enough meta-data must be associated to performance
 measurements to clearly identify all aspects of the effects, so that
 they can be traced back to the causes (events). Such meta-data must
 follow an ontology (information model) that is somewhat common and
 widely accepted or, at leaset, to be able to easily transform it
 among the different formats and models used by different vendors and
 software.

 Third, the management ontology must be extended by all concepts from
 the boundaries of the managed network, its external environment
 (surroundings), and any entity that, albeit being far away, can
 impact on the function of the managed network.

6.5. Gaps and Standardization Issues

 Several gaps and standardization issues arise from applying AI and
 reasoning to network management solutions:

Martinez-Julia & Homma Expires September 7, 2020 [Page 12]

Internet-Draft Intelligent Reasoning on External Events March 2020

 Methods from different providers/vendors must be able to coexist
 and work together, either directly or by means of a translator.
 They must, however, use the same concepts, albeit using different
 naming, so they actually share a common ontology.

 Information retrieval must be assessed for quality so that the
 outputs from AI reasoning, and thus management solutions, can be
 reliable.

 Ontological concepts must be consistent so that the types and
 qualities of information that is retrieved from a system or object
 are as expected.

 The protocols used to communicate (or disseminate, or publish) the
 information must respond to the constraints of their target usage.

7. Relation to Other IETF/IRTF Initiatives

 TBD

8. IANA Considerations

 This memo includes no request to IANA.

9. Security Considerations

 As with other AI mechanisms, the major security concern for the
 adoption of intelligent reasoning on external events to manage
 network slices and SDN/NFV systems is that the boundaries of the
 control and management planes are crossed to introduce information
 from outside. Such communications must be highly and heavily secured
 since some malfunction or explicit attacks might compromise the
 integrity and execution of the controlled system. However, it is up
 to implementers to deploy the necessary countermeasures to avoid such
 situations. From the design point of view, since all oprations are
 performed within the control and/or management planes, the security
 level of reasoning solutions is inherited and thus determined by the
 security masures established by the systems conforming such planes.

10. Acknowledgements

 TBD

11. References

Martinez-Julia & Homma Expires September 7, 2020 [Page 13]

Internet-Draft Intelligent Reasoning on External Events March 2020

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

11.2. Informative References

 [ETSI-NFV-IFA-004]
 ETSI NFV GS NFV-IFA 004, "Network Functions Virtualisation
 (NFV); Acceleration Technologies; Management Aspects
 Specification", 2016.

 [ETSI-NFV-IFA-005]
 ETSI NFV GS NFV-IFA 005, "Network Functions Virtualisation
 (NFV); Management and Orchestration; Or-Vi reference point
 - Interface and Information Model Specification", 2016.

 [ETSI-NFV-IFA-006]
 ETSI NFV GS NFV-IFA 006, "Network Functions Virtualisation
 (NFV); Management and Orchestration; Vi-Vnfm reference
 point - Interface and Information Model Specification",
 2016.

 [ETSI-NFV-IFA-019]
 ETSI NFV GS NFV-IFA 019, "Network Functions Virtualisation
 (NFV); Acceleration Technologies; Management Aspects
 Specification; Release 3", 2017.

 [ETSI-NFV-MANO]
 ETSI NFV GS NFV-MAN 001, "Network Functions Virtualisation
 (NFV); Management and Orchestration", 2014.

 [I-D.geng-coms-architecture]
 Geng, L., Qiang, L., Lucena, J., Ameigeiras, P., Lopez,
 D., and L. Contreras, "COMS Architecture", draft-geng-

coms-architecture-02 (work in progress), March 2018.

 [I-D.homma-nfvrg-slice-gateway]
 Homma, S., Foy, X., and A. Galis, "Gateway Function for
 Network Slicing", draft-homma-nfvrg-slice-gateway-00 (work
 in progress), July 2018.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-geng-coms-architecture-02
https://datatracker.ietf.org/doc/html/draft-geng-coms-architecture-02
https://datatracker.ietf.org/doc/html/draft-homma-nfvrg-slice-gateway-00

Martinez-Julia & Homma Expires September 7, 2020 [Page 14]

Internet-Draft Intelligent Reasoning on External Events March 2020

 [I-D.qiang-coms-netslicing-information-model]
 Qiang, L., Galis, A., Geng, L.,
 kiran.makhijani@huawei.com, k., Martinez-Julia, P.,
 Flinck, H., and X. Foy, "Technology Independent
 Information Model for Network Slicing", draft-qiang-coms-

netslicing-information-model-02 (work in progress),
 January 2018.

 [I-D.song-ntf]
 Song, H., Zhou, T., Li, Z., Fioccola, G., Li, Z.,
 Martinez-Julia, P., Ciavaglia, L., and A. Wang, "Toward a
 Network Telemetry Framework", draft-song-ntf-02 (work in
 progress), July 2018.

 [ICIN-2017]
 P. Martinez-Julia, V. P. Kafle, and H. Harai, "Achieving
 the autonomic adaptation of resources in virtualized
 network environments, in Proceedings of the 20th ICIN
 Conference (Innovations in Clouds, Internet and Networks,
 ICIN 2017). Washington, DC, USA: IEEE, 2018, pp. 1--8",
 2017.

 [ICIN-2018]
 P. Martinez-Julia, V. P. Kafle, and H. Harai,
 "Anticipating minimum resources needed to avoid service
 disruption of emergency support systems, in Proceedings of
 the 21th ICIN Conference (Innovations in Clouds, Internet
 and Networks, ICIN 2018). Washington, DC, USA: IEEE, 2018,
 pp. 1--8", 2018.

 [OPENSTACK]
 The OpenStack Project, "http://www.openstack.org/", 2018.

Appendix A. Information Model to Support Reasoning on External Events

 In this section we introduce the basic model needed to support
 reasoning on external events. It basically includes the concepts and
 structures used to describe external events and notify (communicate)
 them to the interested sink, the network controller/manager, through
 the control and management plane, depending on the specific
 instantiation of the system.

A.1. Tree Structure

https://datatracker.ietf.org/doc/html/draft-qiang-coms-netslicing-information-model-02
https://datatracker.ietf.org/doc/html/draft-qiang-coms-netslicing-information-model-02
https://datatracker.ietf.org/doc/html/draft-song-ntf-02

Martinez-Julia & Homma Expires September 7, 2020 [Page 15]

Internet-Draft Intelligent Reasoning on External Events March 2020

 module: ietf-nmrg-nict-ai-reasoning
 +--rw events
 +--rw event-payloads
 +--rw external-events

 notifications:
 +---n event

 The main models included in the tree structure of the module are the
 events and notifications. On the one hand, events are structured in
 payloads and the content of events itself (external-events). On the
 other hand, there is only one notification, which is the event
 itself.

A.1.1. event-payloads

 +--rw event-payloads
 +--rw event-payloads-basic
 +--rw event-payloads-seismometer
 +--rw event-payloads-bigdata

 The event payloads are, for the time being, composed of three types.
 First, we have defined the basic payload, which is intended to carry
 any arbitrary data. Second, we have defined the seismometer payload
 to carry information about seisms. Third, we have defined the
 bigdata payload that carries notifications coming from BigData
 sources.

A.1.1.1. basic

 +--rw event-payloads-basic* [plid]
 +--rw plid string
 +--rw data? union

 The basic payload is able to hold any data type, so it has a union of
 several types. It is intended to be used by any source of events
 that is (still) not covered by other model. In general, any source
 of telemetry information (e.g. OpenStack [OPENSTACK] controllers)
 can use this model as such sources can encode on it their
 information, which typically is very simple and plain. Therefore,
 the current model is tightly interrelated to a framework to retrieve
 network telemetry (see [I-D.song-ntf]).

A.1.1.2. seismometer

Martinez-Julia & Homma Expires September 7, 2020 [Page 16]

Internet-Draft Intelligent Reasoning on External Events March 2020

 +--rw event-payloads-seismometer* [plid]
 +--rw plid string
 +--rw location? string
 +--rw magnitude? uint8

 The seismometer model includes the main information related to a
 seism, such as the location of the incident and its magnitude.
 Additional fields can be defined in the future by extending this
 model.

A.1.1.3. bigdata

 +--rw event-payloads-bigdata* [plid]
 +--rw plid string
 +--rw description? string
 +--rw severity? uint8

 The bigdata model includes a description of an event (or incident)
 and its estimated general severity, unrelated to the system. The
 description is an arbitrary string of characters that would normally
 carry information that describes the event using some higher level
 format, such as Turtle or N3 for carrying RDF knowlege items.

A.1.2. external-events

 +--rw external-events* [id]
 +--rw id string
 +--rw source? string
 +--rw context? string
 +--rw sequence? int64
 +--rw timestamp? yang:date-and-time
 +--rw payload? binary

 The model defined to encode external events, which encapsulates the
 payloads introduced above, is completed with an identifier of the
 message, a string describing the source of the event, a sequence
 number and a timestamp. Additionaly it includes a string describing
 the context of the event. It is intended to communicate the required
 information about the system that detected the event, its location,
 etc. As the description of the BigData payload, this field can be
 formated with a high level format, such as RDF.

A.1.3. notifications/event

Martinez-Julia & Homma Expires September 7, 2020 [Page 17]

Internet-Draft Intelligent Reasoning on External Events March 2020

 notifications:
 +---n event
 +--ro id? string
 +--ro source? string
 +--ro context? string
 +--ro sequence? int64
 +--ro timestamp? yang:date-and-time
 +--ro payload? binary

 The event notification inherits all the fields from the model of
 external events defined above. It is intended to allow software and
 hardware elements to send, receive, and interpret not just the events
 that have been detected and notified by, for instance, a sensor, but
 also the notifications issued by the underlying infrastructure
 controllers, such as the OpenStack Controller.

A.2. YANG Module

 .

 module ietf-nmrg-nict-ai-reasoning {
 namespace "urn:ietf:params:xml:ns:yang:ietf-nmrg-nict-ainm";
 prefix rant;
 import ietf-yang-types { prefix yang; }

 grouping external-event-information {
 leaf id { type string; }
 leaf source { type string; }
 leaf context { type string; }
 leaf sequence { type int64; }
 leaf timestamp { type yang:date-and-time; }
 leaf payload { type binary; }
 }

 grouping event-payload-basic {
 leaf plid { type string; }
 leaf data { type union { type string; type binary; } }
 }

 grouping event-payload-seismometer {
 leaf plid { type string; }
 leaf location { type string; }
 leaf magnitude { type uint8; }
 }

 grouping event-payload-bigdata {
 leaf plid { type string; }
 leaf description { type string; }

Martinez-Julia & Homma Expires September 7, 2020 [Page 18]

Internet-Draft Intelligent Reasoning on External Events March 2020

 leaf severity { type uint8; }
 }

 notification event {
 uses external-event-information;
 }

 container events {
 container event-payloads {
 list event-payloads-basic {
 key "plid";
 uses event-payload-basic;
 }
 list event-payloads-seismometer {
 key "plid";
 uses event-payload-seismometer;
 }
 list event-payloads-bigdata {
 key "plid";
 uses event-payload-bigdata;
 }
 }
 list external-events {
 key "id";
 uses external-event-information;
 }
 }

 }

 .

Appendix B. The Autonomic Resource Control Architecture (ARCA)

 As deeply discussed in ICIN 2018 [ICIN-2018], ARCA leverages the
 elastic adaptation of resources assigned to virtual computer and
 network systems by calculating or estimating their requirements from
 the analysis of load measurements and the detection of external
 events. These events can be notified by physical elements (things,
 sensors) that detect changes on the environment, as well as software
 elements that analyze digital information, such as connectors to
 sources or analyzers of Big Data. For instance, ARCA is able to
 consider the detection of an earthquake or a heavy rainfall to
 overcome the damages it can make to the controlled system.

 The policies that ARCA must enforce will be specified by
 administrators during the configuration of the control/management
 engine. Then, ARCA continues running autonomously, with no more

Martinez-Julia & Homma Expires September 7, 2020 [Page 19]

Internet-Draft Intelligent Reasoning on External Events March 2020

 human involvement unless some parameter must be changed. ARCA will
 adopt the required control and management operations to adapt the
 controlled system to the new situation or requirements. The main
 goal of ARCA is thus to reduce the time required for resource
 adaptation from hours/minutes to seconds/milliseconds. With the
 aforementioned statements, system administrators are able to specify
 the general operational boundaries in terms of lower and upper system
 load thresholds, as well as the minimum and maximum amount of
 resources that can be allocated to the controlled system to overcome
 any eventual situation, including the natural crossing of such
 thresholds.

 ARCA functional goal is to run autonomously while the performance
 goal is to keep the resources assigned to the controlled resources as
 close as possible to the optimum (e.g. 5 % from the optimum) while
 avoiding service disruption as much as possible, keeping client
 request discard rate as low as possible (e.g. below 1 %). To achieve
 both goals, ARCA relies on the Autonomic Computing (AC) paradigm, in
 the form of interconnected micro-services. Therefore, ARCA includes
 the four main elements and activities defined by AC, incarnated as:

 Collector Is responsible of gathering and formatting the
 heterogeneous observations that will be used in the control
 cycle.

 Analyzer Correlates the observations to each other in order to find
 the situation of the controlled system, especially the
 current load of the resources allocated to the system and
 the occurrence of an incident that can affect to the normal
 operation of the system, such as an earthquake that
 increases the traffic in an emergency-support system, which
 is the main target scenario studied in this paper.

 Decider Determines the necessary actions to adjust the resources to
 the load of the controlled system.

 Enforcer Requests the underlying and overlying infrastructure, such
 as OpenStack, to make the necessary changes to reflect the
 effects of the decided actions into the system.

 Being a micro-service architecture means that the different
 components are executed in parallel. This allows such components to
 operate in two ways. First, their operation can be dispatched by
 receiving a message from the previous service or an external service.
 Second, the services can be self-dispatched, so they can activate
 some action or send some message without being previously stimulated
 by any message. The overall control process loops indefinitely and
 it is closed by checking that the expected effects of an action are

Martinez-Julia & Homma Expires September 7, 2020 [Page 20]

Internet-Draft Intelligent Reasoning on External Events March 2020

 actually taking place. The coherence among the distributed services
 involved in the ARCA control process is ensured by enforcing a common
 semantic representation and ontology to the messages they exchange.

 ARCA semantics are built with the Resource Description Framework
 (RDF) and the Web Ontology Language (OWL), which are well known and
 widely used standards for the semantic representation and management
 of knowledge. They provide the ability to represent new concepts
 without requiring to change the software, just plugin extensions to
 the ontology. ARCA stores all its knowledge is stored in the
 Knowledge Base (KB), which is queried and kept up-to-date by the
 analyzer and decider micro-services. It is implemented by Apache
 Jena Fuseki, which is a high-performance RDF data store that supports
 SPARQL through an HTTP/REST interface. Being de-facto standards,
 both technologies enable ARCA to be easily integrated to
 virtualization platforms like OpenStack.

Appendix C. ARCA Integration With ETSI-NFV-MANO

 In this section we describe how to fit ARCA on a general SDN/NFV
 underlying infrastructure and introduce a showcase experiment that
 demonstrates its operation on an OpenStack-based experimentation
 platform. We first describe the integration of ARCA with the NFV-
 MANO reference architecture. We contextualize the significance of
 this integration by describing an emergency support scenario that
 clearly benefits from it. Then we proceed to detail the elements
 forming the OpenStack platform and finally we discuss some initial
 results obtained from them.

C.1. Functional Integration

 The most important functional blocks of the NFV reference
 architecture promoted by ETSI (see ETSI-NFV-MANO [ETSI-NFV-MANO]) are
 the system support functions for operations and business (OSS/BSS),
 the element management (EM) and, obviously. the Virtual Network
 Functions (VNFs). But these functions cannot exist without being
 instantiated on a specific infrastructure, the NFV infrastructure
 (NFVI), and all of them must be coordinated, orchestrated, and
 managed by the general NFV-MANO functions.

 Both the NFVI and the NFV-MANO elements are subdivided into several
 sub-components. The NFVI has the underlying physical computing,
 storage, and network resources, which are sliced
 (see[I-D.qiang-coms-netslicing-information-model] and
 [I-D.geng-coms-architecture]) and virtualized to conform the virtual
 computing, storage, and network resources that will host the VNFs.
 In addition, the NFV-MANO is subdivided in the NFV Orchestrator
 (NFVO), the VNF manager (VNFM) and the Virtual Infrastructure Manager

Martinez-Julia & Homma Expires September 7, 2020 [Page 21]

Internet-Draft Intelligent Reasoning on External Events March 2020

 (VIM). As their name indicates, all high-level elements and sub-
 components have their own and very specific objective in the NFV
 architecture.

 During the design of ARCA we enforced both operational and
 interfacing aspects to its main objectives. From the operational
 point of view, ARCA processes observations to manage virtual
 resources, so it plays the role of the VIM mentioned above.
 Therefore, ARCA has been designed with appropriate interfaces to fit
 in the place of the VIM. This way, ARCA provides the NFV reference
 architecture with the ability to react to external events to adapt
 virtual computer and network systems, even anticipating such
 adaptations as performed by ARCA itself. However, some interfaces
 must be extended to fully enable ARCA to perform its work within the
 NFV architecture.

 Once ARCA is placed in the position of the VIM, it enhances the
 general NFV architecture with its autonomic management capabilities.
 In particular, it discharges some responsibilities from the VNFM and
 NFVO, so they can focus on their own business while the virtual
 resources are behaving as they expect (and request). Moreover, ARCA
 improves the scalability and reliability of the managed system in
 case of disconnection from the orchestration layer due to some
 failure, network split, etc. It is also achieved by the autonomic
 capabilities, which, as described above, are guided by the rules and
 policies specified by the administrators and, here, communicated to
 ARCA through the NFVO. However, ARCA will not be limited to such
 operation so, more generally, it will accomplish the requirements
 established by the Virtual Network Operators (VNOs), which are the
 owners of the slice of virtual resources that is managed by a
 particular instance of NFV-MANO, and therefore ARCA.

 In addition to the operational functions, ARCA incorporates the
 necessary mechanisms to engage the interfaces that enable it to
 interact with other elements of the NFV-MANO reference architecture.
 More specifically, ARCA is bound to the Or-Vi (see ETSI-NFV-IFA-005
 [ETSI-NFV-IFA-005]) and the Nf-Vi (see ETSI-NFV-IFA-004
 [ETSI-NFV-IFA-004] and ETSI-NFV-IFA-019 [ETSI-NFV-IFA-019]). The
 former is the point of attachment between the NFVO and the VIM while
 the latter is the point of attachment between the NFVI and the VIM.
 In our current design we decided to avoid the support for the point
 of attachment between the VNFM and the VIM, called Vi-Vnfm (see ETSI-
 NFV-IFA-006 [ETSI-NFV-IFA-006]). We leave it for future evolutions
 of the proposed integration, that will be enabled by a possible
 solution that provides the functions of the VNFM required by ARCA.

 Through the Or-Vi, ARCA receives the instructions it will enforce to
 the virtual computer and network system it is controlling. As

Martinez-Julia & Homma Expires September 7, 2020 [Page 22]

Internet-Draft Intelligent Reasoning on External Events March 2020

 mentioned above, these are specified in the form of rules and
 policies, which are in turn formatted as several statements and
 embedded into the Or-Vi messages. In general, these will be high-
 level objectives, so ARCA will use its reasoning capabilities to
 translate them into more specific, low-level objectives. For
 instance, the Or-Vi can specify some high-level statement to avoid
 CPU overloading and ARCA will use its innate and acquired knowledge
 to translate it to specific statements that specify which parameters
 it has to measure (CPU load from assigned servers) and which are
 their desired boundaries, in the form of high threshold and low
 threshold. Moreover, the Or-Vi will be used by the NFVO to specify
 which actions can be used by ARCA to overcome the violation of the
 mentioned policies.

 All information flowing the Or-Vi interface is encoded and formatted
 by following a simple but highly extensible ontology and exploiting
 the aforementioned semantic formats. This ensures that the
 interconnected system is able to evolve, including the replacement of
 components, updating (addition or removal) the supported concepts to
 understand new scenarios, and connecting external tools to further
 enhance the management process. The only requirement to ensure this
 feature is to ensure that all elements support the mentioned ontology
 and semantic formats. Although it is not a finished task, the
 development of semantic technologies allows the easy adaptation and
 translation of existing information formats, so it is expected that
 more and more software pieces become easily integrable with the ETSI-
 NFV-MANO [ETSI-NFV-MANO] architecture.

 In contrast to the Or-Vi interface, the Nf-Vi interface exposes more
 precise and low-level operations. Although this makes it easier to
 be integrated to ARCA, it also makes it to be tied to specific
 implementations. In other words, building a proxy that enforces the
 aforementioned ontology to different interface instances to
 homogenize them adds undesirable complexity. Therefore, new
 components have been specifically developed for ARCA to be able to
 interact with different NFVIs. Nevertheless, this specialization is
 limited to the collector and enforcer. Moreover, it allows ARCA to
 have optimized low-level operations, with high improvement of the
 overall performance. This is the case of the specific
 implementations of the collector and enforcer used with Mininet and
 Docker, which are used as underlying infrastructures in previous
 experiments described in ICIN 2017 [ICIN-2017]. Moreover, as
 discussed in the following section, this is also the case of the
 implementations of the collector and enforcer tied to OpenStack
 telemetry and compute interfaces, respectively. Hence it is
 important to ensure that telemetry is properly addressed, so we
 insist in the need to adopt a common framework in such endpoint (see
 [I-D.song-ntf]).

Martinez-Julia & Homma Expires September 7, 2020 [Page 23]

Internet-Draft Intelligent Reasoning on External Events March 2020

 Although OpenStack still lacks some functionality regarding the
 construction of specific virtual networks, we use it as the NFVI
 functional block in the integrated approach. Therefore, OpenStack is
 the provider of the underlying SDN/NFV infrastructure and we
 exploited its APIs and SDK to achieve the integration. More
 specifically, in our showcase we use the APIs provided by Ceilometer,
 Gnocchi, and Compute services as well as the SDK provided for Python.
 All of them are gathered within the Nf-Vi interface. Moreover, we
 have extended the Or-Vi interface to connect external elements, such
 as the physical or environmental event detectors and Big Data
 connectors, which is becoming a mandatory requirement of the current
 virtualization ecosystem and it conforms our main extension to the
 NFV architecture.

C.2. Target Experiment and Scenario

 From the beginning of our work on the design of ARCA we are targeting
 real-world scenarios, so we get better suited requirements. In
 particular we work with a scenario that represents an emergency
 support service that is hosted on a virtual computer and network
 system, which is in turn hosted on the distributed virtualization
 infrastructure of a medium-sized organization. The objective is to
 clearly represent an application that requires high dynamicity and
 high degree of reliability. The emergency support service
 accomplishes this by being barely used when there is no incident but
 also being heavily loaded when there is an incident.

 Both the underlying infrastructure and virtual network share the same
 topology. They have four independent but interconnected network
 domains that form part of the same administrative domain
 (organization). The first domain hosts the systems of the
 headquarters (HQ) of the owner organization, so the VNFs it hosts
 (servants) implement the emergency support service. We defined them
 as ``servants'' because they are Virtual Machine (VM) instances that
 work together to provide a single service by means of backing the
 Load Balancer (LB) instances deployed in the separate domains. The
 amount of resources (servants) assigned to the service will be
 adjusted by ARCA, attaching or detaching servants to meet the load
 boundaries specified by administrators.

 The other domains represent different buildings of the organization
 and will host the clients that access to the service when an incident
 occurs. They also host the necessary LB instances, which are also
 VNFs that are controlled by ARCA to regulate the access of clients to
 servants. All domains will have physical detectors to provide
 external information that can (and will) be correlated to the load of
 the controlled virtual computer and network system and thus will
 affect to the amount of servants assigned to it. Although the

Martinez-Julia & Homma Expires September 7, 2020 [Page 24]

Internet-Draft Intelligent Reasoning on External Events March 2020

 underlying infrastructure, the servants, and the ARCA instance are
 the same as those those used in the real world, both clients and
 detectors will be emulated. Anyway, this does not reduce the
 transferability of the results obtained from our experiments as it
 allows to expand the amount of clients beyond the limits of most
 physical infrastructures.

 Each underlying OpenStack domain will be able to host a maximum of
 100 clients, as they will be deployed on a low profile virtual
 machine (flavor in OpenStack). In general, clients will be
 performing requests at a rate of one request every ten seconds, so
 there would be a maximum of 30 requests per second. However, under
 the simulated incident, the clients will raise their load to reach a
 common maximum of 1200 requests per second. This mimics the shape
 and size of a real medium-size organization of about 300 users that
 perform a maximum of four requests per second when they need some
 support.

 The topology of the underlying network is simplified by connecting
 the four domains to the same, high-performance switch. However, the
 topology of the virtual network is built by using direct links
 between the HQ domain and the other three domains. These are
 complemented by links between domains 2 and 3, and between domains 3
 and 4. This way, the three domains have three paths to reach the HQ
 domain: a direct path with just one hop, and two indirect paths with
 two and three hops, respectively.

 During the execution of the experiment, the detectors notify the
 incident to the controller as soon as it happens. However, although
 the clients are stimulated at the same time, there is some delay
 between the occurrence of the incident and the moment the network
 service receives the increase in the load. One of the main targets
 of our experiment is to study such delay and take advantage of it to
 anticipate the amount of servants required by the system. We discuss
 it below.

 In summary, this scenario highlights the main benefits of ARCA to
 play the role of VIM and interacting with the underlying OpenStack
 platform. This means the advancement towards an efficient use of
 resources and thus reducing the CAPEX of the system. Moreover, as
 the operation of the system is autonomic, the involvement of human
 administrators is reduced and, therefore, the OPEX is also reduced.

C.3. OpenStack Platform

 The implementation of the scenario described above reflects the
 requirements of any edge/branch networking infrastructure, which are
 composed of several distributed micro-data-centers deployed on the

Martinez-Julia & Homma Expires September 7, 2020 [Page 25]

Internet-Draft Intelligent Reasoning on External Events March 2020

 wiring centers of the buildings and/or storeys. We chose to use
 OpenStack to meet such requirements because it is being widely used
 in production infrastructures and the resulting infrastructure will
 have the necessary robustness to accomplish our objectives, at the
 time it reflects the typical underlying platform found in any SDN/NFV
 environment.

 We have deployed four separate network domains, each one with its own
 OpenStack instantiation. All domains are totally capable of running
 regular OpenStack workload, i.e. executing VMs and networks, but, as
 mentioned above, we designate the domain 1 to be the headquarters of
 the organization. The different underlying networks required by this
 (quite complex) deployment are provided by several VLANs within a
 high-end L2 switch. This switch represents the distributed network
 of the organization. Four separated VLANs are used to isolate the
 traffic within each domain, by connecting an interface of OpenStack's
 controller and compute nodes. These VLANs therefore form the
 distributed data plane. Moreover, other VLAN is used to carry the
 control plane as well as the management plane, which are used by the
 NFV-MANO, and thus ARCA. It is instantiated in the physical machine
 called ARCA Node, to exchange control and management operations in
 relation to the collector and enforcer defined in ARCA. This VLAN is
 shared among all OpenStack domains to implement the global control of
 the virtualization environment pertaining to the organization.
 Finally, other VLAN is used by the infrastructure to interconnect the
 data planes of the separated domains and also to allow all elements
 of the infrastructure to access the Internet to perform software
 installation and updates.

 Installation of OpenStack is provided by the Red Hat OpenStack
 Platform, which is tightly dependent on the Linux operating system
 and closely related to the software developed by the OpenStack Open
 Source project. It provides a comprehensive way to install the whole
 platform while being easily customized to meet our specific
 requirements, while it is also backed by operational quality support.

 The ARCA node is also based on Linux but, since it is not directly
 related to the OpenStack deployment, it is not based on the same
 distribution. It is just configured to be able to access the control
 and management interfaces offered by OpenStack, and therefore it is
 connected to the VLAN that hosts the control and management planes.
 On this node we deploy the NFV-MANO components, including the micro-
 services that form an ARCA instance.

 In summary, we dedicate nine physical computers to the OpenStack
 deployment, all are Dell PowerEdge R610 with 2 x Xeon 5670 2.96 GHz
 (6 core / 12 thread) CPU, 48 GiB RAM, 6 x 146 GiB HD at 10 kRPM, and
 4 x 1 GE NIC. Moreover, we dedicate an additional computer with the

Martinez-Julia & Homma Expires September 7, 2020 [Page 26]

Internet-Draft Intelligent Reasoning on External Events March 2020

 same specification to the ARCA Node. We dedicate a less powerful
 computer to implement the physical router because it will not be
 involved in the general execution of OpenStack nor in the specific
 experiments carried out with it. Finally, as detailed above, we
 dedicate a high-end physical switch, an HP ProCurve 1810G-24, to
 build the interconnection networks.

C.4. Initial Results

 Using the platform described above we execute an initial but long-
 lasting experiment based on the target scenario introduced at the
 beginning of this section. The objective of this experiment is
 twofold. First, we aim to demonstrate how ARCA behaves in a real
 environment. Second, we aim to stress the coupling points between
 ARCA and OpenStack, which will raise the limitations of the existing
 interfaces.

 With such objectives in mind, we define a timeline that will be
 followed by both clients and external event detectors. It forces the
 virtualized system to experience different situations, including
 incidents of many severities. When an incident is found in the
 timeline, the detectors notify it to the ARCA-based VIM and the
 clients change their request rates, which will depend on the severity
 of the incident. This behavior is widely discussed in ICIN 2018
 [ICIN-2018], remarking how users behave after occurring a disaster or
 another similar incident.

 The ARCA-based VIM will know the occurrence of the incident from two
 sources. First, it will receive the notification from the event
 detectors. Second, it will notice the change of the CPU load of the
 servants assigned to the target service. In this situation, ARCA has
 different opportunities to overcome the possible overload (or
 underload) of the system. We explore the anticipation approach
 deeply discussed in ICIN 2018 [ICIN-2018]. Its operation is enclosed
 in the analyzer and decider and it is based on an algorithm that is
 divided in two sub-algorithms.

 The first sub-algorithm reacts to the detection of the incident and
 ulterior correlation of its severity to the amount of servants
 required by the system. This sub-algorithm hosts the regression of
 the learner, which is based on the SVM/SVR technique, and predicts
 the necessary resources from two features: the severity of the
 incident and the time elapsed from the moment it happened. The
 resulting amount of servants is established as the minimum amount
 that the VIM can use.

 The second sub-algorithm is fed with the CPU load measurements of the
 servants assigned to the service, as reported by the OpenStack

Martinez-Julia & Homma Expires September 7, 2020 [Page 27]

Internet-Draft Intelligent Reasoning on External Events March 2020

 platform. With this information it checks whether the system is
 within the operating parameters established by the NFVO. If not, it
 adjusts the resources assigned to the system. It also uses the
 minimum amount established by the other sub-algorithm as the basis
 for the assignation. After every correction, this algorithm learns
 the behavior by adding new correlation vectors to the SVM/SVR
 structure.

 When the experiment is running, the collector component of the ARCA-
 based VIM is attached to the telemetry interface of OpenStack by
 using the SDK to access the measurement data generated by Ceilometer
 and stored by Gnocchi. In addition, it is attached to the external
 event detectors in order to receive their notifications. On the
 other hand, the enforcer component is attached to the Compute
 interface of OpenStack by also using its SDK to request the
 infrastructure to create, destroy, query, or change the status of a
 VM that hosts a servant of the controlled system. Finally, the
 enforcer also updates the lists of servers used by the load balancers
 to distribute the clients among the available resources.

 During the execution of the experiment we make the ARCA-based VIM to
 report the severity of the last incident, if any, the time elapsed
 since it occurred, the amount of servants assigned to the controlled
 system, the minimum amount of servants to be assigned, as determined
 by the anticipation algorithm, and the average load of all servants.
 In this instance, the severities are spread between 0 (no incident)
 and 4 (strongest incident), the elapsed times are less than 35
 seconds, and the minimum server assignation (MSA) is below 10,
 although the hard maximum is 15.

 With such measurements we illustrate how the learned correlation of
 the three features (dimensions) mentioned above is achieved. Thus,
 when there is no incident (severity = 0), the MSA is kept to the
 minimum. In parallel, regardless of the severity level, the
 algorithm learned that there is no need to increase the MSA for the
 first 5 or 10 seconds. This shows the behavior discussed in this
 paper, that there is a delay between the occurrence of an event and
 the actual need for updated amount of resources, and it forms one
 fundamental aspect of our research.

 By inspecting the results, we know that there is a burst of client
 demands that is centered (peak) around 15 seconds after the
 occurrence of an incident or any other change in the accounted
 severity. We also know that the burst lasts longer for higher
 severities, and it fluctuates a bit for the highest severities.
 Finally, we can also notice that for the majority of severities, the
 increased MSA is no longer required after 25 seconds from the time
 the severity change was notified.

Martinez-Julia & Homma Expires September 7, 2020 [Page 28]

Internet-Draft Intelligent Reasoning on External Events March 2020

 All that information becomes part of the knowledge of ARCA and it is
 stored both by the internal structures of the SVM/SVR and, once
 represented semantically, in the semantic database that manages the
 knowledge base of ARCA. Thus, it is used to predict any future
 behavior. For instance, is an incident of severity 3 has occurred 10
 seconds ago, ARCA knows that it will need to set the MSA to 6
 servants. In fact, this information has been used during the
 experiment, so we can also know the accuracy of the algorithm by
 comparing the anticipated MSA value with the required value (or even
 the best value). However, the analysis of such information is left
 for the future.

 While preparing and executing the experiment we found several
 limitation intrinsic to the current OpenStack platform. First,
 regardless of the CPU and memory resources assigned to the underlying
 controller nodes, the platform is unable to record and deliver
 performance measurements at a lower interval than every 10 seconds,
 so it is currently not suitable for real time operations, which is
 important for our long-term research objectives. Moreover, we found
 that the time required by the infrastructure to create a server that
 hosts a somewhat heavy servant is around 10 seconds, which is too far
 from our targets. Although these limitations can be improved in the
 future, they clearly justify that our anticipation approach is
 essential for the proper working of a virtual system and, thus, the
 integration of external information becomes mandatory for future
 system management technologies, especially considering the
 virtualization environments.

 Finally, we found it difficult for the required measurements to be
 pushed to external components, so we had to poll for them.
 Otherwise, some component of ARCA must be instantiated along the main
 OpenStack components and services so it has first-hand and prompt
 access to such features. This way, ARCA could receive push
 notifications with the measurements, as it is for the external
 detectors. This is a key aspect that affects the placement of the
 NFV-VIM, or some subpart of it, on the general architecture.
 Therefore, for future iterations of the NFV reference architecture,
 an integrated view between the VIM and the NFVI could be required to
 reflect the future reality.

Authors' Addresses

Martinez-Julia & Homma Expires September 7, 2020 [Page 29]

Internet-Draft Intelligent Reasoning on External Events March 2020

 Pedro Martinez-Julia (editor)
 NICT
 4-2-1, Nukui-Kitamachi
 Koganei, Tokyo 184-8795
 Japan

 Phone: +81 42 327 7293
 Email: pedro@nict.go.jp

 Shunsuke Homma
 NTT
 Japan

 Email: shunsuke.homma.fp@hco.ntt.co.jp

Martinez-Julia & Homma Expires September 7, 2020 [Page 30]

