
Internet Engineering Task Force M. Pei
Internet-Draft Symantec
Intended status: Informational N. Cook
Expires: July 9, 2017 Intercede
 M. Yoo
 Solacia
 A. Atyeo
 Intercede
 H. Tschofenig
 ARM Ltd.
 January 5, 2017

The Open Trust Protocol (OTrP)
draft-pei-opentrustprotocol-03.txt

Abstract

 This document specifies the Open Trust Protocol (OTrP), a protocol to
 install, update, and delete applications and to manage security
 configuration in a Trusted Execution Environment (TEE).

 TEEs are used in environments where security services should be
 isolated from a regular operating system (often called rich OS).
 This form of compartmentlization grants a smaller codebase access to
 security sensitive services and restricts communication from the rich
 OS to those security services via mediated access.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 9, 2017.

Pei, et al. Expires July 9, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft OTrP January 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
2. Requirements Language . 6
3. Terminology . 6
3.1. Definitions . 6
3.2. Abbreviations . 7

4. OTrP Entities and Trust Model 8
4.1. System Components . 8
4.2. Trusted Anchors in TEE 9
4.3. Trusted Anchors in TSM 9
4.4. Keys and Cerificate Types 9

5. Protocol Scope and Entity Relations 12
5.1. A Sample Device Setup Flow 14
5.2. Derived Keys in the Protocol 14
5.3. Security Domain Hierarchy and Ownership 15

 5.4. SD Owner Identification and TSM Certificate
 Requirements . 16

5.5. Service Provider Container 16
6. OTrP Agent . 17
6.1. Role of OTrP Agent 17
6.2. OTrP Agent and Global Platform TEE Client API 18
6.3. OTrP Agent Implementation Consideration 18
6.3.1. OTrP Agent Distribution 18
6.3.2. Number of OTrP Agent 18
6.3.3. OTrP Android Service Option 19

6.4. OTrP Agent API for Client Applications 19
6.4.1. API processMessage 19
6.4.2. API getTAInformation 20

6.5. Sample End-to-End Client Application Flow 22
6.5.1. Case 1: A new Client App uses a TA 22

 6.5.2. Case 2: A previously installed Client Application
 calls a TA . 24

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pei, et al. Expires July 9, 2017 [Page 2]

Internet-Draft OTrP January 2017

7. OTrP Messages . 25
7.1. Message Format . 25
7.2. Message Naming Convention 25
7.3. Request and Response Message Template 26
7.4. Signed Request and Response Message Structure 26

 7.4.1. Identifying signing and Encryption keys for JWS/JWE
 messaging . 28

7.5. JSON Signing and Encryption Algorithms 28
7.5.1. Supported JSON Signing Algorithms 30
7.5.2. Support JSON Encryption Algorithms 30
7.5.3. Supported JSON Key Management Algorithms 30

7.6. Common Errors . 31
7.7. OTrP Message List . 31
7.8. OTrP Request Message Routing Rules 32
7.8.1. SP Anonymous Attestation Key (SP AIK) 32

8. Detailed Messages Specification 32
8.1. GetDeviceState . 33
8.1.1. GetDeviceStateRequest message 33
8.1.2. Request processing requirements at a TEE 34
8.1.3. Firmware signed data 35
8.1.3.1. Supported Firmware Signature Methods 35

8.1.4. Post Conditions 36
8.1.5. GetDeviceStateResponse message 36
8.1.6. Error Conditions 40
8.1.7. TSM Processing Requirements 41

8.2. Security Domain Management 42
8.2.1. CreateSD . 42
8.2.1.1. CreateSDRequest Message 42
8.2.1.2. Request processing requirements at a TEE 45
8.2.1.3. CreateSDResponse Message 46
8.2.1.4. Error Conditions 47

8.2.2. UpdateSD . 48
8.2.2.1. UpdateSDRequest Message 48
8.2.2.2. Request processing requirements at a TEE 51
8.2.2.3. UpdateSDResponse Message 53
8.2.2.4. Error Conditions 54

8.2.3. DeleteSD . 55
8.2.3.1. DeleteSDRequest Message 55
8.2.3.2. Request processing requirements at a TEE 57
8.2.3.3. DeleteSDResponse Message 58
8.2.3.4. Error Conditions 60

8.3. Trusted Application Management 60
8.3.1. InstallTA . 60
8.3.1.1. InstallTARequest Message 62
8.3.1.2. InstallTAResponse Message 63
8.3.1.3. Error Conditions 65

8.3.2. UpdateTA . 65
8.3.2.1. UpdateTARequest Message 66

Pei, et al. Expires July 9, 2017 [Page 3]

Internet-Draft OTrP January 2017

8.3.2.2. UpdateTAResponse Message 68
8.3.2.3. Error Conditions 70

8.3.3. DeleteTA . 70
8.3.3.1. DeleteTARequest Message 70
8.3.3.2. Request processing requirements at a TEE 72
8.3.3.3. DeleteTAResponse Message 73
8.3.3.4. Error Conditions 74

9. Response Messages a TSM May Expect 74
10. Basic Protocol Profile 75
11. Attestation Implementation Consideration 76
11.1. OTrP Secure Boot Module 76
11.1.1. Attestation signer 76
11.1.2. SBM initial requirements 76

11.2. TEE Loading . 77
11.3. Attestation Hierarchy 77
11.3.1. Attestation hierarchy establishment: manufacture . . 78
11.3.2. Attestation hierarchy establishment: device boot . . 78
11.3.3. Attestation hierarchy establishment: TSM 78

12. Acknowledgements . 78
13. Contributors . 79
14. IANA Considerations . 79
14.1. Error Code List . 79

15. Security Consideration 81
15.1. Cryptographic Strength 81
15.2. Message Security . 81
15.3. TEE Attestation . 81
15.4. TA Protection . 82
15.5. TA Personalization Data 82
15.6. TA trust check at TEE 83
15.7. One TA Multiple SP Case 83
15.8. OTrP Agent Trust Model 83
15.9. OCSP Stapling Data for TSM signed messages 83
15.10. Data protection at TSM and TEE 84
15.11. Privacy consideration 84
15.12. Threat mitigation 84
15.13. Compromised CA . 85
15.14. Compromised TSM . 85
15.15. Certificate renewal 85

16. References . 86
16.1. Normative References 86
16.2. Informative References 86

Appendix A. Sample Messages 86
A.1. Sample Security Domain Management Messages 86
A.1.1. Sample GetDeviceState 86
A.1.1.1. Sample GetDeviceStateRequest 86
A.1.1.2. Sample GetDeviceStateResponse 87

A.1.2. Sample CreateSD 90
A.1.2.1. Sample CreateSDRequest 90

Pei, et al. Expires July 9, 2017 [Page 4]

Internet-Draft OTrP January 2017

A.1.2.2. Sample CreateSDResponse 93
A.1.3. Sample UpdateSD 94
A.1.3.1. Sample UpdateSDRequest 95
A.1.3.2. Sample UpdateSDResponse 96

A.1.4. Sample DeleteSD 96
A.1.4.1. Sample DeleteSDRequest 96
A.1.4.2. Sample DeleteSDResponse 98

A.2. Sample TA Management Messages 100
A.2.1. Sample InstallTA 100
A.2.1.1. Sample InstallTARequest 100
A.2.1.2. Sample InstallTAResponse 101

A.2.2. Sample UpdateTA 103
A.2.2.1. Sample UpdateTARequest 103
A.2.2.2. Sample UpdateTAResponse 104

A.2.3. Sample DeleteTA 107
A.2.3.1. Sample DeleteTARequest 107
A.2.3.2. Sample DeleteTAResponse 109

 Authors' Addresses . 111

1. Introduction

 The Trusted Execution Environment (TEE) concept has been designed and
 used to increase security by separating regular operating systems,
 also referred as Rich Execution Environment (REE), from security-
 sensitive applications. In an TEE ecosystem, a Trust Service Manager
 (TSM) is used to authorize manage keys and the Trusted Applications
 (TA) that run in a device. Different device vendors may use
 different TEE implementations. Different application providers may
 use different TSM providers. There arises a need of an open
 interoperable protocol that allows trustworthy TSM to manage Security
 Domains and contents running in different Trusted Execution
 Environment (TEE) of various devices.

 The Open Trust Protocol (OTrP) defines a protocol between a TSM and a
 TEE and relies on IETF-defined end-to-end security mechanisms, namely
 JSON Web Encryption (JWE), JSON Web Signature (JWS), and JSON Web Key
 (JWK).

 This specification assumes that a device that utilizes this
 specification is equipped with a TEE and is pre-provisioned with a
 device-unique public/private key pair, which is securely stored.
 This key pair is referred as the 'root of trust'. A Service Provider
 (SP) uses such a device to run Trusted Applications (TA).

 A security domain is defined as the TEE representation of a service
 provider and is a logical space that contains the service provider's
 Trusted Applications. Each security domain requires the management

Pei, et al. Expires July 9, 2017 [Page 5]

Internet-Draft OTrP January 2017

 operations of Trusted Applications (TAs) in the form of installation,
 update and deletion.

 The protocol builds on the following properties of the system:

 1. The SP needs to determine security-relevant information of a
 device before provisioning information to a TEE. Examples
 include the verification of the root of trust, the type of
 firmware installed, and the type of TEE included in a device.

 2. A TEE in a device needs to determine whether a SP or the TSM is
 authorized to manage applications in the TEE.

 3. Secure Boot must be able to ensure a TEE is genuine.

 This specification defines message payloads exchanged between devices
 and a TSM but does not mandate a specific transport.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Terminology

3.1. Definitions

 The definitions provided below are defined as used in this document.
 The same terms may be defined differently in other documents.

 Client Application: An application running on a rich OS, such as an
 Android, Windows, or iOS application, provided by a SP.

 Device: A physical piece of hardware that hosts symmetric key
 cryptographic modules

 OTrP Agent: An application running in the rich OS allowing
 communication with the TSM and the TEE.

 Rich Application: Alternative name of "Client Application". In this
 document we may use these two terms interchangably.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Pei, et al. Expires July 9, 2017 [Page 6]

Internet-Draft OTrP January 2017

 Rich Execution Environment (REE) An environment that is provided and
 governed by a rich OS, potentially in conjunction with other
 supporting operating systems and hypervisors; it is outside of
 the TEE. This environment and applications running on it are
 considered un-trusted.

 Secure Boot Module (SBM): A firmware in a device that delivers
 secure boot functionality. It is also referred as Trusted
 Firmware (TFW) in this document.

 Service Provider (SP): An entity that wishes to supply Trusted
 Applications to remote devices. A Service Provider requires the
 help of a TSM in order to provision the Trusted Applications to
 the devices.

 Trust Anchor: A root certificate that a module trusts. It is
 usually embedded in one validating module, and used to validate
 the trust of a remote entity's certificate.

 Trusted Application (TA): Application that runs in TEE.

 Trusted Execution Environment (TEE): An execution environment that
 runs alongside but isolated from an REE. A TEE has security
 capabilities and meets certain security-related requirements: It
 protects TEE assets from general software attacks, defines rigid
 safeguards as to data and functions that a program can access,
 and resists a set of defined threats. There are multiple
 technologies that can be used to implement a TEE, and the level
 of security achieved varies accordingly.

3.2. Abbreviations

 CA Certificate Authority

 OTrP Open Trust Protocol

Pei, et al. Expires July 9, 2017 [Page 7]

Internet-Draft OTrP January 2017

 REE Rich Execution Environment

 SD Security Domain

 SP Service Provider

 SBM Secure Boot Module

 TA Trusted Application

 TEE Trusted Execution Environment

 TFW Trusted Firmware

 TSM Trusted Service Manager

4. OTrP Entities and Trust Model

4.1. System Components

 There are the following main components in this OTrP system.

 TSM: The TSM is responsible for originating and coordinating
 lifecycle management activity on a particular TEE.

 A Trust Service Manager (TSM) is at the core to the protocol that
 manages device trust check on behalf of service providers for the
 ecosystem scalability. In addition to its device trust
 management for a service provider, the TSM provides Security
 Domain management and TA management in a device, in particularly,
 over-the-air update to keep Trusted Applications up to date and
 clean up when a version should be removed.

 In the context of this specification, the term Trusted
 Application Manager (TAM) and TSM are synonymous.

 Certificate Authority (CA): Mutual trust between a device and a TSM
 as well as a Service Provider is based on certificates. A device
 embeds a list of root certificates, called Trust Anchors, from
 trusted Certificate Authorities that a TSM will be validated
 against. A TSM will remotely attest a device by checking whether
 a device comes with a certificate from a trusted CA.

 TEE: The TEE resides in the device chip security zone and is
 responsible for protecting applications from attack, enabling the
 application to perform secure operations

Pei, et al. Expires July 9, 2017 [Page 8]

Internet-Draft OTrP January 2017

 REE: The REE, usually called device OS such as Android OS in a phone
 device, is responsible for enabling off device communications to
 be established between the TEE and TSM. OTrP does not require
 the device OS to be secure.

 OTrP Agent: An application in the REE that can relay messages
 between a Client Application and TEE.

 Secure Boot: Secure boot (for the purposes of OTrP) must enable
 authenticity checking of TEEs by the TSM.

 The OTrP establishes appropriate trust anchors to enable TEE and TSMs
 to communicate in a trusted way when performing lifecycle management
 transactions. The main trust relationships between the components
 are the following.

 1. TSM must be able to ensure a TEE is genuine

 2. TEE must be able to ensure a TSM is genuine

 3. Secure Boot must be able to ensure a TEE is genuine

4.2. Trusted Anchors in TEE

 The TEE in each device comes with a trust store that contains a
 whitelist of TSM's root CA certificates, which are called Trust
 Anchors. A TSM will be trusted to manage Security Domains and TAs in
 a device only if its certificate is chained to one of the root CA
 certificates in this trust store.

 Such a list is typically embedded in TEE of a device, and the list
 update is enabled and handled by device OEM provider.

4.3. Trusted Anchors in TSM

 The Trust Anchor set in a TSM consists of a list of Certificate
 Authority certificates that signs various device TEE certificates. A
 TSM decides what TEE and TFW it will trust.

4.4. Keys and Cerificate Types

 OTrP Protocol leverages the following list of trust anchors and
 identities in generating signed and encrypted command messages that
 are exchanged between a device with TEE and a TSM. With these
 security artifacts, OTrP Messages are able to deliver end-to-end
 security without relying on any transport security.

Pei, et al. Expires July 9, 2017 [Page 9]

Internet-Draft OTrP January 2017

 +-------------+----------+--------+-------------------+-------------+
 | Key Entity | Location | Issuer | Trust Implication | Cardinality |
 | Name | | | | |
 +-------------+----------+--------+-------------------+-------------+
1. TFW	Device	OEM CA	A white list of	1 per
keypair and	secure		FW root CA	device
Certificate	storage		trusted by TSMs	
2. TEE	Device	TEE CA	A white list of	1 per
keypair and	TEE	under	TEE root CA	device
Certificate		a root	trusted by TSMs	
		CA		
3. TSM	TSM	TSM CA	A white list of	1 or
keypair and	provider	under	TSM root CA	multiple
Certificate		a root	embedded in TEE	can be used
		CA		by a TSM
4. SP	SP	SP	TSM manages SP.	1 or
keypair and		signer	TA trust is	multiple
Certificate		CA	delegated to TSM.	can be used
			TEE trusts TSM to	by a TSM
			ensure that a TA	
			is trustworthy.	
 +-------------+----------+--------+-------------------+-------------+

 Table 1: Key and Certificate Types

 1. TFW keypair and Certificate: A key pair and certificate for
 evidence of secure boot and trustworthy firmware in a device.

 Location: Device secure storage

 Supported Key Type: RSA and ECC

 Issuer: OEM CA

 Trust Implication: A white list of FW root CA trusted by TSMs

 Cardinality: One per device

 2. TEE keypair and Certificate: It is used for device attestation
 to remote TSM and SP.

Pei, et al. Expires July 9, 2017 [Page 10]

Internet-Draft OTrP January 2017

 This key pair is burned into the device at device manufacturer.
 The key pair and its certificate are valid for the expected
 lifetime of the device.

 Location: Device TEE

 Supported Key Type: RSA and ECC

 Issuer: TEE CA that chains to a root CA

 Trust Implication: A white list of TEE root CA trusted by TSMs

 Cardinality: One per device

 3. TSM keypair and Certificate: A TSM provider acquires a
 certificate from a CA that a TEE trusts.

 Location: TSM provider

 Supported Key Type: RSA and ECC.

 Supported Key Size: RSA 2048-bit, ECC P-256 and P-384.

 Issuer: TSM CA that chains to a root CA

 Trust Implication: A white list of TSM root CA embedded in TEE

 Cardinality: One or multiple can be used by a TSM

 4. SP keypair and Certificate: A SP uses its own key pair and
 certificate to sign a TA.

 Location: SP

 Supported Key Type: RSA and ECC

 Supported Key Size: RSA 2048-bit, ECC P-256 and P-384

 Issuer: SP signer CA that chains to a root CA

 Trust Implication: TSM manages SP. TA trust is delegated to
 TSM. TEE trusts TSM to ensure that a TA is trustworthy.

Pei, et al. Expires July 9, 2017 [Page 11]

Internet-Draft OTrP January 2017

 Cardinality: One or multiple can be used by a SP

5. Protocol Scope and Entity Relations

 This document specifies the minimally required interoperable
 artifacts to establish mutual trust between a TEE and TSM. The
 protocol provides specifications for the following three entities:

 1. Key and certificate types required for device firmware, TEE, TA,
 SP, and TSM

 2. Data message formats that should be exchanged between a TEE in a
 device and a TSM

 3. An OTrP Agent application in the REE that can relay messages
 between a Client Application and TEE

 Figure 1: Protocol Scope and Entity Relationship

 PKI CA --CA CA--
 | | |
 | | |
 | | |
 Device | | ----OTrP Agent --- Rich App --- |
 SW | | | | |
 | | | | |
 | | | | |
 OTrP | -- TEE TSM-------
 |
 |
 FW

 Figure 2: OTrP System Diagram

Pei, et al. Expires July 9, 2017 [Page 12]

Internet-Draft OTrP January 2017

 ---OTrP Message Protocol--
 | |
 | |
 -------------------- --------------- ----------
 | REE | TEE | | TSM | | SP | |
 | --- | --- | | --- | | -- |
 | | | | | | |
 | Client | SD (TAs)| | SD / TA | | TA |
 | Apps | | | Mgmt | | |
 | | | | | | | |
 | | | | | | | |
 | OTrP | Trusted | | Trusted | | |
 | Agent | CAs | | FW, TEE CAs | | |
 | | | | | | |
 | |TEE Key/ | | TSM Key/ | |SP Key/ |
 | | Cert | | Cert | | Cert |
 | | FW Key/ | | | | |
 | | Cert | | | | |
 ------------------ --------------- ----------
 | | |
 | | |

 |
 |

 | CA |

 In the previous diagram, different Certificate Authorities can be
 used respectively for different types of certificates. OTrP Messages
 are always signed, where the signer keys is the message creator's key
 pair such as a FW key pair, TEE key pair or TSM key pair.

 The main OTrP Protocol component is the set of standard JSON messages
 created by TSM to deliver device SD and TA management commands to a
 device, and device attestation and response messages created by TEE
 to respond to TSM OTrP Messages.

 The communication method of OTrP Messages between a TSM and TEE in a
 device is left to TSM providers for maximal interoperability. A TSM
 can work with its SP and Client Applications how it gets OTrP
 Messages from a TSM. When a Client Application has had an OTrP
 Message from its TSM, it is imperative to have an interoperable
 interface to communicate with various TEE types. This is the OTrP
 Agent interface that serves this purpose. The OTrP Agent doesn't
 need to know the actual content of OTrP Messages except for the TEE
 routing information.

Pei, et al. Expires July 9, 2017 [Page 13]

Internet-Draft OTrP January 2017

5.1. A Sample Device Setup Flow

 Step 1: Prepare Images for Devices

 1. [TEE vendor] Deliver TEE Image (CODE Binary)

 2. [CA] Deliver root CA Whitelist

 3. [Soc] Deliver TFW Image

 Step 2: Inject Key Pairs and Images to Devices

 1. [OEM] Generate Secure Boot Key Pair (May be shared among multiple
 devices)

 2. [OEM] Flash signed TFW Image and signed TEE Image onto devices
 (signed by Secure Boot Key)

 Step 3: Setup attestation key pair in devices

 1. [OEM] Flash Secure Boot Public Key and eFuse Key (eFuse key is
 unique per device)

 2. [TFW/TEE] Generate a unique attestation key pair and get a
 certificate for the device.

 Step 4: Setup trust anchors in devices

 1. [TFW/TEE] Store the key and certificate encrypted with the eFuse
 key

 2. [TEE vendor or OEM] Store trusted CA certificate list into
 devices

5.2. Derived Keys in the Protocol

 The protocol generates the following two key pairs in run time to
 assist message communication and anonymous verification between TSM
 and TEE.

 1. TEE Anonymous Key (TEE AIK): one derived key pair per TEE in a
 device

 The purpose of the key pair is to sign data by a TEE without using
 its TEE device key for anonymous attestation to a Client Application.
 This key is generated in the first GetDeviceState query. The public
 key of the key pair is returned to the caller Client Application for
 future TEE returned data validation.

Pei, et al. Expires July 9, 2017 [Page 14]

Internet-Draft OTrP January 2017

 2. TEE SP AIK: one derived key per SP in a device

 The purpose of this key pair is for a TSM to encrypt TA binary data
 when it sends a TA to a device for installation. This key is
 generated in the first SD creation for a SP. It is deleted when all
 SDs are removed for a SP in a device.

 With the presence of a TEE SP AIK, it isn't necessary to have a
 shared SP independent TEE AIK. For the initial release, this
 specification will not use TEE AIK.

5.3. Security Domain Hierarchy and Ownership

 The primary job of a TSM is to help a SP to manage its trusted
 applications. A TA is typically installed in a SD. A SD is commonly
 created for a SP.

 When a SP delegates its SD and TA management to a TSM, a SD is
 created on behalf of a TSM in a TEE and the owner of the SD is
 assigned to the TSM. A SD may be associated with a SP but the TSM
 has full privilege to manage the SD for the SP.

 Each SD for a SP is associated with only one TSM. When a SP changes
 TSM, a new SP SD must be created to associate with the new TSM. TEE
 will maintain a registry of TSM ID and SP SD ID mapping.

 From a SD ownership perspective SD tree is flat and there is only one
 level. A SD is associated with its owner. It is up to TEE's
 implementation how it maintains SD binding information for TSM and
 different SPs under the same TSM.

 It is an important decision in this protocol specification that a TEE
 doesn't need to know whether a TSM is authorized to manage SD for a
 SP. This authorization is implicitly triggered by a SP Client
 Application, which instructs what TSM it wants to use. A SD is
 always associated with a TSM in addition to its SP ID. A rogue TSM
 isn't able to do anything on an unauthorized SP's SD managed by
 another TSM.

 Since a TSM may support multiple SPs, sharing the same SD name for
 different SP creates a dependency in deleting a SD. A SD can be
 deleted only after all TAs associated with this SD is deleted. A SP
 cannot delete a Security Domain on its own with a TSM if a TSM
 decides to introduce such sharing. There are cases where multiple
 virtual SPs belong to the same organization, and a TSM chooses to use
 the same SD name for those SPs. This is totally up to the TSM
 implementation and out of scope of this specification.

Pei, et al. Expires July 9, 2017 [Page 15]

Internet-Draft OTrP January 2017

5.4. SD Owner Identification and TSM Certificate Requirements

 There is a need of cryptographically binding proof about the owner of
 a SD in device. When a SD is created on behalf of a TSM, a future
 request from the TSM must present itself as a way that the TEE can
 verify it is the true owner. The certificate itself cannot reliably
 used as the owner because TSM may change its certificate.

 To this end, each TSM will be associated with a trusted identifier
 defined as an attribute in the TSM certificate. This field is kept
 the same when the TSM renew its certificates. A TSM CA is
 responsible to vet the requested TSM attribute value.

 This identifier value must not collide among different TSM providers,
 and one TSM shouldn't be able to claim the identifier used by another
 TSM provider.

 The certificate extension name to carry the identifier can initially
 use SubjectAltName:registeredID. A dedicated new extension name may
 be registered later.

 One common choice of the identifier value is the TSM's service URL.
 A CA can verify the domain ownership of the URL with the TSM in the
 certificate enrollment process.

 TEE can assign this certificate attribute value as the TSM owner ID
 for the SDs that are created for the TSM.

 An alternative way to represent a SD ownership by a TSM is to have a
 unique secret key upon SD creation such that only the creator TSM is
 able to produce a Proof-of-Possession (POP) data with the secret.

5.5. Service Provider Container

 A sample Security Domain hierarchy for the TEE is shown below.

Pei, et al. Expires July 9, 2017 [Page 16]

Internet-Draft OTrP January 2017

 | TEE |

 |
 | ---------------
 |----------| SP1 Root SD |
 | ---------------
 | |
 | | --------------
 | |----------| SP1 Sub SD |
 | | --------------
 | | --------------
 | |----------| SP1 Sub SD |
 | --------------
 | ---------------
 |----------| SP2 Root SD |

 The OTrP assumes that a SP managed by TSM1 cannot be managed by TSM2.
 Explicit permission grant should happen. SP can authorize TSM.

6. OTrP Agent

 OTrP Agent is an Rich Application or SDK that facilitates
 communication between a TSM and TEE. It also provides interfaces for
 TSM SDK or Client Applications to query and trigger TA installation
 that the application needs to use.

 This interface for Client Applications may be commonly an Android
 service call. A Client Application interacts with a TSM, and turns
 around to pass messages received from TSM to OTrP Agent.

 In all cases, a Client Application needs to be able to identify an
 OTrP Agent that it can use.

6.1. Role of OTrP Agent

 OTrP Agent is responsible to communicate with TEE. It takes request
 messages from an application. The input data is mostly from a TSM
 that an application communicates. An application may also directly
 call OTrP Agent for some TA query functions.

 OTrP Agent may internally process a request from TSM. At least, it
 needs to know where to route a message, e.g. TEE instance. It
 doesn't need to process or verify message content.

Pei, et al. Expires July 9, 2017 [Page 17]

Internet-Draft OTrP January 2017

 OTrP Agent returns TEE / TFW generated response messages to the
 caller. OTrP Agent isn't expected to handle any network connection
 with an application or TSM.

 OTrP Agent only needs to return an OTrP Agent error message if the
 TEE is not reachable for some reason. Other errors are represented
 as response messages returned from the TEE which will then be passed
 to the TSM.

6.2. OTrP Agent and Global Platform TEE Client API

 A Client Application may rely on Global Platform (GP) TEE API for TA
 communication. OTrP may use the GP TEE Client API but it is internal
 to OTrP implementation that converts given messages from TSM. More
 details can be found at [GPTEE].

6.3. OTrP Agent Implementation Consideration

 A Provider should consider methods of distribution, scope and
 concurrency on device and runtime options when implementing an OTrP
 Agent. Several non-exhaustive options are discussed below.
 Providers are encouraged to take advantage of the latest
 communication and platform capabilities to offer the best user
 experience.

6.3.1. OTrP Agent Distribution

 OTrP Agent installation is commonly carried out at OEM time. A user
 can dynamically download and install an OTrP Agent on-demand.

 It is important to ensure a legitimate OTrP Agent is installed and
 used. If an OTrP Agent is compromised it may send rogue messages to
 TSM and TEE and introduce additional risks.

6.3.2. Number of OTrP Agent

 We anticipate only one shared OTrP Agent instance in a device. The
 device's TEE vendor will most probably supply one OTrP Agent.
 Potentially we expect some open source.

 With one shared OTrP Agent, the OTrP Agent provider is responsible to
 allow multiple TSMs and TEE providers to achieve interoperability.
 With a standard OTrP Agent interface, TSM can implement its own SDK
 for its SP Client Applications to work with this OTrP Agent.

 Multiple independent OTrP Agent providers can be used as long as they
 have standard interface to a Client Application or TSM SDK. Only one
 OTrP Agent is expected in a device.

Pei, et al. Expires July 9, 2017 [Page 18]

Internet-Draft OTrP January 2017

 OTrP Protocol MUST specify a standard way for applications to lookup
 the active OTrP Agent instance in a device.

 TSM providers are generally expected to provide SDK for SP
 applications to interact with OTrP Agent for the TSM and TEE
 interaction.

6.3.3. OTrP Android Service Option

 OTrP Agent can be a bound service in Android with a service
 registration ID that a Client Application can use. This option
 allows a Client Application not to depend on any OTrP Agent SDK or
 provider.

 An OTrP Agent is responsible to detect and work with more than one
 TEE if a device has more than one. In this version, there is only
 one active TEE such that an OTrP Agent only needs to handle the
 active TEE.

6.4. OTrP Agent API for Client Applications

 A Client Application shall be responsible for relaying messages
 between the OTrP agent and the TSM.

 OTrP Agent APIs are defined below. An OTrP Agent in the form of an
 Android bound service can take this to be the functionality it
 provides via service call. The OTrP Agent implements this interface.

 If a failure is occured during calling API, an error message
 described in "Common Errors" section (see Section 7.6) will be
 returned.

 interface IOTrPAgentService {
 String processMessage(String tsmInMsg) throws OTrPAgentException;
 String getTAInformation(String spid, String taid)
 throws OTrPAgentException;
 }

 public class OTrPAgentException extends Throwable {
 private int errCode;
 }

6.4.1. API processMessage

 String processMessage(String tsmInMsg) throws OTrPAgentException;

 Description

Pei, et al. Expires July 9, 2017 [Page 19]

Internet-Draft OTrP January 2017

 A Client Application will use this method of the OTrP Agent in a
 device to pass OTrP messages from a TSM. The method is
 responsible for interation with the TEE and for forwarding the
 input message to the TEE. It also returns TEE generated response
 message back to the Client Application.

 Input

 tsmInMsg - OTrP message generated in a TSM that is passed to this
 method from a Client Application.

 Output

 A TEE generated OTrP response message (which may be a successful
 response or be a response message containing an error raised
 within the TEE) for the client application to forward to the TSM.
 In the event of the OTrP agent not being able to communicate with
 the TEE, a OTrPAgentException shall be thrown.

6.4.2. API getTAInformation

 String getTAInformation(String spid, String taid)
 throws OTrPAgentException;

 Description

 A Client Application calls this method to query a TA's
 information. This method is carried out locally by the OTrP Agent
 without relying on a TSM if it has had the TEE SP AIK.

 Input

 spid - SP identifier of the TA

 taid - the identifier of the TA

 Output

 The API returns TA signer and TSM signer certificate along with
 other metadata information about a TA.

 The output is a JSON message that is generated by the TEE. It
 contains the following information:

 * TSMID

 * SP ID

Pei, et al. Expires July 9, 2017 [Page 20]

Internet-Draft OTrP January 2017

 * TA signer certificate

 * TSM certificate

 The message is signed with TEE SP AIK private key.

 The Client Application is expected to consume the response as
 follows.

 The Client Application gets signed TA metadata, in particularly,
 the TA signer certificate. It is able to verify that the result
 is from device by checking signer against TEE SP AIK public key it
 gets in some earlier interaction with TSM.

 If this is a new Client Application in the device that hasn't had
 TEE SP AIK public key for the response verification, the
 application can contact TSM first to do GetDeviceState, and TSM
 will return TEE SP AIK public key to the app for this operation to
 proceed.

 JSON Message

Pei, et al. Expires July 9, 2017 [Page 21]

Internet-Draft OTrP January 2017

 {
 "TAInformationTBS": {
 "taid": "<TA Identifier from the input>",
 "tsmid": "<TSM ID for the Security Domain where this TA
 resides>",
 "spid": "<The service provider identifier of this TA>",
 "signercert": "<The BASE64 encoded certificate data of the TA
 binary application's signer certificate>",
 "signercacerts": [// the full list of CA certificate chain
 // including the root CA
 "cacert": "<The BASE64 encoded CA certificate data of the TA
 binary application's signer certificate>"
],
 "tsmcert": "<The BASE64 encoded certificate data of the TSM that
 manages this TA.>",
 "tsmcacerts": [// the full list of CA certificate chain
 // including the root CA
 "cacert":"<The BASE64 encoded CA certificate data of the TSM
 that manages this TA>"
]
 }
 }

 {
 "TAInformation": {
 "payload": "<BASE64URL encoding of the TAInformationTBS
 JSON above>",
 "protected": "<BASE64URL encoded signing algorithm>",
 "header": {
 "signer": {"<JWK definition of the TEE SP AIK public
 key>"}
 },
 "signature": "<signature contents signed by TEE SP AIK private
 key BASE64URL encoded>"
 }
 }

 A sample JWK public key representation refers to an example in RFC
7517 [RFC7517] .

6.5. Sample End-to-End Client Application Flow

6.5.1. Case 1: A new Client App uses a TA

 1. During the Client App installation time, the Client App calls
 TSM to initialize device preparation

https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7517

Pei, et al. Expires July 9, 2017 [Page 22]

Internet-Draft OTrP January 2017

 A. The Client Application knows it wants to use a TA1 but the
 application doesn'tknow whether TA1 has been installed or
 not. It can use GP TEE Client API to check the existence of
 TA1 first. If it doesn't exist, it will contact TSM to
 initiate the TA1 installation. Note that TA1 could have
 been installed that is triggered by other Client
 Applications of the same service provider in the same
 device.

 B. The Client Application sends TSM the TA list that it depends
 on. The TSM will query a device for the Security Domains
 and TAs that have been installed, and instructs the device
 to install any dependent TAs that have not been installed.

 C. In general, TSM has the latest information of TA list and
 their status in a device because all operations are
 instructed by TSM. TSM has such visibility because all
 Security Domain deletion and TA deletion are managed by TSM;
 the TSM could have stored the state when a TA is installed,
 updated and deleted. There is also the possibility that an
 update command is carried out inside TEE but a response is
 never received in TSM. There is also possibility that some
 manual local reset is done in a device that the TSM isn't
 aware of the changes.

 2. TSM generates message: GetDeviceStateRequest

 3. The Client Application passes the JSON message
 GetDeviceStateRequest to OTrP Agent API processMessage. The
 communication between a Client Application and OTrP Agent is up
 to the implementation of OTrP Agent.

 4. OTrP Agent routes the message to the active TEE. Multiple TEE
 case: it is up to OTrP Agent to figure this out. This
 specification limits the support to only one active TEE, which
 is the typical case today.

 5. The target active TEE processes the received OTrP message,
 returns a JSON message GetDeviceStateResponse

 6. The OTrP Agent passes the GetDeviceStateResponse to the Client
 App

 7. The Client Application sends GetDeviceStateResponse to TSM

 8. TSM processes GetDeviceStateResponse

Pei, et al. Expires July 9, 2017 [Page 23]

Internet-Draft OTrP January 2017

 A. Extract TEEspaik for the SP, signs TEEspaik with TSM signer
 key

 B. Examine SD list and TA list

 9. TSM continues to carry out other actions basing on the need.
 The next call could be instructing the device to install a
 dependent TA.

 A. Assume a dependent TA isn't in the device yet, the TSM may
 do the following:

 B.

 Create a SD to install the TA by sending a message
 CreateSDRequest. The message is sent back to the Client
 Application, and then OTrP Agent and TEE to process.

 Install a TA with a message InstallTARequest.

 C. If a Client Application depends on multiple TAs, the Client
 Application should expect multiple round trips of the TA
 installation message exchanges.

 10. At the last TSM and TEE operation, TSM returns the signed TEE SP
 AIK public key to the application

 11. The Client Application shall store the TEEspaik for future
 loaded TA trust check purpose.

 12. If the TSM finds that this is a fresh device that does not have
 any SD for the SP yet, then the TSM may move on to create a SD
 for the SP next. The TSM may move on to create a SD for the SP
 next.

 13. During Client Application installation, the application checks
 whether required Trusted Applications are already installed,
 which may have been provided by TEE. If needed, it will contact
 its TSM service to determine whether the device is ready or
 install TA list that this application needs.

6.5.2. Case 2: A previously installed Client Application calls a TA

 1. The Client Application checks the device readiness: (a) whether
 it has a TEE; (b) whether it has TA that it depends. It may
 happen that TSM has removed TA this application depends on.

 2. The Client App calls OTrP Agent method "GetTAInformation"

Pei, et al. Expires July 9, 2017 [Page 24]

Internet-Draft OTrP January 2017

 3. OTrP Agent queries the TEE to get TA information. If the given
 TA doesn't exist, an error is returned

 4. The Client App parses the TAInformation message.

 5. If the TA doesn't exist, the Client App calls its TSM to install
 the TA. If the TA exists, the Client App proceeds to call the
 TA.

7. OTrP Messages

 The main OTrP Protocol component is the set of standard JSON messages
 created by TSM to deliver device SD and TA management commands to a
 device, and device attestation and response messages created by TEE
 to respond to TSM OTrP Messages.

 An OTrP Message is designed to provide end-to-end security. It is
 always signed by its creator. In addition, an OTrP Message is
 typically encrypted such that only the targeted device TEE or TSM
 provider is able to decrypt and view the actual content.

7.1. Message Format

 OTrP Messages use JSON format for JSON's simple readability and
 moderate data size in comparison with alternative TLV and XML
 formats.

 JSON Message security has developed JSON Web Signing and JSON Web
 Encryption standard in the IETF Workgroup JOSE, see JWS [RFC7515] and
 JWE [RFC7516]. The OTrP Messages in this protocol will leverage the
 basic JWS and JWE to handle JSON signing and encryption.

7.2. Message Naming Convention

 For each TSM command "xyz"", OTrP Protocol use the following naming
 convention to represent its raw message content and complete request
 and response messages:

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516

Pei, et al. Expires July 9, 2017 [Page 25]

Internet-Draft OTrP January 2017

 +-----------------------+----------------+---------------------+
 | Purpose | Message Name | Example |
 +-----------------------+----------------+---------------------+
 | Request to be signed | xyzTBSRequest | CreateSDTBSRequest |
 | | | |
 | Request message | xyzRequest | CreateSDRequest |
 | | | |
 | Response to be signed | xyzTBSResponse | CreateSDTBSResponse |
 | | | |
 | Response message | xyzResponse | CreateSDResponse |
 +-----------------------+----------------+---------------------+

7.3. Request and Response Message Template

 An OTrP Request message uses the following format:

 {
 "<name>TBSRequest": {
 <request message content>
 }
 }

 A corresponding OTrP Response message will be as follows.

 {
 "<name>TBSResponse": {
 <response message content>
 }
 }

7.4. Signed Request and Response Message Structure

 A signed request message will generally include only one signature,
 and uses the flattened JWS JSON Serialization Syntax, see

Section 7.2.2 in RFC7515 [RFC7515] .

 A general JWS object looks like the following.

 {
 "payload": "<payload contents>",
 "protected":"<integrity-protected header contents>",
 "header": {
 <non-integrity-protected header contents>,
 },
 "signature":"<signature contents>"
 }

https://datatracker.ietf.org/doc/html/rfc7515#section-7.2.2
https://datatracker.ietf.org/doc/html/rfc7515

Pei, et al. Expires July 9, 2017 [Page 26]

Internet-Draft OTrP January 2017

 OTrP signed messages only requires the signing algorithm as the
 mandate header in the property "protected". The "non-integrity-
 protected header contents" is optional.

 OTrP signed message will be given an explicit Request or Response
 property name. In other words, a signed Request or Response uses the
 following template.

 A general JWS object looks like the following.

 {
 "<name>[Request | Response]": {
 <JWS Message of <name>TBS[Request | Response]
 }
 }

 With the standard JWS message format, a signed OTrP Message looks
 like the following.

 {
 "<name>[Request | Response]": {
 "payload": "<payload contents of <name>TBS[Request | Response]>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents>"
 }
 }

 The top element " <name>[Signed][Request | Response]" cannot be fully
 trusted to match the content because it doesn't participate the
 signature generation. However, a recipient can always match it with
 the value associated with the property "payload". It purely serves
 to provide a quick reference for reading and method invocation.

 Furthermore, most properties in an unsigned OTrP messages are
 encrypted to provide end-to-end confidentiality. The only OTrP
 message that isn't encrypted is the initial device query message that
 asks for the device state information.

 Thus a typical OTrP Message consists of an encrypted and then signed
 JSON message. Some transaction data such as transaction ID and TEE
 information may need to be exposed to OTrP Agent for routing purpose.
 Such information is excluded from JSON encryption. The device's
 signer certificate itself is encrypted. The overall final message is
 a standard signed JSON message.

 As required by JSW/JWE, those JWE and JWS related elements will be
 BASE64URL encoded. Other binary data elements specific to the OTrP

Pei, et al. Expires July 9, 2017 [Page 27]

Internet-Draft OTrP January 2017

 specification are BASE64 encoded. This specification will identify
 elements that should be BASE64 and those elements that are to be
 BASE64URL encoded.

7.4.1. Identifying signing and Encryption keys for JWS/JWE messaging

 JWS and JWE messaging allow various options for identifying the
 signing and encryption keys, for example, it allows optional elements
 including "x5c", "x5t" and "kid" in the header to cover various
 possibilities.

 In order to protect privacy, it is important that the device's
 certificate is released only to a trusted TSM, and that it is
 encrypted. The TSM will need to know the device certificate, but
 untrusted parties must not be able to get the device certificate.
 All OTrP messaging conversations between a TSM and device begin with
 GetDeviceStateRequest / GetDeviceStateResponse. These messages have
 elements built into them to exchange signing certificates, described
 in the "Detailed Message Specification" section. Any subsequent
 messages in the conversation that follow on from this are implicitly
 using the same certificates for signing/encryption, and as a result
 the certificates or references may be ommitted in those subsequent
 messages.

 In other words, the signing key identifier in the use of JWS and JWE
 here may be absent in the subsequent messages after the initial
 GetDeviceState query.

 This has implication on the TEE and TSM implementation: they have to
 cache the signer certificates for the subsequent message signature
 validation in the session. It may be easier for a TSM service to
 cache transaction session information but not so for a TEE in a
 device. A TSM should check a device's capability to decide whether
 it should include its TSM signer certificate and OCSP data in each
 subsequent request message. The device's caching capability is
 reported reported in GetDeviceStateResponse signerreq parameter.

7.5. JSON Signing and Encryption Algorithms

 The OTrP JSON signing algorithm shall use SHA256 or a stronger hash
 method with respective key type. JSON Web Algorithm RS256 or ES256
 [RFC7518] SHALL be used for RSA with SHA256 and ECDSA with SHA256.
 If RSA with SHA256 is used, the JSON web algorithm representation is
 as follows.

 {"alg":"RS256"}

https://datatracker.ietf.org/doc/html/rfc7518

Pei, et al. Expires July 9, 2017 [Page 28]

Internet-Draft OTrP January 2017

 The (BASE64URL encoded) "protected" header property in a signed
 message looks like the following:

 "protected":"eyJhbGciOiJSUzI1NiJ9"

 If ECSDA with P-256 curve and SHA256 are used for signing, the JSON
 signing algorithm representation is as follows.

 {"alg":"ES256"}

 The value for the "protected" field will be the following.

 eyJhbGciOiJFUzI1NiJ9

 Thus a common OTrP signed message with ES256 looks like the
 following.

 {
 "payload": "<payload contents>",
 "protected": "eyJhbGciOiJFUzI1NiJ9",
 "signature":"<signature contents>"
 }

 The OTrP JSON message encryption algorithm should use one of the
 supported algorithms defined in the later chapter of this document.
 JSON encryption uses a symmetric key as its "Content Encryption Key
 (CEK)". This CEK is encrypted or wrapped by a recipient's key. OTrP
 recipient typically has an asymmetric key pair. Therefore CEK will
 be encrypted by the recipient's public key.

 Symmetric encryption shall use the following algorithm.

 {"enc":"A128CBC-HS256"}

 This algorithm represents encryption with AES 128 in CBC mode with
 HMAC SHA 256 for integrity. The value of the property "protected" in
 a JWE message will be

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

Pei, et al. Expires July 9, 2017 [Page 29]

Internet-Draft OTrP January 2017

 An encrypted JSON message looks like the following.

 {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "<RSA1_5 etc.>"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON plaintext
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 OTrP doesn't use JWE AAD (Additional Authenticated Data) because each
 message is always signed after the message is encrypted.

7.5.1. Supported JSON Signing Algorithms

 The following JSON signature algorithm are mandatory support in TEE
 and TSM:

 o RS256

 ES256 is optional to support.

7.5.2. Support JSON Encryption Algorithms

 The following JSON authenticated encryption algorithm is mandatory
 support in TEE and TSM.

 o A128CBC-HS256

 A256CBC-HS512 is optional to support.

7.5.3. Supported JSON Key Management Algorithms

 The following JSON key management algorithm is mandatory support in
 TEE and TSM.

 o RSA1_5

 ECDH-ES+A128KW and ECDH-ES+A256KW are optional to support.

Pei, et al. Expires July 9, 2017 [Page 30]

Internet-Draft OTrP January 2017

7.6. Common Errors

 An OTrP Response message typically needs to report operation status
 and error causes if an operation fails. The following JSON message
 elements should be used across all OTrP Messages.

 "status": "pass | fail"

 "reason": {
 "error-code": "<error code if there is any>",
 "error-message": "<error message>"
 }

 "ver": "<version string>"

7.7. OTrP Message List

 The following table lists the OTrP commands and therefore
 corresponding Request and Response messages defined in this
 specification. Additional messages may be added in the future when
 new task messages are needed.

 GetDeviceState -
 A TSM queries a device's current state with a message
 GetDeviceStateRequest. A device TEE will report its version, its
 FW version, and list of all SD and TA in the device that is
 managed by the requesting TSM. TSM may determine whether the
 device is trustworthy and decide to carry out additional commands
 according to the response from this query.

 CreateSD -
 A TSM instructs a device TEE to create a SD for a SP. The
 recipient TEE will check whether the requesting TSM is
 trustworthy.

 UpdateSD -
 A TSM instructs a device TEE to update an existing SD. A typical
 update need comes from SP certificate change, TSM certificate
 change and so on. The recipient TEE will verify whether the TSM
 is trustworthy and owns the SD.

 DeleteSD -
 A TSM instructs a device TEE to delete an existing SD. A TEE
 conditionally deletes TAs loaded in the SD according to a request
 parameter. A SD cannot be deleted until all TAs in this SD are
 deleted. If this is the last SD for a SP, TEE can also delete
 TEE SP AIK key for this SP.

Pei, et al. Expires July 9, 2017 [Page 31]

Internet-Draft OTrP January 2017

 InstallTA -
 A TSM instructs a device to install a TA into a SD for a SP. TEE
 in a device will check whether the TSM and TA are trustworthy.

 UpdateTA -
 A TSM instructs a device to update a TA into a SD for a SP. The
 change may commonly be bug fix for a previously installed TA.

 DeleteTA -
 A TSM instructs a device to delete a TA. TEE in a device will
 check whether the TSM and TA are trustworthy.

7.8. OTrP Request Message Routing Rules

 For each command that a TSM wants to send to a device, the TSM
 generates a request message. This is typically triggered by a Client
 Application that uses the TSM. The Client Application initiates
 contact with the TSM and receives TSM OTrP Request messages according
 to the TSM's implementation. The Client Application forwards the
 OTrP message to an OTrP Agent in the device, which in turn sends the
 message to the active TEE in the device.

 The current version of specification assumes that each device has
 only one active TEE, and OTrP Agent is responsible to connect to the
 active TEE. This is the case today with devices in the market.

 Upon TEE responding with a request, the OTrP Agent gets OTrP response
 messages back to the Client Application that sends the request. In
 case the target TEE fails to respond the request, the OTrP Agent will
 be responsible to generate an error message to reply the Client
 Application. The Client Application forwards any data it received to
 its TSM.

7.8.1. SP Anonymous Attestation Key (SP AIK)

 When the first new Security Domain is created in TEE for a SP, a new
 key pair is generated and associated with this SP. This key pair is
 used for future device attestation to the service provider instead of
 using device's TEE key pair.

8. Detailed Messages Specification

 For each message in the following sections all JSON elements are
 mandatory if it isn't explicitly indicated as optional.

Pei, et al. Expires July 9, 2017 [Page 32]

Internet-Draft OTrP January 2017

8.1. GetDeviceState

 This is the first command that a TSM will query a device. This
 command is triggered when a SP's Client Application contacts its TSM
 to check whether the underlying device is ready for TA operations.

 This command queries a device's current TEE state. A device TEE will
 report its version, its FW version, and list of all SD and TA in the
 device that is managed by the requesting TSM. TSM may determine
 whether the device is trustworthy and decide to carry out additional
 commands according to the response from this query.

 The request message of this command is signed by TSM. The response
 message from TEE is encrypted. A random message encryption key (MK)
 is generated by TEE, and this encrypted key is encrypted by the
 receiving TSM public key such that only the TSM who sent the request
 is able to decrypt and view the response message.

8.1.1. GetDeviceStateRequest message

 {
 "GetDeviceStateTBSRequest": {
 "ver": "1.0",
 "rid": "<Unique request ID>",
 "tid": "<transaction ID>",
 "ocspdat": "<OCSP stapling data of TSM certificate>",
 "icaocspdat": "<OCSP stapling data for TSM CA certificates>",
 "supportedsigalgs": "<comma separated signing algorithms>"
 }
 }

 The request message consists of the following data elements:

 ver - version of the message format

 rid - a unique request ID generated by the TSM

 tid - a unique transaction ID to trace request and response. This
 can be from a prior transaction's tid field, and can be used in
 the subsequent message exchanges in this TSM session. The
 combination of rid and tid should be made unique.

 ocspdat - OCSP stapling data for the TSM certificate. The TSM
 provides OCSP data such that a recipient TEE can validate the
 validity of the TSM certificate without making its own external
 OCSP service call. This is a mandate field.

Pei, et al. Expires July 9, 2017 [Page 33]

Internet-Draft OTrP January 2017

 icaocspdat - OCSP stapling data for the intermediate CA
 certificates of the TSM certificate up to the root. A TEE side
 can cache CA OCSP data such that this value isn't needed in each
 call.

 supportedsigalgs - an optional property to list the signing
 algorithms that TSM is able to support. A recipient TEE should
 choose algorithm in this list to sign its response message if
 this property is present in a request.

 The final request message is JSON signed message of the above raw
 JSON data with TSM's certificate.

 {
 "GetDeviceStateRequest": {
 "payload":"<BASE64URL encoding of the GetDeviceStateTBSRequest
 JSON above>",
 "protected": "<BASE64URL encoded signing algorithm>",
 "header": {
 "x5c": "<BASE64 encoded TSM certificate chain up to the
 root CA certificate>"
 },
 "signature":"<signature contents signed by TSM private key>"
 }
 }

 The signing algorithm should use SHA256 with respective key type.
 The mandatory algorithm support is the RSA signing algorithm. The
 signer header "x5c" is used to include the TSM signer certificate up
 to the root CA certificate.

8.1.2. Request processing requirements at a TEE

 Upon receiving a request message GetDeviceStateRequest at a TEE, the
 TEE must validate a request:

 1. Validate JSON message signing

 2. Validate that the request TSM certificate is chained to a trusted
 CA that the TEE embeds as its trust anchor.

 * Cache the CA OCSP stapling data and certificate revocation
 check status for other subsequent requests.

 * A TEE can use its own clock time for the OCSP stapling data
 validation.

 3. Validate JSON message signing

Pei, et al. Expires July 9, 2017 [Page 34]

Internet-Draft OTrP January 2017

 4. Collect Firmware signed data

 * This is a capability in ARM architecture that allows a TEE to
 query Firmware to get FW signed data.

 5. Collect SD information for the SD owned by this TSM

8.1.3. Firmware signed data

 Firmware isn't expected to process or produce JSON data. It is
 expected to just sign some raw bytes of data.

 The data to be signed by TFW key needs be some unique random data
 each time. The (UTF-8 encoded) "tid" value from the
 GetDeviceStateTBSRequest shall be signed by the firmware. TSM isn't
 expected to parse TFW data except the signature validation and signer
 trust path validation.

 It is possible that a TEE can get some valid TFW signed data from
 another device. This is part of the TEE trust assumption where TSM
 will trust the TFW data supplied by the TEE. The TFW trust is more
 concerned by TEE than a TSM where a TEE needs to ensure that the
 underlying device firmware is trustworthy.

 TfwData: {
 "tbs": "<TFW to be signed data, BASE64 encoded>",
 "cert": "<BASE64 encoded TFW certificate>",
 "sigalg": "Signing method",
 "sig": "<Tfw signed data, BASE64 encoded>"
 }

 It is expected that FW use a standard signature methods for maximal
 interoperability with TSM providers. The mandatory support list of
 signing algorithm is RSA with SHA256.

 The JSON object above is constructed by TEE with data returned from
 FW. It isn't a standard JSON signed object. The signer information
 and data to be signed must be specially processed by TSM according to
 definition given here. The data to be signed is the raw data.

8.1.3.1. Supported Firmware Signature Methods

 TSM providers shall support the following signature methods. A
 firmware provider can choose one of the methods in signature
 generation.

 o RSA with SHA256

Pei, et al. Expires July 9, 2017 [Page 35]

Internet-Draft OTrP January 2017

 o ECDSA with SHA 256

 The value of "sigalg" in the TfwData JSON message should use one of
 the following:

 o RS256

 o ES256

8.1.4. Post Conditions

 Upon successful request validation, the TEE information is collected.
 There is no change in the TEE in the device.

 The response message shall be encrypted where the encryption key
 shall be a symmetric key that is wrapped by TSM's public key. The
 JSON Content Encryption Key (CEK) is used for this purpose.

8.1.5. GetDeviceStateResponse message

 The message has the following structure.

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass | fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "signerreq": "true | false about whether TSM needs to send
 signer data again in subsequent messages",
 "edsi": "<Encrypted JSON dsi information>"
 }
 }

 where

 signerreq - true if the TSM should send its signer certificate and
 OCSP data again in the subsequent messages. The value may be
 "false" if the TEE caches the TSM's signer certificate and OCSP
 status.

 rid - the request ID from the request message

 tid - the tid from the request message

 edsi - the main data element whose value is JSON encrypted message
 over the following Device State Information (DSI).

Pei, et al. Expires July 9, 2017 [Page 36]

Internet-Draft OTrP January 2017

 The Device State Information (DSI) message consists of the following.

 {
 "dsi": {
 "tfwdata": {
 "tbs": "<TFW to be signed data is the tid>"
 "cert": "<BASE64 encoded TFW certificate>",
 "sigalg": "Signing method",
 "sig": "<Tfw signed data, BASE64 encoded>"
 },
 "tee": {
 "name": "<TEE name>",
 "ver": "<TEE version>",
 "cert": "<BASE64 encoded TEE cert>",
 "cacert": "<JSON array value of CA certificates up to
 the root CA>",
 "sdlist": {
 "cnt": "<Number of SD owned by this TSM>",
 "sd": [
 {
 "name": "<SD name>",
 "spid": "<SP owner ID of this SD>",
 "talist": [
 {
 "taid": "<TA application identifier>",
 "taname": "<TA application friendly
 name>" // optional
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik": "<SP AIK public key, BASE64 encoded>",
 "spaiktype": "<RSA | ECC>",
 "spid": "<sp id>"
 }
]
 }
 }
 }

 The encrypted JSON message looks like the following.

Pei, et al. Expires July 9, 2017 [Page 37]

Internet-Draft OTrP January 2017

 {
 "protected": "<BASE64URL encoding of encryption algorithm header
 JSON data>",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 Assume we encrypt plaintext with AES 128 in CBC mode with HMAC SHA
 256 for integrity, the encryption algorithm header is:

 {"enc":"A128CBC-HS256"}

 The value of the property "protected" in the above JWE message will
 be

 eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0

 In other words, the above message looks like the following:

 {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }

 The full response message looks like the following:

Pei, et al. Expires July 9, 2017 [Page 38]

Internet-Draft OTrP January 2017

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass | fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "signerreq": "true | false",
 "edsi": {
 "protected": "<BASE64URL encoding of encryption algorithm
 header JSON data>",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key": "<encrypted value of CEK>"
 }
],
 "iv": "<BASE64URL encoded IV data>",
 "ciphertext": "<Encrypted data over the JSON object of dsi
 (BASE64URL)>",
 "tag": "<JWE authentication tag (BASE64URL)>"
 }
 }
 }

 The CEK will be encrypted by the TSM public key in the device. The
 TEE signed message has the following structure.

 {
 "GetDeviceTEEStateResponse": {
 "payload": "<BASE64URL encoding of the JSON message
 GetDeviceTEEStateTBSResponse>",
 "protected": "<BASE64URL encoding of signing algorithm>",
 "signature": "<BASE64URL encoding of the signature value>"
 }
 }

 The signing algorithm shall use SHA256 with respective key type, see
 Section Section 7.5.1.

 The final response message GetDeviceStateResponse consists of array
 of TEE response. A typical device will have only one active TEE. An
 OTrP Agent is responsible to collect TEE response for all active TEEs
 in the future.

Pei, et al. Expires July 9, 2017 [Page 39]

Internet-Draft OTrP January 2017

 {
 "GetDeviceStateResponse": [// JSON array
 {"GetDeviceTEEStateResponse": ...},
 ...
 {"GetDeviceTEEStateResponse": ...}
]
 }

8.1.6. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible error conditions is the following.

 ERR_REQUEST_INVALID The TEE meets the following conditions with a
 request message: (1) The request from a TSM has an invalid message
 structure; mandatory information is absent in the message.
 undefined member or structure is included. (2) TEE fails to verify
 signature of the message or fails to decrypt its contents. (3) etc.

 ERR_UNSUPPORTED_MSG_VERSION TEE receives the version of message that
 TEE can't deal with.

 ERR_UNSUPPORTED_CRYPTO_ALG TEE receives a request message encoded
 with cryptographic algorithms that TEE doesn't support.

 ERR_TFW_NOT_TRUSTED TEE may consider the underlying device firmware
 be not trustworthy.

 ERR_TSM_NOT_TRUSTED TEE needs to make sure whether the TSM is
 trustworthy by checking the validity of TSM certificate and OCSP
 stapling data and so on. If TEE finds TSM is not reliable, it may
 return this error code.

 ERR_TEE_FAIL TEE fails to respond to a TSM request. The OTrP Agent
 will construct an error message in responding the TSM's request.
 And also if TEE fails to process a request because of its internal
 error, it will return this error code.

 The response message will look like the following if the TEE signing
 can work to sign the error response message.

Pei, et al. Expires July 9, 2017 [Page 40]

Internet-Draft OTrP January 2017

 {
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "fail",
 "rid": "<the request ID from the request message>",
 "tid": "<the transaction ID from the request message>",
 "reason": {"error-code":"<error code>"}
 "supportedsigalgs": "<signature algorithms TEE supports>"
 }
 }

 where

 supportedsigalgs - an optional property to list the JWS signing
 algorithms that the active TEE supports. When a TSM sends a
 signed message that the TEE isn't able to validate, it can
 include signature algorithms that it is able to consume in this
 status report. A TSM can generate a new request message to retry
 the management task with a TEE supported signing algorithm.

 If TEE isn't able to sign an error message, a general error message
 should be returned.

8.1.7. TSM Processing Requirements

 Upon receiving a message of the type GetDeviceStateResponse at a TSM,
 the TSM should validate the following.

 o Parse to get list of GetDeviceTEEStateResponse JSON object

 o Parse the JSON "payload" property and decrypt the JSON element
 "edsi"

 o The decrypted message contains the TEE signer certificate

 o Validate GetDeviceTEEStateResponse JSON signature. The signer
 certificate is extracted from the decrypted message in the last
 step.

 o Extract TEE information and check it against its TEE acceptance
 policy.

 o Extract TFW signed element, and check the signer and data
 integration against its TFW policy

 o Check the SD list and TA list and prepare for a subsequent command
 such as "CreateSD" if it needs to have a new SD for a SP.

Pei, et al. Expires July 9, 2017 [Page 41]

Internet-Draft OTrP January 2017

8.2. Security Domain Management

8.2.1. CreateSD

 This command is typically preceded with GetDeviceState command that
 has acquired the device information of the target device by the TSM.
 TSM sends such a command to instruct a TEE to create a new Security
 Domain for a SP.

 A TSM sends an OTrP Request message CreateSDRequest to a device TEE
 to create a Security Domain for a SP. Such a request is signed by
 TSM where the TSM signer may or may not be the same as the SP's TA
 signer certificate. The resulting SD is associated with two
 identifiers for future management:

 o TSM as the owner. The owner identifier is a registered unique TSM
 ID that is stored in the TSM certificate.

 o SP identified by its TA signer certificate as the authorization.
 A TSM can add more than one SP certificates to a SD.

 A Trusted Application that is signed by a matching SP signer
 certificate for a SD is eligible to be installed into that SD. The
 TA installation into a SD by a subsequent InstallTARequest message
 may be instructed from TSM or a Client Application.

8.2.1.1. CreateSDRequest Message

Pei, et al. Expires July 9, 2017 [Page 42]

Internet-Draft OTrP January 2017

 The request message for CreateSD has the following JSON format.

 {
 "CreateSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON data will be
 // encrypted
 "spid": "<SP ID value>",
 "sdname": "<SD name for the domain to be created>",
 "spcert": "<BASE64 encoded SP certificate>",
 "tsmid": "<An identifiable attribute of the TSM
 certificate>",
 "did": "<SHA256 hash of the TEE cert>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD creation. The encryption key is TSMmk that
 is encrypted by the target TEE's public key. The entire message is
 signed by the TSM private key TSMpriv. A separate TSMmk isn't used
 in the latest specification because JSON encryption will use a
 content encryption key for exactly the same purpose.

Pei, et al. Expires July 9, 2017 [Page 43]

Internet-Draft OTrP January 2017

 spid - A unique id assigned by the TSM for its SP. It should be
 unique within a TSM namespace.

 sdname - a name unique to the SP. TSM should ensure it is unique
 for each SP.

 spcert - The SP's TA signer certificate is included in the request.
 This certificate will be stored by the device TEE and uses it to
 check against TA installation. Only if a TA is signed by a
 matching spcert associated with a SD the TA will be installed into
 the SD.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate. TEE will be responsible to assign this ID
 to the SD. The TSM certificate attribute for this attribute TSMID
 must be vetted by the TSM signer issuing CA. With this trusted
 identifier, SD query at TEE can be fast upon TSM signer
 verification.

 did - The SHA256 hash of the binary encoded device TEE certificate.
 The encryption key CEK will be encrypted the recipient TEE's public
 key. This hash value in the "did" property allows the recipient
 TEE to check whether it is the expected target to receive such a
 request. If this isn't given, an OTrP message for device 2 could
 be sent to device 1. It is optional for TEE to check because the
 successful decryption of the request message with this device's TEE
 private key already proves it is the target. This explicit hash
 value makes the protocol not dependent on message encryption method
 in future.

 Following is the OTrP message template, the full request is signed
 message over the CreateSDTBSRequest as follows.

 {
 "CreateSDRequest": {
 "payload":"<CreateSDTBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM private key>"
 }
 }

 TSM signer certificate is included in the "header" property.

Pei, et al. Expires July 9, 2017 [Page 44]

Internet-Draft OTrP January 2017

8.2.1.2. Request processing requirements at a TEE

 Upon receiving a request message CreateSDRequest at a TEE, the TEE
 must validate a request:

 1. Validate the JSON request message

 * Validate JSON message signing

 * Validate that the request TSM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor

 * Compare dsihash with its current state to make sure nothing
 has changed since this request was sent.

 * Decrypt to get the plaintext of the content: (a) spid, (b) sd
 name, (c) did

 * Check that a SPID is supplied

 * spcert check: check it is a valid certificate (signature and
 format verification only)

 * Check "did" is the SHA256 hash of its TEEcert BER raw binary
 data

 * Check whether the requested SD already exists for the SP

 * Check TSMID in the request matches TSM certificate's TSM ID
 attribute

 2. Create action

 * Create a SD for the SP with the given name

 * Assign the TSMID from the TSMCert to this SD

 * Assign the SPID and SPCert to this SD

 * Check whether a TEE SP AIK keypair already exists for the
 given SP ID

 * Create TEE SP AIK keypair if it doesn't exist for the given SP
 ID

 * Generate new DSI data if the request asks for updated DSI

 3. Construct CreateSDResponse message

Pei, et al. Expires July 9, 2017 [Page 45]

Internet-Draft OTrP January 2017

 * Create raw content

 + Operation status

 + "did" or full signer certificate information,

 + TEE SP AIK public key if DSI isn't going to be included

 + Updated DSI data if requested if the request asks for it

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver response message. (a) OTrP Agent returns this to the app;
 (b) The app passes this back to TSM

 5. TSM process. (a) TSM processes the response message; (b) TSM can
 look up signer certificate from device ID "did".

 If a request is illegitimate or signature doesn't pass, a "status"
 property in the response will indicate the error code and cause.

8.2.1.3. CreateSDResponse Message

 The response message for a CreateSDRequest contains the following
 content.

 {
 "CreateSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id received from the request>",
 "sdname": "<SD name for the domain created>",
 "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

Pei, et al. Expires July 9, 2017 [Page 46]

Internet-Draft OTrP January 2017

 did - The SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TSM.

 teespaik - The newly generated SP AIK public key for the given SP.
 This is an optional value if the device has had another domain for
 the SP that has triggered TEE SP AIK keypair for this specific SP.

 There is possible extreme error case where TEE isn't reachable or the
 TEE final response generation itself fails. In this case, TSM should
 still receive a response from the OTrP Agent. OTrP Agent is able to
 detect such error from TEE. In this case, a general error response
 message should be returned, assuming OTrP Agent even doesn't know any
 content and information about the request message.

 In other words, TSM should expect receive a TEE successfully signed
 JSON message, or a general "status" message.

 {
 "CreateSDResponse": {
 "payload":"<CreateSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device private
 key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

8.2.1.4. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

Pei, et al. Expires July 9, 2017 [Page 47]

Internet-Draft OTrP January 2017

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_ALREADY_EXIST

 ERR_SD_NOT_FOUND

 ERR_SPCERT_INVALID

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TSM_NOT_AUTHORIZED

 ERR_TSM_NOT_TRUSTED

8.2.2. UpdateSD

 This TSM initiated command can update a SP's SD that it manages for
 the following need. (a) Update SP signer certificate; (b) Add SP
 signer certificate when a SP uses multiple to sign TA binary; (c)
 Update SP ID.

 The TSM presents the proof of the SD ownership to TEE, and includes
 related information in its signed message. The entire request is
 also encrypted for the end-to-end confidentiality.

8.2.2.1. UpdateSDRequest Message

Pei, et al. Expires July 9, 2017 [Page 48]

Internet-Draft OTrP January 2017

 The request message for UpdateSD has the following JSON format.

 {
 "UpdateSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON will be encrypted
 "tsmid": "<TSMID associated with this SD>",
 "spid": "<SP ID>",
 "sdname": "<SD name for the domain to be updated>",
 "changes": {
 "newsdname": "<Change the SD name to this new name>",
 // Optional
 "newspid": "<Change SP ID of the domain to this new value>",
 // Optional
 "spcert": ["<BASE64 encoded new SP signer cert to be added>"],
 // Optional
 "deloldspcert": ["<The SHA256 hex value of an old SP cert
 assigned into this SD that should be deleted >"],
 // Optional
 "renewteespaik": "true | false"
 }
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It

Pei, et al. Expires July 9, 2017 [Page 49]

Internet-Draft OTrP January 2017

 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE's public key.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate.

 spid - the identifier of the SP whose SD will be updated. This
 value is still needed because SD name is considered unique within a
 SP only.

 sdname - the name of the target SD to be updated.

 changes - its content consists of changes that should be updated in
 the given SD.

 newsdname - the new name of the target SD to be assigned if this
 value is present.

 newspid - the new SP ID of the target SD to be assigned if this
 value is present.

 spcert - a new TA signer certificate of this SP to be added to the
 SD if this is present.

 deloldspcert - a SP certificate assigned into the SD should be
 deleted if this is present. The value is the SHA256 fingerprint of
 the old SP certificate.

 renewteespaik - the value should be 'true' or 'false'. If it is
 present and the value is 'true', TEE should regenerate TEE SP AIK
 for this SD's owner SP. The newly generated TEE SP AIK for the SP
 must be returned in the response message of this request. If there
 are more than one SD for the SP, a new SPID for one of the domain
 will always trigger a new teespaik generation as if a new SP is
 introduced to the TEE.

Pei, et al. Expires July 9, 2017 [Page 50]

Internet-Draft OTrP January 2017

 Following the OTrP message template, the full request is signed
 message over the UpdateSDTBSRequest as follows.

 {
 "UpdateSDRequest": {
 "payload":"<UpdateSDTBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM private key>"
 }
 }

 TSM signer certificate is included in the "header" property.

8.2.2.2. Request processing requirements at a TEE

 Upon receiving a request message UpdateSDRequest at a TEE, the TEE
 must validate a request:

 1. Validate the JSON request message

 * Validate JSON message signing

 * Validate that the request TSM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor. TSM
 certificate status check is generally not needed anymore in
 this request. The prior request should have validated the TSM
 certificate's revocation status

 * Compare dsihash with TEE cached last response DSI data to this
 TSM

 * Decrypt to get the plaintext of the content

 * Check that the target SD name is supplied

 * Check whether the requested SD exists

 * Check that the TSM owns this TSM by verifying TSMID in the SD
 matches TSM certificate's TSM ID attribute

 * Now the TEE is ready to carry out update listed in the
 "content" message

 2. Update action

 * If "newsdname" is given, replace the SD name for the SD to the
 new value

Pei, et al. Expires July 9, 2017 [Page 51]

Internet-Draft OTrP January 2017

 * If "newspid" is given, replace the SP ID assigned to this SD
 with the given new value

 * If "spcert" is given, add this new SP certificate to the SD.

 * If "deloldspcert" is present in the content, check previously
 assigned SP certificates to this SD, and delete the one that
 matches the given certificate hash value.

 * If "renewteespaik" is given and has a value as "true",
 generate a new TEE SP AIK keypair, and replace the old one
 with this.

 * Generate new DSI data if the request asks for updated DSI

 * Now the TEE is ready to construct the response message

 3. Construct UpdateSDResponse message

 * Create raw content

 + Operation status

 + "did" or full signer certificate information,

 + TEE SP AIK public key if DSI isn't going to be included

 + Updated DSI data if requested if the request asks for it

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver response message. (a) OTrP Agent returns this to the app;
 (b) The app passes this back to TSM

 5. TSM process. (a) TSM processes the response message; (b) TSM can
 look up signer certificate from device ID "did".

 If a request is illegitimate or signature doesn't pass, a "status"
 property in the response will indicate the error code and cause.

Pei, et al. Expires July 9, 2017 [Page 52]

Internet-Draft OTrP January 2017

8.2.2.3. UpdateSDResponse Message

 The response message for a UpdateSDRequest contains the following
 content.

 {
 "UpdateSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "cert": "<TEE certificate>", // optional
 "teespaik": "<TEE SP AIK public key, BASE64 encoded>",
 "teespaiktype": "<TEE SP AIK key type: RSA or ECC>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - The request should have known the signer certificate of this
 device from a prior request. This hash value of the device TEE
 certificate serves as a quick identifier only. Full device
 certificate isn't necessary.

 teespaik - the newly generated SP AIK public key for the given SP
 if TEE SP AIK for the SP is asked to be renewed in the request.
 This is an optional value if "dsi" is included in the response,
 which will contain all up to date TEE SP AIK key pairs.

 Similar to the template for the creation of the encrypted and signed
 CreateSDResponse, the final UpdateSDResponse looks like the
 following.

Pei, et al. Expires July 9, 2017 [Page 53]

Internet-Draft OTrP January 2017

 {
 "UpdateSDResponse": {
 "payload":"<UpdateSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device private
 key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

8.2.2.4. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_SDNAME_ALREADY_USED

 ERR_SPCERT_INVALID

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TSM_NOT_AUTHORIZED

Pei, et al. Expires July 9, 2017 [Page 54]

Internet-Draft OTrP January 2017

 ERR_TSM_NOT_TRUSTED

8.2.3. DeleteSD

 A TSM sends a DeleteSDRequest message to TEE to delete a specified SD
 that it owns. A SD can be deleted only if there is no TA associated
 with this SD in the device. The request message can contain a flag
 to instruct TEE to delete all related TAs in a SD and then delete the
 SD.

 The target TEE will operate with the following logic.

 1. Lookup given SD specified in the request message

 2. Check that the TSM owns the SD

 3. Check that the device state hasn't changed since the last
 operation

 4. Check whether there are TAs in this SD

 5. If TA exists in a SD, check whether the request instructs whether
 TA should be deleted. If the request instructs TEE to delete
 TAs, delete all TAs in this SD. If the request doesn't instruct
 the TEE to delete TAs, return an error "ERR_SD_NOT_EMPTY".

 6. Delete SD

 7. If this is the last SD of this SP, delete TEE SP AIK key

8.2.3.1. DeleteSDRequest Message

Pei, et al. Expires July 9, 2017 [Page 55]

Internet-Draft OTrP January 2017

 The request message for DeleteSD has the following JSON format.

 {
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>", // this may be from prior message
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED { // this piece of JSON will be encrypted
 "tsmid": "<TSMID associated with this SD>",
 "sdname": "<SD name for the domain to be updated>",
 "deleteta": "true | false"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE's public key.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate.

 sdname - the name of the target SD to be updated.

Pei, et al. Expires July 9, 2017 [Page 56]

Internet-Draft OTrP January 2017

 deleteta - the value should be 'true' or 'false'. If it is present
 and the value is 'true', TEE should delete all TAs associated with
 the SD in the device.

 Following the OTrP message template, the full request is signed
 message over the DeleteSDTBSRequest as follows.

 {
 "DeleteSDRequest": {
 "payload":"<DeleteSDTBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM private key>"
 }
 }

 TSM signer certificate is included in the "header" property.

8.2.3.2. Request processing requirements at a TEE

 Upon receiving a request message DeleteSDRequest at a TEE, the TEE
 must validate a request:

 1. Validate the JSON request message

 * Validate JSON message signing

 * Validate that the request TSM certificate is chained to a
 trusted CA that the TEE embeds as its trust anchor. TSM
 certificate status check is generally not needed anymore in
 this request. The prior request should have validated the TSM
 certificate's revocation status

 * Compare dsihash with TEE cached last response DSI data to this
 TSM

 * Decrypt to get the plaintext of the content

 * Check that the target SD name is supplied

 * Check whether the requested SD exists

 * Check that the TSM owns this TSM by verifying TSMID in the SD
 matches TSM certificate's TSM ID attribute

 * Now the TEE is ready to carry out update listed in the
 "content" message

Pei, et al. Expires July 9, 2017 [Page 57]

Internet-Draft OTrP January 2017

 2. Deletion action

 * Check TA existence in this SD

 * If "deleteta" is "true", delete all TAs in this SD. If the
 value of "deleteta" is "false" and some TA exists, return an
 error "ERR_SD_NOT_EMPTY"

 * Delete the SD

 * Delete TEE SP AIK key pair if this SD is the last one for the
 SP

 * Now the TEE is ready to construct the response message

 3. Construct DeleteSDResponse message

 * Create response content

 + Operation status

 + "did" or full signer certificate information,

 + Updated DSI data if requested if the request asks for it

 * The response message is encrypted with the same JWE CEK of the
 request without recreating a new content encryption key.

 * The encrypted message is signed with TEEpriv. The signer
 information ("did" or TEEcert) is encrypted.

 4. Deliver response message. (a) OTrP Agent returns this to the app;
 (b) The app passes this back to TSM

 5. TSM process. (a) TSM processes the response message; (b) TSM can
 look up signer certificate from device ID "did".

 If a request is illegitimate or signature doesn't pass, a "status"
 property in the response will indicate the error code and cause.

8.2.3.3. DeleteSDResponse Message

 The response message for a DeleteSDRequest contains the following
 content.

Pei, et al. Expires July 9, 2017 [Page 58]

Internet-Draft OTrP January 2017

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - The request should have known the signer certificate of this
 device from a prior request. This hash value of the device TEE
 certificate serves as a quick identifier only. Full device
 certificate isn't necessary.

 The final DeleteSDResponse looks like the following.

 {
 "DeleteSDResponse": {
 "payload":"<DeleteSDTBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

Pei, et al. Expires July 9, 2017 [Page 59]

Internet-Draft OTrP January 2017

8.2.3.4. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_EMPTY

 ERR_SD_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TSM_NOT_AUTHORIZED

 ERR_TSM_NOT_TRUSTED

8.3. Trusted Application Management

 This protocol doesn't introduce a TA container concept. All the TA
 authorization and management will be up to TEE implementation.

 The following three TA management commands will be supported.

 o InstallTA - provision a TA by TSM

 o UpdateTA - update a TA by TSM

 o DeleteTA - remove TA registration information with a SD, remove TA
 binary from TEE, remove all TA related data in TEE

8.3.1. InstallTA

 TA binary data can be from two sources:

 1. TSM supplies the signed TA binary

 2. Client Application supplies the TA binary

Pei, et al. Expires July 9, 2017 [Page 60]

Internet-Draft OTrP January 2017

 This specification considers only the first case where TSM supplies
 TA binary. When such a request is received by TEE, a SD is already
 created and is ready to take TA installation.

 A TSM sends the following information in message InstallTARequest to
 a target TEE:

 o The target SD information: SP ID and SD name

 o Encrypted TA binary data. TA data is encrypted with TEE SP AIK.

 o TA metadata. It is optional to include SP signer certificate for
 the SD to add if the SP has changed signer since the SD was
 created.

 TEE processes command given by TSM to install TA into a SP's SD. It
 does the following:

 o Validation

 * TEE validates TSM message authenticity

 * Decrypt to get request content

 * Lookup SD with SD name

 * Checks that the TSM owns the SD

 * Checks DSI hash matches that the device state hasn't changed

 o TA validation

 * Decrypt to get TA binary and any personalization data with "TEE
 SP AIK private key"

 * Check that SP ID is the one that is registered with the SP SD

 * TA signer is either the newly given SP certificate or the one
 in SD. The TA signing method is specific to TEE. This
 specification doesn't define how a TA should be signed.

 * If a TA signer is given in the request, add this signer into
 the SD.

 o TA installation

 * TEE re-encrypts TA binary and its personalization data with its
 own method

Pei, et al. Expires July 9, 2017 [Page 61]

Internet-Draft OTrP January 2017

 * TEE enrolls and stores the TA onto TEE secure storage area.

 o Construct a response message. This involves signing a encrypted
 status information for the requesting TSM.

8.3.1.1. InstallTARequest Message

 The request message for InstallTA has the following JSON format.

 {
 "InstallTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tsmid": "<TSM ID previously assigned to the SD>",
 "spid": "<SPID value>",
 "sdname": "<SD name for the domain to install the TA>",
 "spcert": "<BASE64 encoded SP certificate >", // optional
 "taid": "<TA identifier>"
 },
 "encrypted_ta": {
 "key": "<A 256-bit symmetric key encrypted by TEEspaik public
 key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "<encryption algoritm. AESCBC by default.",
 "ciphertadata": "<BASE64 encoded encrypted TA binary data>",
 "cipherpdata": "<BASE64 encoded encrypted TA personalization
 data>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

Pei, et al. Expires July 9, 2017 [Page 62]

Internet-Draft OTrP January 2017

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE's public key.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate.

 spid - SP identifier of the TA owner SP

 spcert - an optional field to specify SP certificate that signed the
 TA. This is sent if the SP has a new certificate that hasn't been
 previously registered with the target SD where the TA should be
 installed.

 sdname - the name of the target SD where the TA should be installed

 encrypted_ta - the message portion contains encrypted TA binary data
 and personalization data. The TA data encryption key is placed in
 "key", which is encrypted by the recipient's public key. The TA
 data encryption uses symmetric key based encryption such as AESCBC.

 Following the OTrP message template, the full request is signed
 message over the InstallTATBSRequest as follows.

 {
 "InstallTARequest": {
 "payload":"<InstallTATBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM private key>"
 }
 }

8.3.1.2. InstallTAResponse Message

 The response message for a InstallTARequest contains the following
 content.

Pei, et al. Expires July 9, 2017 [Page 63]

Internet-Draft OTrP January 2017

 {
 "InstallTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TSM.

 The final message InstallTAResponse looks like the following.

 {
 "InstallTAResponse": {
 "payload":"<InstallTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

Pei, et al. Expires July 9, 2017 [Page 64]

Internet-Draft OTrP January 2017

8.3.1.3. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_INVALID

 ERR_TA_ALREADY_INSTALLED

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TEE_RESOURCE_FULL

 ERR_TSM_NOT_AUTHORIZED

 ERR_TSM_NOT_TRUSTED

8.3.2. UpdateTA

 This TSM initiated command can update TA and its data in a SP's SD
 that it manages for the following purposes.

 1. Update TA binary

 2. Update TA's personalization data

 The TSM presents the proof of the SD ownership to TEE, and includes
 related information in its signed message. The entire request is
 also encrypted for the end-to-end confidentiality.

 TEE processes command given by TSM to update TA of a SP SD. It does
 the following:

 o Validation

Pei, et al. Expires July 9, 2017 [Page 65]

Internet-Draft OTrP January 2017

 * TEE validates TSM message authenticity

 * Decrypt to get request content

 * Lookup SD with SD name

 * Checks that the TSM owns the SD

 * Checks DSI hash matches that the device state hasn't changed

 o TA validation

 * Both TA binary and personalization data are optional, but at
 least one of them shall be present in the message

 * Decrypt to get TA binary and any personalization data with "TEE
 SP AIK private key"

 * Check that SP ID is the one that is registered with the SP SD

 * TA signer is either the newly given SP certificate or the one
 in SD. The TA signing method is specific to TEE. This
 specification doesn't define how a TA should be signed.

 * If a TA signer is given in the request, add this signer into
 the SD

 o TA update

 * TEE re-encrypts TA binary and its personalization data with its
 own method

 * TEE replaces the existing TA binary and its personalization
 data with the new binary and data.

 o Construct a response message. This involves signing a encrypted
 status information for the requesting TSM.

8.3.2.1. UpdateTARequest Message

Pei, et al. Expires July 9, 2017 [Page 66]

Internet-Draft OTrP January 2017

 The request message for UpdateTA has the following JSON format.

 {
 "UpdateTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tsmid": "<TSM ID previously assigned to the SD>",
 "spid": "<SPID value>",
 "sdname": "<SD name for the domain to be created>",
 "spcert": "<BASE64 encoded SP certificate >", // optional
 "taid": "<TA identifier>"
 },
 "encrypted_ta": {
 "key": "<A 256-bit symmetric key encrypted by TEEspaik public
 key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "<encryption algoritm. AESCBC by default.",
 "ciphernewtadata": "<Change existing TA binary to this new TA
 binary data(BASE64 encoded and encrypted)>",
 "ciphernewpdata": "<Change the existing data to this new TA
 personalization data(BASE64 encoded and encrypted)>"
 // optional
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It

Pei, et al. Expires July 9, 2017 [Page 67]

Internet-Draft OTrP January 2017

 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE's public key.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate.

 spid - SP identifier of the TA owner SP

 spcert - an optional field to specify SP certificate that signed the
 TA. This is sent if the SP has a new certificate that hasn't been
 previously registered with the target SD where the TA should be
 installed.

 sdname - the name of the target SD where the TA should be updated

 taid - an identifier for the TA application to be updated

 encrypted_ta - the message portion contains new encrypted TA binary
 data and personalization data.

 Following the OTrP message template, the full request is signed
 message over the UpdateTATBSRequest as follows.

 {
 "UpdateTARequest": {
 "payload":"<UpdateTATBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM private key>"
 }
 }

8.3.2.2. UpdateTAResponse Message

 The response message for a UpdateTARequest contains the following
 content.

Pei, et al. Expires July 9, 2017 [Page 68]

Internet-Draft OTrP January 2017

 {
 "UpdateTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TSM.

 The final message UpdateTAResponse looks like the following.

 {
 "UpdateTAResponse": {
 "payload":"<UpdateTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

Pei, et al. Expires July 9, 2017 [Page 69]

Internet-Draft OTrP January 2017

8.3.2.3. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_INVALID

 ERR_TA_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TSM_NOT_AUTHORIZED

 ERR_TSM_NOT_TRUSTED

8.3.3. DeleteTA

 This operation defines OTrP messages that allow a TSM instruct a TEE
 to delete a TA for a SP in a given SD. A TEE will delete a TA from a
 SD and also TA data in the TEE. A Client Application cannot directly
 access TEE or OTrP Agent to delete a TA.

8.3.3.1. DeleteTARequest Message

Pei, et al. Expires July 9, 2017 [Page 70]

Internet-Draft OTrP January 2017

 The request message for DeleteTA has the following JSON format.

 {
 "DeleteTATBSRequest": {
 "ver": "1.0",
 "rid": "<unique request ID>",
 "tid": "<transaction ID>",
 "tee": "<TEE routing name from the DSI for the SD's target>",
 "nextdsi": "true | false",
 "dsihash": "<hash of DSI returned in the prior query>",
 "content": ENCRYPTED {
 "tsmid": "<TSM ID previously assigned to the SD>",
 "sdname": "<SD name of the TA>",
 "taid": "<the identifier of the TA to be deleted from the
 specified SD>"
 }
 }
 }

 In the message,

 rid - A unique value to identify this request

 tid - A unique value to identify this transaction. It can have the
 same value for the tid in the preceding GetDeviceStateRequest.

 tee - TEE ID returned from the previous response
 GetDeviceStateResponse

 nextdsi - Indicates whether the up to date Device State Information
 (DSI) should be returned in the response to this request.

 dsihash - The BASE64 encoded SHA256 hash value of the DSI data
 returned in the prior TSM operation with this target TEE. This
 value is always included such that a receiving TEE can check
 whether the device state has changed since its last query. It
 helps enforce SD update order in the right sequence without
 accidently overwrite an update that was done simultaneously.

 content - The "content" is a JSON encrypted message that includes
 actual input for the SD update. The standard JSON content
 encryption key (CEK) is used, and the CEK is encrypted by the
 target TEE's public key.

 tsmid - SD owner claim by TSM - A SD owned by a TSM will be
 associated with a trusted identifier defined as an attribute in the
 signer TSM certificate.

Pei, et al. Expires July 9, 2017 [Page 71]

Internet-Draft OTrP January 2017

 sdname - the name of the target SD where the TA is installed

 taid - an identifier for the TA application to be deleted

 Following the OTrP message template, the full request is signed
 message over the DeleteTATBSRequest as follows.

 {
 "DeleteTARequest": {
 "payload":"<DeleteTATBSRequest JSON above>",
 "protected":"<integrity-protected header contents>",
 "header": <non-integrity-protected header contents>,
 "signature":"<signature contents signed by TSM
 private key>"
 }
 }

8.3.3.2. Request processing requirements at a TEE

 TEE processes command given by TSM to delete a TA of a SP SD. It
 does the following:

 1. Validate the JSON request message

 * TEE validates TSM message authenticity

 * Decrypt to get request content

 * Lookup the SD and the TA with the given SD name and TA ID

 * Checks that the TSM owns the SD, and TA is installed in the SD

 * Checks DSI hash matches that the device state hasn't changed

 2. Deletion action

 * If all the above validation points pass, the TEE deletes the
 TA from the SD

 * The TEE may also delete all personalization data for the TA

 3. Construct DeleteTAResponse message.

 If a request is illegitimate or signature doesn't pass, a "status"
 property in the response will indicate the error code and cause.

Pei, et al. Expires July 9, 2017 [Page 72]

Internet-Draft OTrP January 2017

8.3.3.3. DeleteTAResponse Message

 The response message for a DeleteTARequest contains the following
 content.

 {
 "DeleteTATBSResponse": {
 "ver": "1.0",
 "status": "<operation result>",
 "rid": "<the request ID received>",
 "tid": "<the transaction ID received>",
 "content": ENCRYPTED {
 "reason":"<failure reason detail>", // optional
 "did": "<the device id hash>",
 "dsi": "<Updated TEE state, including all SD owned by
 this TSM>"
 }
 }
 }

 In the response message, the following fields MUST be supplied.

 did - the SHA256 hash of the device TEE certificate. This shows
 the device ID explicitly to the receiving TSM.

 The final message DeleteTAResponse looks like the following.

 {
 "DeleteTAResponse": {
 "payload":"<DeleteTATBSResponse JSON above>",
 "protected": {
 "<BASE64URL of signing algorithm>"
 },
 "signature": "<signature contents signed by TEE device
 private key (BASE64URL)>"
 }
 }

 A response message type "status" will be returned when TEE totally
 fails to respond. OTrP Agent is responsible to create this message.

Pei, et al. Expires July 9, 2017 [Page 73]

Internet-Draft OTrP January 2017

 {
 "status": {
 "result": "fail",
 "error-code": "ERR_TEE_UNKNOWN",
 "error-message": "TEE fails to respond"
 }
 }

8.3.3.4. Error Conditions

 An error may occur if a request isn't valid or the TEE runs into some
 error. The list of possible errors are the following. Refer to
 section Error Code List (Section 14.1) for detail causes and actions.

 ERR_REQUEST_INVALID

 ERR_UNSUPPORTED_MSG_VERSION

 ERR_UNSUPPORTED_CRYPTO_ALG

 ERR_DEV_STATE_MISMATCH

 ERR_SD_NOT_FOUND

 ERR_TA_NOT_FOUND

 ERR_TEE_FAIL

 ERR_TEE_UNKNOWN

 ERR_TSM_NOT_AUTHORIZED

 ERR_TSM_NOT_TRUSTED

9. Response Messages a TSM May Expect

 A TSM expects some feedback from a remote device when a request
 message is delivered to a device. The following three types of
 responses SHOULD be supplied.

 Type 1: Expect a valid TEE generated response message

 A valid TEE signed response may contain errors detected by TEE,
 e.g. TSM is trusted but TSM supplied data is missing, for
 example, SP ID doesn't exist. TEE MUST be able to sign and
 encrypt.

Pei, et al. Expires July 9, 2017 [Page 74]

Internet-Draft OTrP January 2017

 If TEE isn't able to sign a response, TEE should returns an error
 to OTrP Agent without giving any other internal information.
 OTrP Agent will be generating the response.

 Type 2: OTrP Agent generated error message when TEE fails. OTrP
 Agent errors will be defined in this document.

 A Type 2 message has the following format.

 {
 "OTrPAgentError": {
 "ver": "1.0",
 "rid": "",
 "tid": "",
 "errcode": "ERR_TEE_FAIL | ERR_TEE_BUSY"
 }
 }

 Type 3: OTrP Agent itself isn't reachable or fails. A Client
 Application is responsible to handle error and response TSM in
 its own way. This is out of scope for this specification.

10. Basic Protocol Profile

 This section describes a baseline for interoperability among the
 protocol entities, mainly, the TSM and TEE.

 A TEE MUST support RSA algorithms. It is optional to support ECC
 algorithms. A TSM should use a RSA certificate for TSM message
 signing. It may use an ECC certificate if it detects that the TEE
 supports ECC.

 A TSM MUST support both RSA 2048-bit algorithm and ECC P-256
 algorithms. With this, a TEE and TFW certificate can be either RSA
 or ECC type.

 JSON signing algorithms

 o RSA PKCS#1 with SHA256 signing : "RS256"

 o ECDSA with SHA256 signing : "ES256"

 JSON asymmetric encryption algorithms (describes key-exchange or key-
 agreement algorithm for sharing symmetric key with TEE):

 o RSA PKCS#1 : "RSA1_5"

Pei, et al. Expires July 9, 2017 [Page 75]

Internet-Draft OTrP January 2017

 o ECDH using TEE ECC P-256 key and ephemeral ECC key generated by
 TSM : "ECDH-ES+A128W"

 JSON symmetric encryption algorithms (describes symmetric algorithm
 for encrypting body of data, using symmetric key transferred to TEE
 using asymmetric encryption):

 o Authenticated encryption AES 128 CBC with SHA256 :
 {"enc":"A128CBC-HS256"}

11. Attestation Implementation Consideration

 It is important to know that the state of a device is appropriate
 before trusting that a device is what it says it is. The attestation
 scheme for OTrP must also be able to cope with different TEEs, those
 that are OTrP compliant and those that use another mechanism. In the
 initial version, only one active TEE is assumed.

 It is out of scope about how TSM and device implement the trust
 hierarchy verification. However, it is helpful to understand what
 each system provider should do in order to properly implement OTrP
 trust hierarchy.

 In this section, we provide some implementation reference
 consideration.

11.1. OTrP Secure Boot Module

11.1.1. Attestation signer

 It is proposed that attestation for OTrP is based on the SBM secure
 boot layer, and that further attestation is not performed within the
 TEE itself during security domain operations. The rationale is that
 the device boot process will be defined to start with a secure boot
 approach that, using eFuse, only releases attestation signing
 capabilities into the SBM once a secure boot has been established.
 In this way the release of the attestation signer can be considered
 the first "platform configuration metric", using TCG terminology.

11.1.2. SBM initial requirements

 R1 SBM must be possible to load securely into the secure boot flow

 R2 SBM must allow a public / private key pair to be generated during
 device manufacture

 R3 The public key and certificate must be possible to store securely
 from tamper

Pei, et al. Expires July 9, 2017 [Page 76]

Internet-Draft OTrP January 2017

 R4 The private key must be possible to store encrypted at rest

 R5 The private key must only be visible to the SBM when it is
 decrypted

 R6 The SBM must be able to read a list of root and intermediate
 certificates that it can use to check certificate chains with.
 The list must be stored such that it cannot be tampered with

 R7 Possible need to allow a TEE to access its unique TEE specific
 private key

11.2. TEE Loading

 During boot SBM is required to start all of the ROOT TEEs. Before
 loading them the SBM must first determine whether the code sign
 signature of the TEE is valid. If TEE integrity is confirmed it may
 be started. The SBM must then be able to receive the identity
 certificate from the TEE (if that TEE is OTrP compliant). The
 identity certificate and keys will need to be baked into the TEE
 image, and therefore also covered by the code signer hash during the
 manufacture process. The private key for the identity certificate
 must be securely protected. The private key for a TEE identity must
 never be released no matter how the public key and certificate are
 released to the SBM.

 Once the SBM has successfully booted a TEE and retrieved the identity
 certificate it will commit this to the platform configuration
 register (PCR) set, for later use during attestation. As a minimum
 the following data must be committed to the PCR for each TEE:

 1. Public key and certificate for the TEE

 2. TEE reference that can be used later by a TSM to identify this
 TEE

11.3. Attestation Hierarchy

 The attestation hierarchy and seed required for TSM protocol
 operation must be built into the device at manufacture. Additional
 TEEs can be added post manufacture using the scheme proposed however
 it is outside of the current scope of this document to detail that.

 It should be noted that the attestation scheme described is based on
 signatures. The only encryption that takes place is with eFuse to
 release the SBM signing key and later during protocol lifecycle
 management interchange with the TSM.

Pei, et al. Expires July 9, 2017 [Page 77]

Internet-Draft OTrP January 2017

11.3.1. Attestation hierarchy establishment: manufacture

 During manufacture the following steps are required:

 1. Device specific TFW key pair and certificate burnt into device,
 encrypted by eFuse. This key pair will be used for signing
 operations performed by SBM.

 2. TEE images are loaded and include a TEE instance specific key
 pair and certificate. The key pair and certificate are included
 in the image and covered by the code signing hash.

 3. The process for TEE images is repeated for any subordinate TEEs

11.3.2. Attestation hierarchy establishment: device boot

 During device boot the following steps are required:

 1. Secure boot releases TFW private key by decrypting with eFuse

 2. SBM verifies the code-signing signature of the active TEE and
 places its TEE public key into a signing buffer, along with their
 reference for later access. For non-OTrP TEE, the SBM leaves the
 TEE public key field blank.

 3. SBM signs the signing buffer with TFW private key

 4. Each active TEE performs the same operation as SBM, building up
 their own signed buffer containing subordinate TEE information.

11.3.3. Attestation hierarchy establishment: TSM

 Before a TSM can begin operation in the marketplace it must obtain a
 TSM key pair and certificate (TSMpub, TSMpriv) from a CA that is
 registered in the trust store of the TEE. In this way, the TEE can
 check the intermediate and root CA and verify that it trusts this TSM
 to perform operations on the TEE.

12. Acknowledgements

 We thank Alin Mutu for his contribution to many discussion that
 helped to design the trust flow mechanisms, and the creation of the
 flow diagrams. Alin has contributed the context diagram and brought
 good point in trust establishment.

 We also thank the following people for their input, review, and
 discussions that have greatly helped to shape the document: Sangsu

Pei, et al. Expires July 9, 2017 [Page 78]

Internet-Draft OTrP January 2017

 Baek, Marc Canel, Roger Casals, Rob Coombs, Lubna Dajani, and Richard
 Parris.

13. Contributors

 Brian Witten
 Symantec
 900 Corporate Pointe
 Culver City, CA 90230
 USA

 Email: brian_witten@symantec.com

 Tyler Kim
 Solacia
 5F, Daerung Post Tower 2, 306 Digital-ro
 Seoul 152-790
 Korea

 Email: tkkim@sola-cia.com

14. IANA Considerations

 The error code listed in the next section will be registered.

14.1. Error Code List

 This section lists error codes that could be reported by a TA or TEE
 in a device in responding a TSM request.

 ERR_DEV_STATE_MISMATCH - TEE will return this error code if DSI hash
 value from TSM doesn't match with that of device's current DSI.

 ERR_SD_ALREADY_EXIST - This error will occur if SD to be created
 already exist in the TEE.

 ERR_SD_NOT_EMPTY - This is reported if a target SD isn't empty.

 ERR_SDNAME_ALREADY_USED TEE will return this error code if new SD
 name already exists in the namespace of TSM in the TEE.

 ERR_REQUEST_INVALID - This error will occur if the TEE meets the
 following conditions with a request message: (1) The request from a
 TSM has an invalid message structure; mandatory information is
 absent in the message. undefined member or structure is included.
 (2) TEE fails to verify signature of the message or fails to
 decrypt its contents. (3) etc.

Pei, et al. Expires July 9, 2017 [Page 79]

Internet-Draft OTrP January 2017

 ERR_SPCERT_INVALID - If new SP certificate for the SD to be updated
 is not valid, then TEE will return this error code.

 ERR_TA_ALREADY_INSTALLED - while installing TA, TEE will return this
 error if the TA already has been installed in the SD.

 ERR_TA_INVALID - This error will occur when TEE meets any of
 following conditions while checking validity of TA: (1) TA binary
 has a format that TEE can't recognize. (2) TEE fails to decrypt the
 encoding of TA binary and personalization data. (3) If SP isn't
 registered with the SP SD where TA will be installed. (4) etc.

 ERR_TA_NOT_FOUND - This error will occurs when target TA doesn't
 exist in the SD.

 ERR_TEE_BUSY - The device TEE is busy. The request should be
 generally sent later to retry.

 ERR_TEE_FAIL - TEE fails to respond to a TSM request. The OTrP
 Agent will construct an error message in responding the TSM's
 request. And also if TEE fails to process a request because of its
 internal error, it will return this error code.

 ERR_TEE_RESOURCE_FULL - This error is reported when a device
 resource isn't available anymore such as storage space is full.

 ERR_TEE_UNKNOWN - This error will occur if the receiver TEE is not
 supposed to receive the request. That will be determined by
 checking TEE name or device id in the request message.

 ERR_TFW_NOT_TRUSTED - TEE may concern the underlying device firmware
 is trustworthy. If TEE determines TFW is not trustworthy, then
 this error will occur.

 ERR_TSM_NOT_TRUSTED - Before processing a request, TEE needs to make
 sure whether the sender TSM is trustworthy by checking the validity
 of TSM certificate etc. If TEE finds TSM is not reliable, then it
 will return this error code.

 ERR_UNSUPPORTED_CRYPTO_ALG - This error will occur if TEE receives a
 request message encoded with cryptographic algorithms that TEE
 doesn't support.

 ERR_UNSUPPORTED_MSG_VERSION - This error will occur if TEE receives
 the version of message that TEE can't deal with.

Pei, et al. Expires July 9, 2017 [Page 80]

Internet-Draft OTrP January 2017

15. Security Consideration

15.1. Cryptographic Strength

 The strength of the cryptographic algorithms, using the measure of
 'bits of security' defined in NIST SP800-57 allowed for the OTrP
 protocol is:

 o At a minimum, 112 bits of security. The limiting factor for this
 is the RSA-2048 algorithm, which is indicated as providing 112
 bits of symmetric key strength in SP800-57. It is important that
 RSA is supported in order to enhance the interoperability of the
 protocol.

 o The option exists to choose algorithms providing 128 bits of
 security. This requires using TEE devices that support ECC P256.

 The available algorithms and key sizes specified in this document are
 based on industry standards. Over time the recommended or allowed
 cryptographic algorithms may change. It is important that the OTrP
 protocol allows for crypto-agility.

15.2. Message Security

 OTrP messages between the TSM and TEE are protected by message
 security using JWS and JWE. The 'Basic protocol profile' section of
 this document describes the algorithms used for this. All OTrP TEE
 devices and OTrP TSMs must meet the requirements of the basic
 profile. In the future additional 'profiles' can be added.

 PKI is used to ensure that the TEE will only communicate with a
 trusted TSM, and to ensure that the TSM will only communicate with a
 trusted TEE.

15.3. TEE Attestation

 It is important that the TSM can trust that it is talking to a
 trusted TEE. This is achieved through attestation. The TEE has a
 private key and certificate built into it at manufacture, which is
 used to sign data supplied by the TSM. This allows the TSM to verify
 that the TEE is trusted.

 It is also important that the TFW (trusted firmware) can be checked.
 The TFW has a private key and certificate built into it at
 manufacturer, which allows the TEE to check that that the TFW is
 trusted.

Pei, et al. Expires July 9, 2017 [Page 81]

Internet-Draft OTrP January 2017

 The GetDeviceState message therefore allows the TSM to check that it
 trusts the TEE, and the TEE at this point will check whether it
 trusts the TFW.

15.4. TA Protection

 TA will be delivered in an encrypted form. This encryption is an
 additional layer within the message encryption described in the
 'Basic protocol profile' section of this document. The TA binary is
 encrypted for each target device with the device's TEE SP AIK public
 key. A TSM may do this encryption or provides the TEE SP AIK public
 key to a SP such that the SP encrypts the encrypted TA to TSM for
 distribution to TEE.

 The encryption algorithm can use a randomly AES 256 key "taek" with a
 16 byte random IV, and the "taek" is encrypted by the "TEE SP AIK
 public key". The following encrypted TA data structure is expected
 by TEE:

 "encrypted_ta_bin": {
 "key": "<A 256-bit symmetric key encrypted by TEE SP AIK public
 key>",
 "iv": <hex of 16 random bytes>",
 "alg": "AESCBC",
 "cipherdata": "<BASE64 encoded encrypted TA binary data>"
 }

15.5. TA Personalization Data

 A SP or TSM can supply personalization data for a TA to initialize
 for a device. Such data is passed through InstallTA command from
 TSM. The personalization data itself is (or can be) opaque to the
 TSM. The data can be from the SP without being revealed to the TSM.
 The data is sent in encrypted manner in a request to a device such
 that only the device can decrypt. A device's TEE SP AIK public key
 for a SP is used to encrypt the data.

 "encrypted_ta_data": { // "TA personalization data"
 "key": "<A 256-bit symmetric key encrypted by TEE SP AIK public
 key>",
 "iv": "<hex of 16 random bytes>",
 "alg": "AESCBC",
 "cipherdata": "<BASE64 encoded encrypted TA personalization
 data>"
 }

Pei, et al. Expires July 9, 2017 [Page 82]

Internet-Draft OTrP January 2017

15.6. TA trust check at TEE

 A TA binary is signed by a TA signer certificate. This TA signing
 certificate/private key belongs to the SP, and may be self-signed
 (i.e. it need not participate in a trust hierarchy). It is the
 responsibility of the TSM to only allow verified TAs from trusted SPs
 into the system. Delivery of that TA to the TEE is then the
 responsibility of the TEE, using the security mechanisms provided by
 the OTrP protocol.

 We allow a way for application to check trustworthy of a TA. OTrP
 Agent will have a function to allow an application query the metadata
 of a TA.

 An application in the Rich O/S may perform verification of the TA by
 verifying the signature of the TA. The
 OTRPService.getTAInformation() function is available to return TEE
 supplied TA signer and TSM signer information to the application. An
 application can do additional trust check on the certificate returned
 for this TA. It may trust TSM, or require additional SP signer trust
 chaining.

15.7. One TA Multiple SP Case

 A TA for different SP must have different identifier. A TA will be
 installed in different SD for the respective SP.

15.8. OTrP Agent Trust Model

 An OTrP Agent could be malware in the vulnerable Android OS. A
 Client Application will connect its TSM provider for required TA
 installation. It gets command messages from TSM, and passes the
 message to the OTrP Agent.

 The OTrP protocol is a conduit for enabling the TSM to communicate
 with the device's TEE to manage SDs and TAs. All TSM messages are
 signed and sensitive data is encrypted such that the OTrP Agent
 cannot modify or capture sensitive data.

15.9. OCSP Stapling Data for TSM signed messages

 The GetDeviceStateRequest message from TSM to TEE shall include OCSP
 stapling data for the TSM's signer certificate and that for
 intermediate CA certificates up to the root certificate so that the
 TEE side can verify the signer certificate's revocation status.

 Certificate revocation status check on a TA signer certificate is
 optional by a TEE. A TSM is generally expected to do proper TA

Pei, et al. Expires July 9, 2017 [Page 83]

Internet-Draft OTrP January 2017

 application vetting and its SP signer trust validation. A TEE will
 trust a TA signer certificate's validation status done by a TSM when
 it trusts the TSM.

15.10. Data protection at TSM and TEE

 The TEE implementation provides protection of data on the device. It
 is the responsibility of the TSM to protect data on its servers.

15.11. Privacy consideration

 Devices are issued with a unique TEE certificate to attest a device
 validity. This uniqueness also creates a privacy and tracking risk
 that must be mitigated.

 The TEE will only release the TEE certificate to a trusted TSM (it
 must verify the TSM certificate before proceeding). The OTrP
 protocol is designed such that only the TSM can obtain the TEE device
 certificate and firmware certificate - the GetDeviceState message
 requires signature checks to validate the TSM is trusted, and then
 delivers the device's certificate(s) encrypted such that only that
 TSM may decrypt the response. A Client Application will never see
 device certificate.

 A SP specific TEE SP AIK (TEE SP Anonymous Key) is generated by the
 protocol for Client Applications. This provides a way for the Client
 Application to validate data sent from the TEE without requiring the
 TEE device certificate to be released to the client device rich O/S ,
 and to optionally allow an SP to encrypt a TA for a target device
 without the SP needing to be supplied the TEE device certificate.

15.12. Threat mitigation

 A rogue application may perform excessive TA loading. OTrP Agent
 implementation should protect against excessive calls.

 Rogue applications may request excessive SD creation request. The
 TSM is responsible to ensure this is properly guarded against.

 Rogue OTrP Agent could replay or send TSM messages out of
 sequence:e.g. TSM sends update1 and update2. OTrP Agent replays
 update2 and update1 again, create unexpected result that client
 wants. "dsihash" is used to mitigate this. The TEE MUST make sure
 it stores DSI state and checks DSI state matches before it does
 another update.

 Concurrent calls from TSM to TEE should be handled properly by a TEE.
 It is up to the device to manage concurrency to the TEE. If multiple

Pei, et al. Expires July 9, 2017 [Page 84]

Internet-Draft OTrP January 2017

 concurrent TSM operations take place these could fail due "dsihash"
 being modified by another concurrent operation. If locking is
 implemented on the client, this must be done in such a way that one
 application cannot lock other applications from using the TEE, except
 for a short term duration of the TSM operation taking place. For
 example, an OTrP operation that starts but never completes (e.g. loss
 of connectivity) must not prevent subsequent OTrP messages from being
 executed.

15.13. Compromised CA

 If a root CA for TSM certificates is found compromised, some TEE
 trust anchor update mechanism should be devised. A compromised
 intermediate CA is covered by OCSP stapling and OCSP validation check
 in the protocol. A TEE should validate certificate revocation about
 a TSM certificate chain.

 If the root CA of some TEE device certificates is compromised, these
 devices might be rejected by TSM, which is a decision of TSM
 implementation and policy choice. Any intermediate CA for TEE device
 certificates should be validated by TSM with common CRL or OCSP
 method.

15.14. Compromised TSM

 The TEE should use validation of the supplied TSM certificates and
 OCSP stapled data to validate that the TSM is trustworthy.

 Since PKI is used, the integrity of the clock within the TEE
 determines the ability of the TEE to reject an expired TSM
 certificate, or revoked TSM certificate. Since OCSP stapling
 includes signature generation time, certificate validity dates are
 compared to the current time.

15.15. Certificate renewal

 TFW and TEE device certificates are expected to be long lived, longer
 than the lifetime of a device. A TSM certificate usually has a
 moderate lifetime of 2 to 5 years. TSM should get renewed or rekeyed
 certificates.The root CA certificates for TSM, which is embedded into
 the trust anchor store in a device, should have long lifetime that
 don't require device trust anchor update. On the other hand, it is
 imperative that OEM or device providers plan for support of trust
 anchor update in their shipped devices.

Pei, et al. Expires July 9, 2017 [Page 85]

Internet-Draft OTrP January 2017

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <http://www.rfc-editor.org/info/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
RFC 7516, DOI 10.17487/RFC7516, May 2015,

 <http://www.rfc-editor.org/info/rfc7516>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <http://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <http://www.rfc-editor.org/info/rfc7518>.

16.2. Informative References

 [GPTEE] Global Platform, "Global Platform, GlobalPlatform Device
 Technology: TEE System Architecture, v1.0", 2013.

Appendix A. Sample Messages

A.1. Sample Security Domain Management Messages

A.1.1. Sample GetDeviceState

A.1.1.1. Sample GetDeviceStateRequest

 TSM builds a "GetDeviceStateTBSRequest" message.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7515
http://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7516
http://www.rfc-editor.org/info/rfc7516
https://datatracker.ietf.org/doc/html/rfc7517
http://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
http://www.rfc-editor.org/info/rfc7518

Pei, et al. Expires July 9, 2017 [Page 86]

Internet-Draft OTrP January 2017

 {
 "GetDeviceStateTBSRequest": {
 "ver": "1.0",
 "rid": "8C6F9DBB-FC39-435c-BC89-4D3614DA2F0B",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "ocspdat": "c2FtcGxlIG9jc3BkYXQgQjY0IGVuY29kZWQgQVNOMQ==",
 "icaocspdat": "c2FtcGxlIGljYW9jc3BkYXQgQjY0IGVuY29kZWQgQVNOMQ==",
 "supportedsigalgs": "RS256"
 }
 }

 TSM signs "GetDeviceStateTBSRequest", creating
 "GetDeviceStateRequest"

{
 "GetDeviceStateRequest": {
 "payload":"
 ewoJIkdldERldmljZVN0YXRlVEJTUmVxdWVzdCI6IHsKCQkidmVyIjogIjEuMCIsCgkJ
 InJpZCI6IHs4QzZGOURCQi1GQzM5LTQzNWMtQkM4OS00RDM2MTREQTJGMEJ9LAoJCSJ0
 aWQiOiAiezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0iLAoJCSJv
 Y3NwZGF0IjogImMyRnRjR3hsSUc5amMzQmtZWFFnUWpZMElHVnVZMjlrWldRZ1FWTk9N
 UT09IiwKCQkiaWNhb2NzcGRhdCI6ICJjMkZ0Y0d4bElHbGpZVzlqYzNCa1lYUWdRalkw
 SUdWdVkyOWtaV1FnUVZOT01RPT0iLAoJCSJzdXBwb3J0ZWRzaWdhbGdzIjogIlJTMjU2
 IgoJfQp9",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "x5c": ["ZXhhbXBsZSBBU04xIHNpZ25lciBjZXJ0aWZpY2F0ZQ==",
 "ZXhhbXBsZSBBU04xIENBIGNlcnRpZmljYXRl"]
 },
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
}

A.1.1.2. Sample GetDeviceStateResponse

 TSM sends "GetDeviceStateRequest" to OTrP Agent

 OTrP Agent obtains "dsi" from each TEE. (in this example there is a
 single TEE).

 TEE obtains signed "fwdata" from firmware

 TEE builds "dsi" - summarizing device state of TEE

Pei, et al. Expires July 9, 2017 [Page 87]

Internet-Draft OTrP January 2017

 {
 "dsi": {
 "tfwdata": {
 "tbs": "ezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0=",
 "cert": "ZXhhbXBsZSBGVyBjZXJ0aWZpY2F0ZQ==",
 "sigalg": "RS256",
 "sig": "c2FtcGxlIEZXIHNpZ25hdHVyZQ=="
 },
 "tee": {
 "name": "Primary TEE",
 "ver": "1.0",
 "cert": "c2FtcGxlIFRFRSBjZXJ0aWZpY2F0ZQ==",
 "cacert": [
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDE=",
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDI="
],
 "sdlist": {
 "cnt": "1",
 "sd": [
 {
 "name": "default.acmebank.com",
 "spid": "acmebank.com",
 "talist": [
 {
 "taid": "acmebank.secure.banking",
 "taname": "Acme secure banking app"
 },
 {
 "taid": "acmebank.loyalty.rewards",
 "taname": "Acme loyalty rewards app"
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik": "c2FtcGxlIEFTTjEgZW5jb2RlZCBQS0NTMSBwdWJsaWNrZXk=",
 "spaiktype": "RSA",
 "spid": "acmebank.com"
 }
]
 }
 }
 }

 TEE encrypts "dsi", and embeds into "GetDeviceTEEStateTBSResponse"
 message

Pei, et al. Expires July 9, 2017 [Page 88]

Internet-Draft OTrP January 2017

{
 "GetDeviceTEEStateTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{8C6F9DBB-FC39-435c-BC89-4D3614DA2F0B}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "signerreq":"false",
 "edsi": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0K",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMg
 a2V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "ySGmfZ69YlcEilNr5_SGbA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZW
 NpcGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
}

 TEE signs "GetDeviceTEEStateTBSResponse" and returns to OTrP Agent.
 OTrP Agent encodes "GetDeviceTEEStateResponse" into an array to form
 "GetDeviceStateResponse"

Pei, et al. Expires July 9, 2017 [Page 89]

Internet-Draft OTrP January 2017

{
 "GetDeviceStateResponse": [
 {
 "GetDeviceTEEStateResponse": {
 "payload":
 "
 ewogICJHZXREZXZpY2VURUVTdGF0ZVRCU1Jlc3BvbnNlIjogewogICAgInZlciI6
 ICIxLjAiLAogICAgInN0YXR1cyI6ICJwYXNzIiwKICAgICJyaWQiOiAiezhDNkY5
 REJCLUZDMzktNDM1Yy1CQzg5LTREMzYxNERBMkYwQn0iLAogICAgInRpZCI6ICJ7
 NEY0NTRBN0YtMDAyRC00MTU3LTg4NEUtQjBERDFBMDZBOEFFfSIsCgkic2lnbmVy
 cmVxIjoiZmFsc2UiLAogICAgImVkc2kiOiB7CiAgICAgICJwcm90ZWN0ZWQiOiAi
 ZXlKbGJtTWlPaUpCTVRJNFEwSkRMVWhUTWpVMkluMEsiLAogICAgICAicmVjaXBp
 ZW50cyI6IFsKICAgICAgICB7CiAgICAgICAgICAiaGVhZGVyIjogewogICAgICAg
 ICAgImFsZyI6ICJSU0ExXzUiCiAgICAgICAgfSwKICAgICAgICAiZW5jcnlwdGVk
 X2tleSI6CiAgICAgICAgIgogICAgICAgIFFVVlRNVEk0SUNoRFJVc3BJR3RsZVN3
 Z1pXNWpjbmx3ZEdWa0lIZHBkR2dnVkZOTklGSlRRU0J3ZFdKc2FXTWcKICAgICAg
 ICBhMlY1TENCMWMybHVaeUJTVTBFeFh6VWdjR0ZrWkdsdVp3IgogICAgICAgIH0K
 ICAgICAgXSwKICAgICAgIml2IjogInlTR21mWjY5WWxjRWlsTnI1X1NHYkEiLAog
 ICAgICAiY2lwaGVydGV4dCI6CiAgICAgICIKICAgICAgYzJGdGNHeGxJR1J6YVNC
 a1lYUmhJR1Z1WTNKNWNIUmxaQ0IzYVhSb0lFRkZVekV5T0NCclpYa2dabkp2YlNC
 eVpXCiAgICAgIE5wY0dsbGJuUnpMbVZ1WTNKNWNIUmxaRjlyWlhrIiwKICAgICAg
 InRhZyI6ICJjMkZ0Y0d4bElHRjFkR2hsYm5ScFkyRjBhVzl1SUhSaFp3IgogICAg
 fQogIH0KfQ",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "signature": "c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }
]
}

 TEE returns "GetDeviceStateResponse" back to OTrP Agent, which
 returns message back to TSM.

A.1.2. Sample CreateSD

A.1.2.1. Sample CreateSDRequest

Pei, et al. Expires July 9, 2017 [Page 90]

Internet-Draft OTrP January 2017

{
 "CreateSDTBSRequest": {
 "ver":"1.0",
 "rid":"req-01",
 "tid":"tran-01",
 "tee":"SecuriTEE",
 "nextdsi":"false",
 "dsihash":"Iu-c0-fGrpMmzbbtiWI1U8u7wMJE7IK8wkJpsVuf2js",
 "content":{
 "spid":"bank.com",
 "sdname":"sd.bank.com",
 "spcert":"MIIDFjCCAn-
 gAwIBAgIJAIk0Tat0tquDMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNVBAYTAktSMQ4wD
 AYDVQQIDAVTZW91bDESMBAGA1UEBwwJR3Vyby1kb25nMRAwDgYDVQQKDAdTb2xhY2l
 hMRAwDgYDVQQLDAdTb2xhY2lhMRUwEwYDVQQDDAxTb2xhLWNpYS5jb20wHhcNMTUwN
 zAyMDg1MTU3WhcNMjAwNjMwMDg1MTU3WjBsMQswCQYDVQQGEwJLUjEOMAwGA1UECAw
 FU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWNpYTEQMA4GA
 1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tMIGfMA0GCSqGSIb3DQE
 BAQUAA4GNADCBiQKBgQDYWLrFf2OFMEciwSYsyhaLY4kslaWcXA0hCWJRaFzt5mU-
 lpSJ4jeu92inBbsXcI8PfRbaItsgW1TD1Wg4gQH4MX_YtaBoOepE--
 3JoZZyPyCWS3AaLYWrDmqFXdbzaO1i8GxB7zz0gWw55bZ9jyzcl5gQzWSqMRpx_dca
 d2SP2wIDAQABo4G_MIG8MIGGBgNVHSMEfzB9oXCkbjBsMQswCQYDVQQGEwJLUjEOMA
 wGA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWNp
 YTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tggkAiTRNq3
 S2q4MwCQYDVR0TBAIwADAOBgNVHQ8BAf8EBAMCBsAwFgYDVR0lAQH_BAwwCgYIKwYB
 BQUHAwMwDQYJKoZIhvcNAQEFBQADgYEAEFMhRwEQ-
 LDa9O7P1N0mcLORpo6fW3QuJfuXbRQRQGoXddXMKazI4VjbGaXhey7Bzvk6TZYDa-
 GRiZby1J47UPaDQR3UiDzVvXwCOU6S5yUhNJsW_BeMViYj4lssX28iPpNwLUCVm1QV
 THILI6afLCRWXXclc1L5KGY290OwIdQ",
 "tsmid":"tsm_x.acme.com",
 "did":"zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
}

 Here is a sample message after the content is encrypted and encoded

{
 "CreateSDRequest": {
 "payload":"
 eyJDcmVhdGVTRFRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTAxIiwidG
 lkIjoidHJhbi0wMSIsInRlZSI6IlNlY3VyaVRFRSIsIm5leHRkc2kiOiJmYWxzZSIsImRz
 aWhhc2giOiIyMmVmOWNkM2U3YzZhZTkzMjZjZGI2ZWQ4OTYyMzU1M2NiYmJjMGMyNDRlYz
 gyYmNjMjQyNjliMTViOWZkYTNiIiwiY29udGVudCI6eyJwcm90ZWN0ZWQiOiJlLUtBbkdW
 dVktS0FuVHJpZ0p4Qk1USTRRMEpETFVoVE1qVTI0b0NkZlEiLCJyZWNpcGllbnRzIjpbey
 JoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9rZXkiOiJTUzE2NTl4Q2FJ
 c1dUeUlsVTZPLUVsZzU4UUhvT1pCekxVRGptVG9vanBaWE54TVpBakRMcWtaSTdEUzhOVG
 FIWHcxczFvZjgydVhsM0d6NlVWMkRoZDJ3R2l6Y2VEdGtXc1RwZDg4QVYwaWpEYTNXa3lk

Pei, et al. Expires July 9, 2017 [Page 91]

Internet-Draft OTrP January 2017

 dEpSVmlPOGdkSlEtV29NSUVJRUxzVGthblZCb25wQkF4ZHE0ckVMbl9TZlliaFg4Zm9ub2
 gxUVUifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImNpcGhlcnRleHQiOiI1
 bmVWZXdndm55UXprR3hZeWw5QlFrZTJVNjVaOHp4NDdlb3NzM3FETy0xY2FfNEpFY3NLcj
 ZhNjF5QzBUb0doYnJOQWJXbVRSemMwSXB5bTF0ZjdGemp4UlhBaTZBYnVSM2gzSUpRS1Bj
 UUVvRUlkZ2tWX0NaZTM2eTBkVDBpRFBMclg0QzFkb0dmMEdvaWViRC1yVUg1VUtEY3BsTW
 9lTjZvUnFyd0dnNUhxLTJXM3B4MUlzY0h4SktRZm11dkYxMTJ4ajBmZFNZX0N2WFE1NTJr
 TVRDUW1ZbzRPaGF2R0ZvaG9TZVVnaGZSVG1LYWp3OThkTzdhREdrUEpRUlBtYVVHWllEMW
 JXd01nMXFRV3RPd19EZlIyZDNzTzVUN0pQMDJDUFprVXBiQ3dZYVcybW9HN1c2Zlc2U3V5
 Q2lpd2pQWmZSQmIzSktTVTFTd1kxYXZvdW02OWctaDB6by12TGZvbHRrWFV2LVdPTXZTY0
 JzR25NRzZYZnMzbXlTWnJ1WTNRR09wVVRzdjFCQ0JqSTJpdjkwb2U2aXFCcVpxQVBxbzdi
 ajYwVlJGQzZPTlNLZExGQTIyU3pqRHo1dmtnTXNEaHkwSzlDeVhYN1Z6MkNLTXJvQjNiUE
 xFZF9abTZuVWlkTFN5cVJ5cXJxTmVnN1lmQng3aV93X0dzRW9rX1VYZXd6RGtneHp6RjZj
 XzZ6S0s3UFktVnVmYUo0Z2dHZmlpOHEwMm9RZ1VEZTB2Vm1FWDc0c2VQX2RxakVpZVVOYm
 xBZE9sS2dBWlFGdEs4dy1xVUMzSzVGTjRoUG9yeDc2b3lPVUpOQTVFZVV2Qy1jR2tMcTNQ
 UG1GRmQyaUtOTElCTEJzVWl6c1h3RERvZVA5SmktWGt5ZEQtREN1SHdpcno0OEdNNWVLSj
 Q5WVdqRUtFQko2T01NNUNmZHZ4cDNmVG1uUTdfTXcwZ3FZVDRiOUJJSnBfWjA3TTctNUpE
 emg0czhyU3dsQzFXU3V2RmhRWlJCcXJtX2RaUlRIb0VaZldXc1VCSWVNWWdxNG1zb0JqTj
 NXSzhnRWYwZGI5a3Z6UG9LYmpJRy10UUE2R2l1X3pHaFVfLXFBV1lLemVKMDZ6djRIWlBO
 dHktQXRyTGF0WGhtUTdOQlVrX0hvbjdOUWxhU1g1ZHVNVmN4bGs1ZHVrWFZNMDgxa09wYV
 kzbDliQVFfYVhTM0FNaFFTTVVsT3dnTDZJazFPYVpaTGFMLUE3ejlITnlESmFEWTVhakZK
 TWFDV1lfOG94YlNoQUktNXA2MmNuT0xzV0dNWWNKTlBGVTZpcWlMR19oc3JfNlNKMURhbD
 VtQ0YycnBJLUItMlhuckxZR01ZS0NEZ2V2dGFnbi1DVUV6RURwR3ozQ2VLcWdQU0Vqd3BK
 N0M3NXduYTlCSmtTUkpOdDNla3hoWElrcnNEazRHVVpMSDdQYzFYZHdRTXhxdWpzNmxJSV
 EycjM1NWEtVkotWHdPcFpfY3RPdW96LTA4WHdYQ3RkTEliSFFVTG40RjlMRTRtanU0dUxS
 bjNSc043WWZ1S3dCVmVEZDJ6R3NBY0s5SVlDa3hOaDk3dDluYW1iMDZqSXVoWXF5QkhWRU
 9nTkhici1rMDY1bW9OVk5lVVUyMm5OdVNKS0ZxVnIxT0dKNGVfNXkzYkNwTmxTeEFPV1Bn
 RnJzU0Flc2JJOWw4eVJtVTAwenJYdGc4OWt5SjlCcXN2eXA1RE8wX2FtS1JyMXB1MVJVWF
 lFZzB2ampKS1FSdDVZbXRUNFJzaWpqdGRDWDg3UUxJaUdSY0hDdlJzUzZSdDJESmNYR1ht
 UGQyc0ZmNUZyNnJnMkFzX3BmUHN3cnF1WlAxbVFLc3RPMFVkTXpqMTlyb2N1NHVxVXlHUD
 lWWU54cHVnWVdNSjRYb1dRelJtWGNTUEJ4VEtnenFPS2s3UnRzWWVMNXl4LVM4NjV0cHVz
 dTA0bXpzYUJRZ21od1ZFVXBRdWNrcG1YWkNLNHlJUXktaHNFQUlJSmVxdFB3dVAySXF0X2
 I5dlk0bzExeXdzeXhzdmp2RnNKN0VVZU1MaGE2R2dSanBSbnU5RWIzRnlJZ0U5M0VVNEEw
 T0lUMWlOSGNRYWc0eWtOc3dPdkxQbjZIZ21zQ05ESlgwekc2RlFDMTZRdjBSQ25SVTdfV2
 VvblhSTUZwUzZRZ1JiSk45R1NMckN5bklJSWxUcDBxNHBaS05zM0tqQ2tMUzJrb3Bhd2Y0
 WF9BUllmTko3a0s5eW5BR0dCcktnUWJNRWVxUEFmMDBKMlYtVXpuU1JMZmQ4SGs3Y2JEdk
 5RQlhHQW9BR0ViaGRwVUc0RXFwMlVyQko3dEtyUUVSRlh4RTVsOFNHY2czQ1RmN2Zoazdx
 VEFBVjVsWEFnOUtOUDF1c1ZRZk1fUlBleHFNTG9WQVVKV2syQkF6WF9uSEhkVVhaSVBIOG
 hLeDctdEFRV0dTWUd0R2FmanZJZzI2c082TzloQWZVd3BpSV90MzF6SkZORDU0OTZURHBz
 QmNnd2dMLU1UcVhCRUJ2NEhvQld5SG1DVjVFMUwiLCJ0YWciOiJkbXlEeWZJVlNJUi1Ren
 ExOEgybFRIeEMxbl9HZEtrdnZNMDJUcHdsYzQwIn19fQ",
 "protected":"e-KAnGFsZ-KAnTrigJxSUzI1NuKAnX0", //RSAwithSHA256
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p

Pei, et al. Expires July 9, 2017 [Page 92]

Internet-Draft OTrP January 2017

 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"nuQUsCTEBLeaRzuwd7q1iPIYEJ2eJfurO5sT5Y-
 N03zFRcv1jvrqMHtx_pw0Y9YWjmpoWfpfelhwGEko9SgeeBnznmkZbp7kjS6MmX4CKz
 9OApe3-VI7yL9Yp0WNdRh3425eYfuapCy3lcXFln5JBAUnU_OzUg3RWxcU_yGnFsw"
 }
}

A.1.2.2. Sample CreateSDResponse

{
 "CreateSDTBSResponse": {
 "ver":"1.0",
 "status":"pass",
 "rid":"req-01",
 "tid":"tran-01",
 "content":{
 "did":"zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM",
 "sdname":"sd.bank.com",
 "teespaik":"AQABjY9KiwH3hkMmSAAN6CLXot525U85WNlWKAQz5TOdfe_CM8h-
 X6_EHX1gOXoyRXaBiKMqWb0YZLCABTw1ytdXy2kWa525imRho8Vqn6HDGsJDZPDru9
 GnZR8pZX5ge_dWXB_uljMvDttc5iAWEJ8ZgcpLGtBTGLZnQoQbjtn1lIE",
 }
 }
}

 Here is the response message after the content is encrypted and
 encoded.

{
 "CreateSDResponse": {
 "payload":"
 eyJDcmVhdGVTRFRCU1Jlc3BvbnNlIjp7InZlciI6IjEuMCIsInN0YXR1cyI6InBhc3Mi
 LCJyaWQiOiJyZXEtMDEiLCJ0aWQiOiJ0cmFuLTAxIiwiY29udGVudCI6eyJwcm90ZWN0
 ZWQiOiJlLUtBbkdWdVktS0FuVHJpZ0p4Qk1USTRRMEpETFVoVE1qVTI0b0NkZlEiLCJy
 ZWNpcGllbnRzIjpbeyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9r

Pei, et al. Expires July 9, 2017 [Page 93]

Internet-Draft OTrP January 2017

 ZXkiOiJOX0I4R3pldUlfN2hwd0wwTFpHSTkxVWVBbmxJRkJfcndmZU1yZERrWnFGak1s
 VVhjdlI0XzhhOGhyeFI4SXR3aEtFZnVfRWVLRDBQb0dqQ2pCSHcxdG1ULUN6eWhsbW5v
 Slk3LXllWnZzRkRpc2VNTkd0eGE0OGZJYUs2VWx5NUZMYXBCZVc5T1I5bmktOU9GQV9j
 aFVuWWl3b2Q4ZTJFa0Vpd0JEZ1EzMk0ifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIz
 Um9aUSIsImNpcGhlcnRleHQiOiJsalh6Wk5JTmR1WjFaMXJHVElkTjBiVUp1RDRVV2xT
 QVptLWd6YnJINFVDYy1jMEFQenMtMWdWSFk4NTRUR3VMYkdyRmVHcDFqM2Fsb1lacWZp
 ZnE4aEt3Ty16RFlBN2tmVFhBZHp6czM4em9xeG4zbHoyM2w1RUlGUWhrOHBRWTRYTHRW
 M3ZBQWlNYnlrQ1Q3VS1CWDdWcjBacVNhYWZTQVZ4OFBLQ1RIU3hHN3hHVko0NkxxRzJS
 RE54WXQ4RC1SQ3lZUi1zRTM0MUFKZldEc2FLaGRRbzJXcjNVN1hTOWFqaXJtWjdqTlJ4
 cVRodHJBRWlIY1ctOEJMdVFHWEZ1YUhLMTZrenJKUGl4d0VXbzJ4cmw4cmkwc3ZRcHpl
 Z2M3MEt2Z0I0NUVaNHZiNXR0YlUya25hN185QU1Wcm4wLUJaQ1Bnb280MWlFblhuNVJn
 TXY2c2V2Y1JPQ2xHMnpWSjFoRkVLYjk2akEiLCJ0YWciOiIzOTZISTk4Uk1NQnR0eDlo
 ZUtsODROaVZLd0lJSzI0UEt2Z1RGYzFrbEJzIn19fQ",
 "protected": "e-KAnGFsZ-KAnTrigJxSUzI1NuKAnX0",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcN
 MTUwNzAyMDkwMTE4WhcNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzET
 MBEGA1UECAwKQ2FsaWZvcm5pYTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8G
 A1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEB
 AQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA
 6b_ZI3c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX
 9nxZBNQWDjAJBgNVHRMEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8E
 DDAKBggrBgEFBQcDAzANBgkqhkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4iv
 em4cIckfxzTBBiPHCjrrjB2X8Ktn8GSZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fV
 rJvnYAUBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"jnJtaB0vFFwrE-qKOR3Pu9pf2gNoI1s67GgPCTq0U-
 qrz97svKpuh32WgCP2MWCoQPEswsEX-nxhIx_siTe4zIPO1nBYn-
 R7b25rQaF87O8uAOOnBN5Yl2Jk3laIbs-
 hGE32aRZDhrVoyEdSvIFrT6AQqD20bIAZGqTR-zA-900"
 }
}

A.1.3. Sample UpdateSD

Pei, et al. Expires July 9, 2017 [Page 94]

Internet-Draft OTrP January 2017

A.1.3.1. Sample UpdateSDRequest

{
 "UpdateSDTBSRequest": {
 "ver": "1.0",
 "rid": "1222DA7D-8993-41A4-AC02-8A2807B31A3A",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "tee": "Primary TEE ABC",
 "nextdsi": "false",
 "dsihash":
 "
 IsOvwpzDk8Onw4bCrsKTJsONwrbDrcKJYjVTw4vCu8OAw4JEw6zCgsK8w4JCacKxW8Kf
 w5o7",
 "content": { // NEEDS to BE ENCRYPTED
 "tsmid": "id1.tsmxyz.com",
 "spid": "com.acmebank.spid1",
 "sdname": "com.acmebank.sdname1",
 "changes": {
 "newsdname": "com.acmebank.sdname2",
 "newspid": "com.acquirer.spid1",
 "spcert":
 "MIIDFjCCAn-
 gAwIBAgIJAIk0Tat0tquDMA0GCSqGSIb3DQEBBQUAMGwxCzAJBgNVBAYTAktSMQ4
 wDAYDVQQIDAVTZW91bDESMBAGA1UEBwwJR3Vyby1kb25nMRAwDgYDVQQKDAdTb2x
 hY2lhMRAwDgYDVQQLDAdTb2xhY2lhMRUwEwYDVQQDDAxTb2xhLWNpYS5jb20wHhc
 NMTUwNzAyMDg1MTU3WhcNMjAwNjMwMDg1MTU3WjBsMQswCQYDVQQGEwJLUjEOMAw
 GA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU29sYWN
 pYTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tMIGfMA0
 GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDYWLrFf2OFMEciwSYsyhaLY4kslaWcXA0
 hCWJRaFzt5mU-
 lpSJ4jeu92inBbsXcI8PfRbaItsgW1TD1Wg4gQH4MX_YtaBoOepE--
 3JoZZyPyCWS3AaLYWrDmqFXdbzaO1i8GxB7zz0gWw55bZ9jyzcl5gQzWSqMRpx_d
 cad2SP2wIDAQABo4G_MIG8MIGGBgNVHSMEfzB9oXCkbjBsMQswCQYDVQQGEwJLUj
 EOMAwGA1UECAwFU2VvdWwxEjAQBgNVBAcMCUd1cm8tZG9uZzEQMA4GA1UECgwHU2
 9sYWNpYTEQMA4GA1UECwwHU29sYWNpYTEVMBMGA1UEAwwMU29sYS1jaWEuY29tgg
 kAiTRNq3S2q4MwCQYDVR0TBAIwADAOBgNVHQ8BAf8EBAMCBsAwFgYDVR0lAQH_BA
 wwCgYIKwYBBQUHAwMwDQYJKoZIhvcNAQEFBQADgYEAEFMhRwEQ-
 LDa9O7P1N0mcLORpo6fW3QuJfuXbRQRQGoXddXMKazI4VjbGaXhey7Bzvk6TZYDa
 -
 GRiZby1J47UPaDQR3UiDzVvXwCOU6S5yUhNJsW_BeMViYj4lssX28iPpNwLUCVm1
 QVTHILI6afLCRWXXclc1L5KGY290OwIdQ",
 "renewteespaik": "0"
 }
 }
 }
}

Pei, et al. Expires July 9, 2017 [Page 95]

Internet-Draft OTrP January 2017

A.1.3.2. Sample UpdateSDResponse

{
 "UpdateSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "1222DA7D-8993-41A4-AC02-8A2807B31A3A",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "content": {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 "teespaik":
 "AQABjY9KiwH3hkMmSAAN6CLXot525U85WNlWKAQz5TOdfe_CM8h-
 X6_EHX1gOXoyRXaBiKMqWb0YZLCABTw1ytdXy2kWa525imRho8Vqn6HDGsJDZPDru9
 GnZR8pZX5ge_dWXB_uljMvDttc5iAWEJ8ZgcpLGtBTGLZnQoQbjtn1lIE",
 "teespaiktype": "RSA"
 }
 }
}

A.1.4. Sample DeleteSD

A.1.4.1. Sample DeleteSDRequest

 TSM builds message - including data to be encrypted.

 {
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "tee": "Primary TEE",
 "nextdsi": "false",
 "dsihash": "AAECAwQFBgcICQoLDA0ODwABAgMEBQYHCAkKCwwNDg8=",
 "content": ENCRYPTED {
 "tsmid": "tsm1.com",
 "sdname": "default.acmebank.com",
 "deleteta": "1"
 }
 }
 }

 TSM encrypts the "content".

Pei, et al. Expires July 9, 2017 [Page 96]

Internet-Draft OTrP January 2017

{
 "DeleteSDTBSRequest": {
 "ver": "1.0",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "tee": "Primary TEE",
 "nextdsi": "false",
 "dsihash": "AAECAwQFBgcICQoLDA0ODwABAgMEBQYHCAkKCwwNDg8=",
 "content": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMga2
 V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "rWO5DVmQX9ogelMLBIogIA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZWNp
 cGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
}

 TSM signs "DeleteSDTBSRequest" to form "DeleteSDRequest"

Pei, et al. Expires July 9, 2017 [Page 97]

Internet-Draft OTrP January 2017

 {
 "DeleteSDRequest": {
 "payload":"
 ewoJIkRlbGV0ZVNEVEJTUmVxdWVzdCI6IHsKCQkidmVyIjogIjEuMCIsCgkJInJp
 ZCI6ICJ7NzEyNTUxRjUtREZCMy00M2YwLTlBNjMtNjYzNDQwQjkxRDQ5fSIsCgkJ
 InRpZCI6ICJ7NEY0NTRBN0YtMDAyRC00MTU3LTg4NEUtQjBERDFBMDZBOEFFfSIs
 CgkJInRlZSI6ICJQcmltYXJ5IFRFRSIsCgkJIm5leHRkc2kiOiAiZmFsc2UiLAoJ
 CSJkc2loYXNoIjogIkFBRUNBd1FGQmdjSUNRb0xEQTBPRHdBQkFnTUVCUVlIQ0Fr
 S0N3d05EZzg9IiwKCQkiY29udGVudCI6IHsKCQkJInByb3RlY3RlZCI6ICJleUps
 Ym1NaU9pSkJNVEk0UTBKRExVaFRNalUySW4wIiwKCQkJInJlY2lwaWVudHMiOiBb
 ewoJCQkJImhlYWRlciI6IHsKCQkJCQkiYWxnIjogIlJTQTFfNSIKCQkJCX0sCgkJ
 CQkiZW5jcnlwdGVkX2tleSI6ICJRVVZUTVRJNElDaERSVXNwSUd0bGVTd2daVzVq
 Y25sd2RHVmtJSGRwZEdnZ1ZGTk5JRkpUUVNCd2RXSnNhV01nYTJWNUxDQjFjMmx1
 WnlCU1UwRXhYelVnY0dGa1pHbHVadyIKCQkJfV0sCgkJCSJpdiI6ICJyV081RFZt
 UVg5b2dlbE1MQklvZ0lBIiwKCQkJImNpcGhlcnRleHQiOiAiYzJGdGNHeGxJR1J6
 YVNCa1lYUmhJR1Z1WTNKNWNIUmxaQ0IzYVhSb0lFRkZVekV5T0NCclpYa2dabkp2
 YlNCeVpXTnBjR2xsYm5SekxtVnVZM0o1Y0hSbFpGOXJaWGsiLAoJCQkidGFnIjog
 ImMyRnRjR3hsSUdGMWRHaGxiblJwWTJGMGFXOXVJSFJoWnciCgkJfQoJfQp9",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "x5c": ["ZXhhbXBsZSBBU04xIHNpZ25lciBjZXJ0aWZpY2F0ZQ==",
 "ZXhhbXBsZSBBU04xIENBIGNlcnRpZmljYXRl"]
 },
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }

A.1.4.2. Sample DeleteSDResponse

 TEE creates "DeleteSDTBSResponse" to respond to the "DeleteSDRequest"
 message from the TSM, including data to be encrypted.

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "content": ENCRYPTED {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 }
 }
 }

 TEE encrypts the "content" for the TSM.

Pei, et al. Expires July 9, 2017 [Page 98]

Internet-Draft OTrP January 2017

 {
 "DeleteSDTBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "{712551F5-DFB3-43f0-9A63-663440B91D49}",
 "tid": "{4F454A7F-002D-4157-884E-B0DD1A06A8AE}",
 "content": {
 "protected": "eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0K",
 "recipients": [
 {
 "header": {
 "alg": "RSA1_5"
 },
 "encrypted_key":
 "
 QUVTMTI4IChDRUspIGtleSwgZW5jcnlwdGVkIHdpdGggVFNNIFJTQSBwdWJsaWMg
 a2V5LCB1c2luZyBSU0ExXzUgcGFkZGluZw"
 }
],
 "iv": "ySGmfZ69YlcEilNr5_SGbA",
 "ciphertext":
 "
 c2FtcGxlIGRzaSBkYXRhIGVuY3J5cHRlZCB3aXRoIEFFUzEyOCBrZXkgZnJvbSByZW
 NpcGllbnRzLmVuY3J5cHRlZF9rZXk",
 "tag": "c2FtcGxlIGF1dGhlbnRpY2F0aW9uIHRhZw"
 }
 }
 }

 TEE signs "DeleteSDTBSResponse" to form "DeleteSDResponse"

Pei, et al. Expires July 9, 2017 [Page 99]

Internet-Draft OTrP January 2017

 {
 "DeleteSDResponse": {
 "payload":"
 ewoJIkRlbGV0ZVNEVEJTUmVzcG9uc2UiOiB7CgkJInZlciI6ICIxLjAiLAoJCSJz
 dGF0dXMiOiAicGFzcyIsCgkJInJpZCI6ICJ7NzEyNTUxRjUtREZCMy00M2YwLTlB
 NjMtNjYzNDQwQjkxRDQ5fSIsCgkJInRpZCI6ICJ7NEY0NTRBN0YtMDAyRC00MTU3
 LTg4NEUtQjBERDFBMDZBOEFFfSIsCgkJImNvbnRlbnQiOiB7CgkJCSJwcm90ZWN0
 ZWQiOiAiZXlKbGJtTWlPaUpCTVRJNFEwSkRMVWhUTWpVMkluMEsiLAoJCQkicmVj
 aXBpZW50cyI6IFt7CgkJCQkiaGVhZGVyIjogewoJCQkJCSJhbGciOiAiUlNBMV81
 IgoJCQkJfSwKCQkJCSJlbmNyeXB0ZWRfa2V5IjogIlFVVlRNVEk0SUNoRFJVc3BJ
 R3RsZVN3Z1pXNWpjbmx3ZEdWa0lIZHBkR2dnVkZOTklGSlRRU0J3ZFdKc2FXTWdh
 MlY1TENCMWMybHVaeUJTVTBFeFh6VWdjR0ZrWkdsdVp3IgoJCQl9XSwKCQkJIml2
 IjogInlTR21mWjY5WWxjRWlsTnI1X1NHYkEiLAoJCQkiY2lwaGVydGV4dCI6ICJj
 MkZ0Y0d4bElHUnphU0JrWVhSaElHVnVZM0o1Y0hSbFpDQjNhWFJvSUVGRlV6RXlP
 Q0JyWlhrZ1puSnZiU0J5WldOcGNHbGxiblJ6TG1WdVkzSjVjSFJsWkY5clpYayIs
 CgkJCSJ0YWciOiAiYzJGdGNHeGxJR0YxZEdobGJuUnBZMkYwYVc5dUlIUmhadyIK
 CQl9Cgl9Cn0",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "signature":"c2FtcGxlIHNpZ25hdHVyZQ"
 }
 }

 TEE returns "DeleteSDResponse" back to OTrP Agent, which returns
 message back to TSM.

A.2. Sample TA Management Messages

A.2.1. Sample InstallTA

A.2.1.1. Sample InstallTARequest

Pei, et al. Expires July 9, 2017 [Page 100]

Internet-Draft OTrP January 2017

{
 "InstallTATBSRequest": {
 "ver": "1.0",
 "rid": "24BEB059-0AED-42A6-A381-817DFB7A1207",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "tee": "Primary TEE ABC",
 "nextdsi": "true",
 "dsihash":
 "
 IsOvwpzDk8Onw4bCrsKTJsONwrbDrcKJYjVTw4vCu8OAw4JEw6zCgsK8w4JCacKxW8Kf
 w5o7",
 "content": {
 "tsmid": "id1.tsmxyz.com",
 "spid": "com.acmebank.spid1",
 "sdname": "com.acmebank.sdname1",
 "taid": "com.acmebank.taid.banking"
 },
 "encrypted_ta": {
 "key":
 "mLBjodcE4j36y64nC/nEs694P3XrLAOokjisXIGfs0H7lOEmT5FtaNDYEMcg9RnE
 ftlJGHO7N0lgcNcjoXBmeuY9VI8xzrsZM9gzH6VBKtVONSx0aw5IAFkNcyPZwDdZ
 MLwhvrzPJ9Fg+bZtrCoJz18PUz+5aNl/dj8+NM85LCXXcBlZF74btJer1Mw6ffzT
 /grPiEQTeJ1nEm9F3tyRsvcTInsnPJ3dEXv7sJXMrhRKAeZsqKzGX4eiZ3rEY+FQ
 6nXULC8cAj5XTKpQ/EkZ/iGgS0zcXR7KUJv3wFEmtBtPD/+ze08NILLmxM8olQFj
 //Lq0gGtq8vPC8r0oOfmbQ==",
 "iv": "4F5472504973426F726E496E32303135",
 "alg": "AESCBC",
 "ciphertadata":
 "......0x/5KGCXWfg1Vrjm7zPVZqtYZ2EovBow+7EmfOJ1tbk......=",
 "cipherpdata": "0x/5KGCXWfg1Vrjm7zPVZqtYZ2EovBow+7EmfOJ1tbk="
 }
 }
}

A.2.1.2. Sample InstallTAResponse

 A sample to-be-signed response of InstallTA looks as follows.

 {
 "InstallTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "24BEB059-0AED-42A6-A381-817DFB7A1207",
 "tid": "4F454A7F-002D-4157-884E-B0DD1A06A8AE",
 "content": {
 "did": "MTZENTE5Qzc0Qzk0NkUxMzYxNzk0NjY4NTc3OTY4NTI=",
 "dsi": {
 "tfwdata": {

Pei, et al. Expires July 9, 2017 [Page 101]

Internet-Draft OTrP January 2017

 "tbs": "ezRGNDU0QTdGLTAwMkQtNDE1Ny04ODRFLUIwREQxQTA2QThBRX0="
 "cert": "ZXhhbXBsZSBGVyBjZXJ0aWZpY2F0ZQ==",
 "sigalg": "UlMyNTY=",
 "sig": "c2FtcGxlIEZXIHNpZ25hdHVyZQ=="
 },
 "tee": {
 "name": "Primary TEE",
 "ver": "1.0",
 "cert": "c2FtcGxlIFRFRSBjZXJ0aWZpY2F0ZQ==",
 "cacert": [
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDE=",
 "c2FtcGxlIENBIGNlcnRpZmljYXRlIDI="
],
 "sdlist": {
 "cnt": "1",
 "sd": [
 {
 "name": "com.acmebank.sdname1",
 "spid": "com.acmebank.spid1",
 "talist": [
 {
 "taid": "com.acmebank.taid.banking",
 "taname": "Acme secure banking app"
 },
 {
 "taid": "acom.acmebank.taid.loyalty.rewards",
 "taname": "Acme loyalty rewards app"
 }
]
 }
]
 },
 "teeaiklist": [
 {
 "spaik":
 "c2FtcGxlIEFTTjEgZW5jb2RlZCBQS0NTMSBwdWJsaWNrZXk=",
 "spaiktype": "RSA"
 "spid": "acmebank.com"
 }
]
 }
 }
 }
 }
 }

Pei, et al. Expires July 9, 2017 [Page 102]

Internet-Draft OTrP January 2017

A.2.2. Sample UpdateTA

A.2.2.1. Sample UpdateTARequest

{
 "UpdateTATBSRequest": {
 "ver": "1.0",
 "rid": "req-2",
 "tid": "tran-01",
 "tee": "SecuriTEE",
 "nextdsi": " false",
 "dsihash": "gwjul_9MZks3pqUSN1-eL1aViwGXNAxk0AIKW79dn4U",
 "content": {
 "tsmid": "tsm1.acme.com",
 "spid": "bank.com",
 "sdname": "sd.bank.com",
 "taid": "sd.bank.com.ta"
 },
 "encrypted_ta": {
 "key":
 "
 XzmAn_RDVk3IozMwNWhiB6fmZlIs1YUvMKlQAv_UDoZ1fvGGsRGo9bT0A440aYMgLt
 GilKypoJjCgijdaHgamaJgRSc4Je2otpnEEagsahvDNoarMCC5nGQdkRxW7Vo2NKgL
 A892HGeHkJVshYm1cUlFQ-BhiJ4NAykFwlqC_oc",
 "iv": "AxY8DCtDaGlsbGljb3RoZQ",
 "alg": "AESCBC",
 "ciphernewtadata":
 "KHqOxGn7ib1F_14PG4_UX9DBjOcWkiAZhVE-U-
 67NsKryHGokeWr2spRWfdU2KWaaNncHoYGwEtbCH7XyNbOFh28nzwUmstep4nHWbAl
 XZYTNkENcABPpuw_G3I3HADo"
 }
 }
}

{
 "UpdateTARequest": {
 "payload" :
 "
 eyJVcGRhdGVUQVRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTIiLCJ0
 aWQiOiJ0cmFuLTAxIiwidGVlIjoiU2VjdXJpVEVFIiwibmV4dGRzaSI6ImZhbHNlIiwi
 ZHNpaGFzaCI6Imd3anVsXzlNWmtzM3BxVVNOMS1lTDFhVml3R1hOQXhrMEFJS1c3OWRu
 NFUiLCJjb250ZW50Ijp7InByb3RlY3RlZCI6ImV5SmxibU1pT2lKQk1USTRRMEpETFVo
 VE1qVTJJbjAiLCJyZWNpcGllbnRzIjpbeyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0s
 ImVuY3J5cHRlZF9rZXkiOiJYem1Bbl9SRFZrM0lvek13TldoaUI2Zm1abElzMVlVdk1L
 bFFBdl9VRG9aMWZ2R0dzUkdvOWJUMEE0NDBhWU1nTHRHaWxLeXBvSmpDZ2lqZGFIZ2Ft
 YUpnUlNjNEplMm90cG5FRWFnc2FodkROb2FyTUNDNW5HUWRrUnhXN1ZvMk5LZ0xBODky
 SEdlSGtKVnNoWW0xY1VsRlEtQmhpSjROQXlrRndscUNfb2MifV0sIml2IjoiQXhZOERD
 dERhR2xzYkdsamIzUm9aUSIsImNpcGhlcnRleHQiOiJIYTcwVXRZVEtWQmtXRFJuMi0w

Pei, et al. Expires July 9, 2017 [Page 103]

Internet-Draft OTrP January 2017

 SF9IdkZtazl5SGtoVV91bk1OLWc1T3BqLWF1NGFUb2lxWklMYzVzYTdENnZZSjF6eW04
 QW1JOEJIVXFqc2l5Z0tOcC1HdURJUjFzRXc0a2NhMVQ5ZENuU0RydHhSUFhESVdrZmt3
 azZlR1NQWiIsInRhZyI6Im9UN01UTE41eWtBTFBoTDR0aUh6T1pPTGVFeU9xZ0NWaEM5
 MXpkcldMU0UifSwiZW5jcnlwdGVkX3RhIjp7ImtleSI6Ilh6bUFuX1JEVmszSW96TXdO
 V2hpQjZmbVpsSXMxWVV2TUtsUUF2X1VEb1oxZnZHR3NSR285YlQwQTQ0MGFZTWdMdEdp
 bEt5cG9KakNnaWpkYUhnYW1hSmdSU2M0SmUyb3RwbkVFYWdzYWh2RE5vYXJNQ0M1bkdR
 ZGtSeFc3Vm8yTktnTEE4OTJIR2VIa0pWc2hZbTFjVWxGUS1CaGlKNE5BeWtGd2xxQ19v
 YyIsIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImFsZyI6IkFFU0NCQyIsImNp
 cGhlcm5ld3RhZGF0YSI6IktIcU94R243aWIxRl8xNFBHNF9VWDlEQmpPY1draUFaaFZF
 LVUtNjdOc0tyeUhHb2tlV3Iyc3BSV2ZkVTJLV2FhTm5jSG9ZR3dFdGJDSDdYeU5iT0Zo
 MjhuendVbXN0ZXA0bkhXYkFsWFpZVE5rRU5jQUJQcHV3X0czSTNIQURvIn19fQ",
 "protected": " eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"inB1K6G3EAhF-
 FbID83UI25R5Ao8MI4qfrbrmf0UQhjM3O7_g3l6XxN_JkHrGQaZr-
 myOkGPVM8BzbUZW5GqxNZwFXwMeaoCjDKc4Apv4WZkD1qKJxkg1k5jaUCfJz1Jmw_XtX
 6MHhrLh9ov03S9PtuT1VAQ0FVUB3qFIvjSnNU"
 }
}

A.2.2.2. Sample UpdateTAResponse

Pei, et al. Expires July 9, 2017 [Page 104]

Internet-Draft OTrP January 2017

 {
 "UpdateTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "req-2",
 "tid": "tran-01",
 "content": {
 "did": "zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
 }

Pei, et al. Expires July 9, 2017 [Page 105]

Internet-Draft OTrP January 2017

{
 "UpdateTAResponse":{
 "payload":"
 eyJVcGRhdGVUQVRCU1Jlc3BvbnNlIjp7InZlciI6IjEuMCIsInN0YXR1cyI6InBhc3Mi
 LCJyaWQiOiJyZXEtMiIsInRpZCI6InRyYW4tMDEiLCJjb250ZW50Ijp7InByb3RlY3Rl
 ZCI6ImV5SmxibU1pT2lKQk1USTRRMEpETFVoVE1qVTJJbjAiLCJyZWNpcGllbnRzIjpb
 eyJoZWFkZXIiOnsiYWxnIjoiUlNBMV81In0sImVuY3J5cHRlZF9rZXkiOiJFaGUxLUJB
 UUdJLTNEMFNHdXFGY01MZDJtd0gxQm1uRndYQWx1M1FxUFVXZ1RRVm55SUowNFc2MnBK
 YWVSREFkeTU0R0FSVjBrVzQ0RGw0MkdUUlhqbE1EZ3BYdXdFLWloc1JVV0tNNldCZ2N3
 VXVGQTRUR3gwU0I1NTZCdl92dnBNaFdfMXh2c2FHdFBaQmwxTnZjbXNibzBhY3FobXlu
 bzBDTmF5SVAtX1UifV0sIml2IjoiQXhZOERDdERhR2xzYkdsamIzUm9aUSIsImNpcGhl
 cnRleHQiOiJwc2o2dGtyaGJXM0lmVElMeE9GMU5HdFUtcTFmeVBidV9KWk9jbklycWIw
 eTNPOHN6OTItaWpWR1ZyRW5WbG1sY1FYeWFNZTNyX1JGdEkwV3B4UmRodyIsInRhZyI6
 Ik0zb2dNNk11MVJYMUMybEZvaG5rTkN5b25qNjd2TDNqd2RrZXhFdUlpaTgifX19",
 "protected":"eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"
 Twajmt_BBLIMcNrDsjqr8lI7O7lEQxXZNhlUOtFkOMMqf37wOPKtp_99LoS82CVmdpCo
 PLaws8zzh-SNIQ42-
 9GYO8_9BaEGCiCwyl8YgWP9fWNfNv2gR2fl2DK4uknkYu1EMBW4YfP81n_pGpb4Gm-
 nMk14grVZygwAPej3ZZk"
 }
}

Pei, et al. Expires July 9, 2017 [Page 106]

Internet-Draft OTrP January 2017

A.2.3. Sample DeleteTA

A.2.3.1. Sample DeleteTARequest

 {
 "DeleteTATBSRequest": {
 "ver": "1.0",
 "rid": "req-2",
 "tid": "tran-01",
 "tee": "SecuriTEE",
 "nextdsi": "false",
 "dsihash": "gwjul_9MZks3pqUSN1-eL1aViwGXNAxk0AIKW79dn4U",
 "content": {
 "tsmid": "tsm1.acme.com",
 "sdname": "sd.bank.com",
 "taid": "sd.bank.com.ta"
 }
 }
 }

Pei, et al. Expires July 9, 2017 [Page 107]

Internet-Draft OTrP January 2017

{
 "DeleteTARequest": {
 "payload":
 "
 eyJEZWxldGVUQVRCU1JlcXVlc3QiOnsidmVyIjoiMS4wIiwicmlkIjoicmVxLTIiLCJ0
 aWQiOiJ0cmFuLTAxIiwidGVlIjoiU2VjdXJpVEVFIiwibmV4dGRzaSI6ImZhbHNlIiwi
 ZHNpaGFzaCI6Imd3anVsXzlNWmtzM3BxVVNOMS1lTDFhVml3R1hOQXhrMEFJS1c3OWRu
 NFUiLCJjb250ZW50Ijp7InByb3RlY3RlZCI6eyJlbmMiOiJBMTI4Q0JDLUhTMjU2In0s
 InJlY2lwaWVudHMiOlt7ImhlYWRlciI6eyJhbGciOiJSU0ExXzUifSwiZW5jcnlwdGVk
 X2tleSI6ImtyaGs0d2dpY0RlX3d0VXQyTW4tSUJsdUtvX0JkeXpNY2p1cVlBenBPYnRS
 TG9MZzQ0QkFLN2tRVWE1YTg0TEVJRGEzaHNtWDIxdldNZFJLczN4MTJsOUh5VFdfLUNS
 WmZtcUx2bEh1LV9MSVdvc1ZyRTZVMlJqUnRndllVOWliUkVLczkzRDRHWm4xVHFuZG9n
 d0tXRF9jdG1nWG1sbzZZVXpCWDZhR1dZMCJ9XSwiaXYiOiJBeFk4REN0RGFHbHNiR2xq
 YjNSb1pRIiwiY2lwaGVydGV4dCI6IkhhNzBVdFlUS1ZCa1dEUm4yLTBIX1BGa19yQnpQ
 dGJHdzhSNktlMXotdklNeFBSY0Nxa1puZmwyTjRjUTZPSTZCSHZJUUFoM2Jic0l0dHlR
 bXhDTE5Nbm8wejBrYm9TdkIyVXlxWExpeGVZIiwidGFnIjoidEtUbFRLdlR2LTRtVVlG
 Y1dYWnZMMVlhQnRGNloxVlNxOTMzVmI2UEpmcyJ9fX0",
 "protected" : "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcNMTUwNzAyMDkwMTE4Wh
 cNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5p
 YTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cy
 BQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA6b_ZI3
 c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJBgNVBA
 YTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxpZm9ybmlhMSEw
 HwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX9nxZBNQWDjAJBgNVHR
 MEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8EDDAKBggrBgEFBQcDAzANBgkq
 hkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4ivem4cIckfxzTBBiPHCjrrjB2X8Ktn8G
 SZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fVrJvnYA
 UBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature" :
 "
 BZS0_Ab6pqvGNXe5lqT4Sc3jakyWQeiK9KlVSnimwWnjCCyMtyB9bwvlbILZba3IJiFe
 _3F9bIQpSytGS0f2TQrPTKC7pSjwDw-3kH7HkHcPPJd-
 PpMMfQvRx7AIV8vBqO9MijIC62iN0V2se5z2v8VFjGSoRGgq225w7FvrnWE"
 }
}

Pei, et al. Expires July 9, 2017 [Page 108]

Internet-Draft OTrP January 2017

A.2.3.2. Sample DeleteTAResponse

 {
 "DeleteTATBSResponse": {
 "ver": "1.0",
 "status": "pass",
 "rid": "req-2",
 "tid": "tran-01",
 "content": {
 "did": "zAHkb0-SQh9U_OT8mR5dB-tygcqpUJ9_x07pIiw8WoM"
 }
 }
 }

Pei, et al. Expires July 9, 2017 [Page 109]

Internet-Draft OTrP January 2017

{
 "DeleteTAResponse":{
 "payload":"
 ew0KCSJEZWxldGVUQVRCU1Jlc3BvbnNlIjogew0KCQkidmVyIjogIjEuMCIsDQoJCSJz
 dGF0dXMiOiAicGFzcyIsDQoJCSJyaWQiOiAicmVxLTIiLA0KCQkidGlkIjogInRyYW4t
 MDEiLA0KCQkiY29udGVudCI6IHsNCgkJCSJwcm90ZWN0ZWQiOnsiZW5jIjoiQTEyOENC
 Qy1IUzI1NiJ9LA0KCQkJInJlY2lwaWVudHMiOlsNCgkJCQl7DQoJCQkJCSJoZWFkZXIi
 OnsiYWxnIjoiUlNBMV81In0sDQoJCQkJCSJlbmNyeXB0ZWRfa2V5IjoiTXdtU1ZHaWU2
 eHpfQmxTaFlmTFRKRHhKT3oyNWhvYy1HZ2NEM2o5OWFyM2E4X2lYY182ZE44bFRTb1dD
 X19wZEFhaEMyWk5SakdIcTBCZ2JDYTRKalk0eXRkMVBVWDB6M1psbXl1YnRXM291eEpY
 el9PMzg1WGM4S3hySndjbElyZGx2WUY2OVZmeERLQkVzUHJCdzlVenVIa1VmSU4xWlFU
 bWZ0QmVaSlJnIg0KCQkJCX0NCgkJCV0sDQoJCQkiaXYiOiJBeFk4REN0RGFHbHNiR2xq
 YjNSb1pRIiwNCgkJCSJjaXBoZXJ0ZXh0IjoiamhQTlV5ZkFTel9rVV9GbEM2LUtCME01
 WDBHNE5MbHc0LWt0bERyajZTWlUteUp6eUFUbC1oY0ZBWWMwLXJMVEF4cF93N1d1WER0
 Y3N3SzJSSzRjcWciLA0KCQkJInRhZyI6IlBBeGo5N25oT29qVTNIREhxSll4MGZMNWpt
 b0xkTlJkTHRtSmIzUTdrYXciDQoJCX0NCgl9DQp9",
 "protected": "eyJhbGciOiJSUzI1NiJ9",
 "header": {
 "kid":"e9bc097a-ce51-4036-9562-d2ade882db0d",
 "signer":"
 MIIC3zCCAkigAwIBAgIJAJf2fFkE1BYOMA0GCSqGSIb3DQEBBQUAMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQwHhcN
 MTUwNzAyMDkwMTE4WhcNMjAwNjMwMDkwMTE4WjBaMQswCQYDVQQGEwJVUzET
 MBEGA1UECAwKQ2FsaWZvcm5pYTETMBEGA1UEBwwKQ2FsaWZvcm5pYTEhMB8G
 A1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEB
 AQUAA4GNADCBiQKBgQC8ZtxM1bYickpgSVG-
 meHInI3f_chlMBdL8l7daOEztSs_a6GLqmvSu-
 AoDpTsfEd4EazdMBp5fmgLRGdCYMcI6bgpO94h5CCnlj8xFKPq7qGixdwGUA
 6b_ZI3c4cZ8eu73VMNrrn_z3WTZlExlpT9XVj-
 ivhfJ4a6T20EtMM5qwIDAQABo4GsMIGpMHQGA1UdIwRtMGuhXqRcMFoxCzAJ
 BgNVBAYTAlVTMRMwEQYDVQQIDApDYWxpZm9ybmlhMRMwEQYDVQQHDApDYWxp
 Zm9ybmlhMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCX
 9nxZBNQWDjAJBgNVHRMEAjAAMA4GA1UdDwEB_wQEAwIGwDAWBgNVHSUBAf8E
 DDAKBggrBgEFBQcDAzANBgkqhkiG9w0BAQUFAAOBgQAGkz9QpoxghZUWT4iv
 em4cIckfxzTBBiPHCjrrjB2X8Ktn8GSZ1MdyIZV8fwdEmD90IvtMHgtzK-
 9wo6Aibj_rVIpxGb7trP82uzc2X8VwYnQbuqQyzofQvcwZHLYplvi95pZ5fV
 rJvnYAUBFyfrdT5GjqL1nqH3a_Y3QPscuCjg"
 },
 "signature":"
 DfoBOetNelKsnAe_m4Z9K5UbihgWNYZsp5jVybiI05sOagDzv6R4do9npaAlAvpNK8HJ
 CxD6D22J8GDUExlIhSR1aDuDCQm6QzmjdkFdxAz5TRYl6zpPCZqgSToN_g1TZxqxEv6V
 Ob5fies4g6MHvCH-Il_-KbHq5YpwGxEEFdg"
 }
}

Pei, et al. Expires July 9, 2017 [Page 110]

Internet-Draft OTrP January 2017

Authors' Addresses

 Mingliang Pei
 Symantec
 350 Ellis St
 Mountain View, CA 94043
 USA

 Email: mpei@yahoo.com

 Nick Cook
 Intercede
 St. Mary's Road, Lutterworth
 Leicestershire, LE17 4PS
 Great Britain

 Email: nick.cook@intercede.com

 Minho Yoo
 Solacia
 5F, Daerung Post Tower 2, 306 Digital-ro
 Seoul 152-790
 Korea

 Email: paromix@sola-cia.com

 Andrew Atyeo
 Intercede
 St. Mary's Road, Lutterworth
 Leicestershire, LE17 4PS
 Great Britain

 Email: andrew.atyeo@intercede.com

 Hannes Tschofenig
 ARM Ltd.
 110 Fulbourn Rd
 Cambridge, CB1 9NJ
 Great Britain

 Email: Hannes.tschofenig@arm.com

Pei, et al. Expires July 9, 2017 [Page 111]

