
P2PSIP Working Group J. Peng
Internet-Draft L. Le
Intended status: Standards Track China Mobile
Expires: May 2, 2012 K. Feng
 Beijing University of Posts and
 Telecommunications
 October 30, 2011

One Hop Lookups Algorithm Plugin for RELOAD
draft-peng-p2psip-one-hop-plugin-01

Abstract

 This document proposes an implementation of overlay plugin algorithm
 which is called one hop lookups to provide examples and references
 for the research of one hop based RELOAD. With the development of
 the real time communications, there are high demands for the
 improvement of routing efficiency. In the one hop algorithm, each
 peer maintains complete membership information which can guarantee
 one hop lookups to improve the routing efficiency. For the RELOAD,
 using the one hop lookups algorithm to construct Topology Plugin with
 the same RELOAD core can have a better support for VoIP applications,
 and the implementation of one hop lookups algorithm plugin is based
 on the methods provided by RELAOD.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 2, 2012.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Peng, et al. Expires May 2, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft One Hop Lookups Plugin October 2011

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. Hash functions . 4
4. Peer data structure . 4
5. Routing . 7
6. Joining . 7
7. Updates . 8
7.1. Update messages definition 8
7.1.1. Update types . 9
7.1.2. Peer types . 9
7.1.3. Event notification types 9
7.1.4. PeerContactItem struct 9
7.1.5. EventNotification struct 10
7.1.6. DataStructureContent struct 13
7.1.7. OneHopUpdate message 14

7.2. Different using strategies 15
7.2.1. One hop lookups 15
7.2.2. D1HT . 15
7.2.3. 1h-Calot . 15
7.2.4. Two hop lookups 16

8. Leaving . 16
9. Replication . 17
10. Fault tolerance . 17
10.1. First hop fail . 17
10.2. Leaders fail . 18

11. Security Considerations 18
12. IANA Considerations . 18
13. Acknowledgements . 18
14. References . 18
14.1. Normative References 18
14.2. Informative References 19

 Authors' Addresses . 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Peng, et al. Expires May 2, 2012 [Page 2]

Internet-Draft One Hop Lookups Plugin October 2011

1. Introduction

 RELOAD [I-D.ietf-p2psip-base] is a peer-to-peer (P2P) signaling
 protocol for use on the Internet. The Architecture of RELOAD has a
 routing layer which is called the Topology Plugin. It is responsible
 for implementing the specific overlay algorithm being used. In the
 RELOAD base protocol, the Topology Plugin is described by Chord, and
 we define another DHT algorithm in order to provide a high rouging
 efficiency which can be used in real time communications for a better
 performance.

 The real time communication has a high demand on the routing
 efficiency, for example, the VoIP usage on the application level of
 RELOAD, it is no doubt that the routing speed or efficiency must be
 very important, and it depends on the looking up efficiency of the
 Overlay Topology. There are many kinds of structured peer-to-peer
 overlay network algorithms like Chord, Pastry, CAN and so on. Most
 of them have one in common is that they have a routing table which
 can maintain a small amount of routing state. But all these
 algorithms need nearly O (log N) steps to find one peer or resource,
 if there are a large number of peers in the overlay, it costs a lot
 time to locate peer or resource which may have a bad influence on the
 application level of RELOAD. The one hop lookups algorithm gives one
 way to maintain complete membership information at each node in order
 to increase the routing efficiency.

 Being a kind of Topology Plugin, O (1) protocols achieve low latency
 lookups on small or low-churn networks because lookups take only a
 few hups, but incur high maintenance traffic on large or high-churn
 networks. On contrast, O (log N) protocols incur less maintenance
 traffic on large or high-churn networks but require more lookup hops
 in small networks. The experiment results show that the routing
 table maintenance bandwidth using is still acceptable when the number
 of overlay nodes equal 10^5 and 10^6 [SingleHopDHT]. So, weighing
 the advantages and disadvantages, in a relative small and stable
 network like a low-churn telecom core net with VoIP applications, the
 O (1) algorithms are very important as a Topology Plugin of RELOAD.

 In the one hop algorithm, each peer maintains a complete description
 of system memberships, and it presents techniques for the peers to
 maintain this information accurately with lower costs of
 communications. Different one hop algorithm implementations have
 different ways to keep the accuracy of routing states. For example,
 the one hop lookups for peer-to-peer overlay [One-Hop-Lookups] uses
 event notification mechanism without broadcast to update all the
 peers' routing table during several seconds; the SandStone
 [SandStone] gives a way to collect update information by SPM (Super
 Peer Maintenance) which is called SPM assisted one hop enhancement.

Peng, et al. Expires May 2, 2012 [Page 3]

Internet-Draft One Hop Lookups Plugin October 2011

 The SandStone overlay is typically deployed as a two-layered DHT,
 including a global DHT and several regional DHT. There is at least
 one SPM node in each region, and once one peer's state change is
 detected by its neighboring peer, the neighbor will notify its local
 SPM, and then the SPM will disseminate the event to other SPMs,
 finally each SPM will broadcast this notification to all peers under
 the charge of it. The D1HT [D1HT] algorithm has an EDRA (Event
 Detection and Reporting Algorithm) to implemnt the event notification
 schema. In the D1HT, all the peers are ordinary, and all of them use
 the EDRA to make the goal of routing table maintenance. Like the
 D1HT, 1h-Calot [1h-Calot] is also a kind of one hop algorithms in a
 purely peer-to-peer environment, but it informs the event
 notifications by constructing a multicasting tree. Besides, there is
 also an algorithm called two hop lookups [TwoHopLookups] which is an
 improvement of the one hop lookups to support a larger size overlay.
 We use the one hop lookups algorithm combined with two hop lookups,
 D1HT and 1h-Calot to construct the RELOAD Topology Plugin because
 there is no SPM like peers and two layered topology in RELOAD base.

 In this draft, we first give a simple overview of one hop lookups
 algorithm with some definitions, then fill the overlay specific data
 structures into the RELOAD frame and implements this algorithm with
 topology messages defined in the RELOAD Topology Plugin; at last, the
 replication and fault tolerance strategies are stated. All of the
 definitions and implementations based on the requirements and methods
 provided by RELOAD.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Hash functions

 In this one hop lookups algorithm topology plugin, the size of the
 node ID and resource ID is 128 bits. The hash of an ID can be
 computed by SHA-1 [RFC3174] and other hash functions.

4. Peer data structure

 A peer, or a node, is responsible for a particular Resource-ID which
 is less than or equal to its Node-ID and is greater than the Node-ID
 of the previous peer in the neighborhood. In order to have a high
 routing accuracy and efficiency, each peer must keep and maintain a

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174

Peng, et al. Expires May 2, 2012 [Page 4]

Internet-Draft One Hop Lookups Plugin October 2011

 series of data structure.

 In the one hop lookups algorithm, we divide the 128-bit circular
 identifier space into k equal contiguous intervals which are called
 slices. Each slice has a slice leader, which is chosen as the node
 that is the successor of the mid-point of the slice space (other
 choosing methods are list in Section X). Similarly, each slice also
 can be divided into u equal-sized intervals which are called units;
 each unit has a unit leader, which is chosen as the successor of the
 mid-point of the unit space. And of course every peer in the overlay
 should know its unit header and slice header. The slice leader and
 unit leader are both ordinary peers who are chosen dynamically, and
 they also can be configured at first. The leader choosing strategies
 will be stated in section 10.

 In the SandStone [SandStone], there is at least one SPM node in each
 region, so when one peer detects the state change of overlay in its
 neighborhood, it will notify its local SPM as soon as possible. The
 local SPM then disseminate this notification to other SPMs, at last,
 each SPM will broadcast this update to all peers under the charge of
 it. The SPM is a special peer which can collect update information
 and do some other management tasks. The SPM does not participate in
 the routing procedures and it is pre-configured. On the other hand,
 the SPM uses the broadcast to spread the notifications. Only the
 bootstrap peer in RELOAD has the broadcast function. Using the
 broadcast is a simple and fast way to inform information, but it
 costs a lot of bandwidths and also may cause the notifications
 redundancy. Using the event based notification mechanism defined in
 one hop lookups can avoid redundancy in the communications: one peer
 will get information only from its neighbor that is one step closer
 to its unit leader. This implies that within a unit, information is
 always flowing from the unit leader to the ends of the unit. But its
 disadvantage is obvious: the notifications are spread too slowly
 which may cause the delay of overlay stabilization.

 In the D1HT, all the peers are same; they use the EDRA mechanism to
 make sure the event can be disseminated to all peers. To disseminate
 the information about the events, each peer p sends up to m
 propagation messages at each time interval. The D1HT algorithm uses
 the EDRA to spread event notifications. The details of EDRA can be
 found in [D1HT].

 In the 1h-Calot, a purely peer-to-peer architecture is preferable, in
 which nodes assume equal roles and share load evently. It uses
 overlay multicast to efficiently replicate complete O (n) routing
 tables on every node. And the peer in 1h-Calot also informs other
 peers of its arrival or departure by multicasting a notification
 through a tree. The details of multicasting tree construction can be

Peng, et al. Expires May 2, 2012 [Page 5]

Internet-Draft One Hop Lookups Plugin October 2011

 found in [1h-Calot].

 In the two hop algorithm, the architecture is same as one hop
 algorithm with slice leaders and unit leaders. In addition, every
 slice leader chooses a group of its own nodes for each other slice;
 the group may be chosen randomly. Then the slice leader sends
 routing information about one group to exactly one other slice
 leader. The infornation about the group is then disseminated to all
 members of that slice as in the one hop event notification schema.
 After this, every node not only keeps full routing information about
 nodes in its own slice, but also keeps a table of k-1 (k is the
 number of slice) nodes that are close to it, one from every other
 slice.

 From above, we can conclude the information peer should maintain as
 follows.
 Routing table:
 The routing table of each node keeps all of nodes' address, and
 then the source node can find the destination by just one hop at
 most if the items of routing table are right. So it is very
 important to keep the correctness of each node's full routing
 table. In order to achieve the goal, the notification of
 membership change events must reach every node in the overlay
 within a specified amount of time.
 Predecessor and successor information:
 The information especially Node-ID and address about peer's
 predecessor and successor must be kept in order to maintain the
 overlay circle. A peer will communicate with its predecessor and
 successor with keep-alive message (defined in Update message)
 every several seconds. Of course, this structure can be added as
 mark-ups or identifiers in the routing table.
 Unit leader information:
 The information about the unit leader who is responsible for the
 unit the peer belongs to. A peer can communicate with its unit
 leader to receive the Update message. Of course, this structure
 can be added as mark-ups or identifiers in the routing table.
 Slice leader information:
 The information about the slice leader who is responsible for the
 slice the peer belongs to. A peer can send event notification
 message (defined in Update message) to its slice leader to inform
 events. Of course, this structure can be added as mark-ups or
 identifiers in the routing table.

 The four kinds of information are maintained in all of peers, but
 there are still some kinds of other data structures should be kept in
 some special peers like unit leader and slice leader.

Peng, et al. Expires May 2, 2012 [Page 6]

Internet-Draft One Hop Lookups Plugin October 2011

 Unit boundary identifier:
 This identifier does not keep in all the peers, it is stored on
 the peer who is the boundary of the unit in order to make sure
 the Update message just being transferred within unit.
 Unit boundary peer list:
 The unit leader should know the information about the unit's
 boundary peer in order to know its control area.
 Slice leader list:
 Every slice leader should know the information about all the
 slice leaders in the overlay in order to dispatch the event
 notification messages in time.
 Group member list:
 Every slice leader should know the information about all the
 group members in the slice it is responsible in order to exchange
 group messages with other slice leaders. This list will be used
 in the two hop lookups algorithm.

 Each peer with these data structures can compose a well running
 overlay topology based on the one hop lookups algorithm.

5. Routing

 The routing table of the peer has full information of all the nodes
 in the overlay. If the peer is not responsible for a resource whose
 ID is r, it will query the routing table in order to find the first
 peer whose id is greater than r, which means that the peer should be
 responsible for this resource; and then sends a request message to
 the destination node. If no such node is found, it finds the largest
 Node-ID in the interval between the peer and Resource-ID r.

 In the two hop algorithm, when a peer wants to query the successor of
 a resource, it sends a lookup request to its chosen peer in the slice
 containing the key of this resource. The chosen peer then examines
 its own routing table to identify the successor of the key and
 forwards the request to that peer. So, one peer can find the
 resource at most two steps.

6. Joining

 The Join message defined in [I-D.ietf-p2psip-base] with a Node-ID has
 contained enough information to construct a joining request.

 The joining process for a joining peer (JP) with Node-ID n is as
 follows (using the one hop lookups algorithm as an example).

Peng, et al. Expires May 2, 2012 [Page 7]

Internet-Draft One Hop Lookups Plugin October 2011

 (1) JP MUST connect to its chosen or preconfigured bootstrap node.
 (2) JP SHOULD send an Attach request to its admitting peer (AP) for
 Node-ID n. The "send_update" flag should be used to acquire
 the routing table and other information for AP.
 (3) JP MUST send a Join to AP, the AP sends the response to the
 Join.
 (4) AP MUST do a series of Store requests to JP to store the data
 that JP will be responsible for.
 (5) JP SHOULD send Attach request to its predecessor in order to
 let it knows the arriving of new peer; the predecessor should
 update its successor information at once.
 (6) The predecessor detects a change in its routing table for
 example it has a new successor, it MUST send an event
 notification message which is a kind of Update messages to its
 slice leader directly. Of course, the Update message can also
 be sent by the AD.
 (7) The slice leader MUST collect all notifications it receives
 from the peers in his slice and sends Update messages to other
 slice leaders every several seconds to inform these events.
 (8) Other slice leaders MUST dispatch the Update messages they
 received to all the unit leaders in their respective slices.
 (9) A unit leader SHOULD piggyback this information on its Update
 message to its successor and predecessor.
 (10) Other nodes propagate this information from their successors;
 they SHOULD send it to their successors and vice versa.
 (11) Peers at unit boundaries SHOULD NOT send information to their
 neighboring peers outside their unit.

 The Update messages depending on the RELOAD message formats will be
 defined in the next section. The peer can find its successor by
 sending a Find request with the Resource-ID equals its Node-ID.

7. Updates

 The update message is the primary overlay-specific maintenance
 message which can be used by the sender to notify other peers the
 current state of overlay. Every peer in the overlay can maintain and
 keep the correctess of routing table by sending and receiving update
 messages.

7.1. Update messages definition

 The update message defined in this section will be used by the one
 hop algorithm, D1HT, 1h-Calot and the two hop algorithm. It is a
 template for one hop like algorithms.

Peng, et al. Expires May 2, 2012 [Page 8]

Internet-Draft One Hop Lookups Plugin October 2011

7.1.1. Update types

 enum { eventUpdate (0), dataStructureUpdate (1), (255) }
 UpdateType;

 The UpdateType gives an enumeration of update message which includes
 eventUpdate and dataStructureUpdate. The eventUpdate message will
 take a list of event notifications which will have an influence on
 peer's routing table. The dataStructureUpdate message will take a
 list of data structure information wich includes the routing table
 items. This structure allows for unknown option types.

7.1.2. Peer types

 enum { ordinaryPeer (0), unitLeaderPeer (1),
 sliceLeaderPeer (2), (255) } PeerType;

 The PeerType gives an enumeration of peer type which can be used by
 different one hop like algorithms. For example, the concepts of unit
 leader and slice leader are used in heterogeneous DHTs like the one
 hop lookups and two hop lookups. And in D1HT and 1h-Calot, all the
 peers are ordinary.

7.1.3. Event notification types

 enum { peerJoin (0), peerLeave (1), groupPeerInformation (3), (255) }
 EventType;

 The EventType gives an enumeration of event kinds, the common events
 include peer joining and peer leaving. Almost all of the algorithms
 need the two events. The third event type is groupPeerInformation
 which is used in the two hop algorithm to spread group members'
 information.

7.1.4. PeerContactItem struct

 struct {
 Node-ID peer_id
 IpAddressPort peer_addr_port
 } PeerContactItem;

 The struct of PeerContactItem is used to construct the information
 about peers. The Node-ID and IpAddressPort are defined in
 [I-D.ietf-p2psip-base] which represents the ID of the peer and peer's

Peng, et al. Expires May 2, 2012 [Page 9]

Internet-Draft One Hop Lookups Plugin October 2011

 IP address and port.

7.1.5. EventNotification struct

 struct {
 EventType event_type;
 PeerType peer_type;
 uint32
length;

 select (event_type) {

 case peerJoin:
 select (PeerType) {
 case ordinaryPeer: case unitLeaderPeer: case sliceLeaderPeer:
 uint32
slice_number;
 uint32
unit_number;
 PeerContactItem joining_peer;
 PeerContactItem replaced_peer;
 }

 case peerLeave:
 select (PeerType) {
 case ordinaryPeer: case unitLeaderPeer: case sliceLeaderPeer:
 uint32
slice_number;
 uint32
unit_number;
 PeerContactItem leaving_peer;
 }

 case groupPeerInformation:
 select (PeerType) {
 case ordinaryPeer: case unitLeaderPeer: case sliceLeaderPeer:

uint32 group_size;

uint32 slice_number;
 PeerContactItem <0...n> group_peer_list;
 }
 }
 } EventNotificationItem;

 The structure of EventNotificationItem is an item of
 EventNotification message. The peer who receives this item can
 refresh its routing table and other important data structures by

 analysing the information it takes.

 The EventNotificationItem structure contains parameters as follows.

Peng, et al. Expires May 2, 2012 [Page 10]

Internet-Draft One Hop Lookups Plugin October 2011

 event_type
 The type of event the message will take, its value is one of the
 types defined in the EventType. This structure allows for
 unknown event types.
 peer_type
 The type of peer who wants to get this information, its value is
 one of the types defined in the PeerType. This structure allows
 for unknown peer types.
 slice_number, unit_number
 The number of slice and unit the peer who caused this event
 belongs to. These two parameters are only used in the one hop
 lookup algorithm and the two hop lookup algorithm.
 joining_peer
 The contact information of the peer's who is going to be one of
 the overlay members.
 replaced_peer
 The contact information of the peer's who is replaced by the new
 arrival one. This variable is only used in the one hop lookup
 algorithm and the two hop lookup algorithm when the slice leader
 or unit leader changes.
 leaving_peer
 The contact information of the peer's who is going to leave the
 overlay.
 group_size
 This variable means the number of peers in one group. This
 variable is only used in the two hop lookup algorithm.
 group_peer_list
 The representatives or entry points' contact information for
 other slices. This list is only used in the two hop lookup
 algorithm.
 length
 This variable means the length of the remainder of this message.

 typedf EventNotificationItem <0...n>
EventNotificationItemList;

 struct {

uint32
uptime;
 PeerContactItem detect_peer;

uint32
D1HT_TTL;

uint32
multicast_range_start;

uint32
multicast_range_end;

uint32
event_notification_item_counts;
 EventNotificationItemList
event_notification_item_list;
 } EventNotification;

 The EventNotificaton struct is the most important message body in
 Updates. This message can be used in the one hop lookup algorithm,

Peng, et al. Expires May 2, 2012 [Page 11]

Internet-Draft One Hop Lookups Plugin October 2011

 D1HT, 1h-Calot and the two hop lookups algorithm. But different
 algorithms will use different variables. In the D1HT and 1h-Calot,
 all the peers are ordinary, so both of them will not use the
 variables related to unit or slice.

 The EventNotification structure contains parameters as follows.
 uptime
 The time this peer has been up in seconds.
 detect_peer
 This variable means the peer's contact information who detects
 these events.
 D1HT_TTL
 This variable is only used in the D1HT algorithm to be a mark for
 message spreading. Other algorithms can set it as zero.
 multicast_range_start, multicast_range_end
 These two variables mean the multicast range marked by the root
 of a mulcasting tree. They are only used in the 1h-Calot.
 event_notification_item_counts
 This variable means the number of events one update message will
 take. In the 1h-Calot algorithm, every peer will construct the
 multicasting tree to spread notifications immediately when it
 detects the overlay changes. So, the variable can be set as 1 in
 the 1h-Calot.
 event_notification_item_list
 This variable means a list of event notifications. In the one
 hop lookup algorithm, D1HT and the two hop lookup algorithm, this
 variable can reduce some network traffic.

Peng, et al. Expires May 2, 2012 [Page 12]

Internet-Draft One Hop Lookups Plugin October 2011

7.1.6. DataStructureContent struct

 struct {
 PeerType peer_type;
 PeerContactItem predecessor_peer;
 PeerContactItem successor_peer;
 PeerContactItem routing_table_list
<0...n>;
 uint32
length;

 select (peer_type) {
 case ordinaryPeer:
 uint32
unit_number;
 uint32
slice_number;
 PeerContactItem unit_leader;
 PeerContactItem slice_leader;

 case unitLeaderPeer:
 PeerContactItem boundary_peers <2>;

 case sliceLeaderPeer:
 PeerContactItem slice_leaders_list <0...n>;
 PeerContactItem group_peers_list <0...n>;
 }
 } DataStructureContent

 The structure DataStructureContent mainly used in the transferring of
 data structure during the peer joining procedure or receiving a
 message contains the send_update flag [I-D.ietf-p2psip-base]. The
 length of the structure changes in different peer type because
 different peer has different data structure. The ordinary peer only
 has predecessor, successor, unit leader, slice leader and routing
 table information. And the unit leader and slice leader should also
 know some other information.

 The DataStructureContent structure contains parameters as follows.
 routing_table_list
 This variable represents the peer's routing table which has all
 of the peers' information in the overlay. In the two hop lookup
 algorithm, the routing table contains all of the same slice
 peers's information and other slices' entry peers information.
 boundary_peers
 This variable represents the information of peers' who are the
 boundary of unit. It is used in the one hop lookup algorithm and

 the two hop lookup algorithm.

Peng, et al. Expires May 2, 2012 [Page 13]

Internet-Draft One Hop Lookups Plugin October 2011

 slice_leaders_list
 All of the slice leaders' information will be stored in this
 list, and it can be transferred from one slice leader to another
 or from the old slice leader to the new one. It is used in the
 one hop lookup algorithm and the two hop lookup algorithm.

7.1.7. OneHopUpdate message

 typedef EventNotification<0...n> EventNotificationList;
 typedef DataStructureContent<0...n> DataStructureContentList;

 struct {
 UpdateType update_type;
 uint32 length;

 select (update_type) {
 case eventUpdate:
 EventNotificationList event_notification_list;

 case dataStructureUpdate:
 DataStructureContentList data_structure_list;
 }
 } OneHopUpdateReq;

 This structure is the Update message used in the O (1) protocols.
 The update message is composed by two kinds of list. Using list can
 take more information. One of them is the EventNotification
 structures, and the other is the DataStructureContent structures.
 All the peers in the overlay can use this update request to inform
 event notification or transport routing information.

 struct {
 uint32 update_response;
 } OneHopUpdateAns;

 The structure OneHopUpdateAns is used to be a response to the
 OneHopUpdateReq message. It is only has a response number to
 represent the receiver's attitude which may include success, fail and
 error. This number also can be defined as a type.
 update_response
 The response of the Update message, different number has
 different meaning includes success, error and so on.

Peng, et al. Expires May 2, 2012 [Page 14]

Internet-Draft One Hop Lookups Plugin October 2011

7.2. Different using strategies

 The update message defiend above can cover 4 kinds of O (1)
 protocols, they are the one hop lookup protocol, D1HT, 1h-Calot and
 the two hop lookup protocol. Different protocol has different using
 strategies for the same update message.

7.2.1. One hop lookups

 In the one hop lookups, event notifications can be disseminated in a
 hierarchical architecture. The slice leader collects all the events
 happened in its responsible slice and spreads this event notification
 list to all the other slice leaders. The notifications are composed
 of peer joining and leaving without group information. It also does
 not use the variable D1HT_TTL which is designed for D1HT specially.
 Other slice leaders receive the notification list and then send it to
 the unit leaders it is responsible for. At last, the unit leader
 spread this list to the ordinary peers via the keep-alive messages.

7.2.2. D1HT

 In the D1HT, event can be disseminated by the EDRA (Event Detection
 and Reporting Algorithm), which is able to notify an event to whe
 whole system in logartithmic time and yet to have good load-balance
 properties coupled with very low bandwitdth overhead. This algorithm
 will use the D1HT_TLL variable defined in the EventNotification
 structure. In the EDRA, each message will have a Time-To-Live (TTL)
 counter and will be addressed to its successor. The details of this
 algorithm can be found in [D1HT]. The update message of D1HT is far
 different from the one hop lookups algorithm, because all the peers
 in D1HT are ordinary, so it just use the messages related to the
 ordinary peers. Other protocols will set the D1HT_TTL as zero or a
 negative number.

7.2.3. 1h-Calot

 The overlay architecture of 1h-Calot is same as D1HT because all the
 peers are ordinary. In fact, the principles of 1h-Calot are
 extremely simple: multicast maintains the routing tables; information
 in the routing table is then used to guide multicast and routing. In
 the 1h-Calot, a resource is stored on the node whose identifier is
 the closet to the resource's key in absolute distacnce, regardless of
 the direction (clockwise or counterclockwise), this is the basic of
 the routing table maintenance algorithm. A new arrival peer informs
 other peers of its arrival by multicasting a notification through a
 tree rooted at the new arrival peer. Every message will take a range
 variable to tell the next peer its responsible informing boundary.
 1h-Calot multicasts each notification through a different tree

Peng, et al. Expires May 2, 2012 [Page 15]

Internet-Draft One Hop Lookups Plugin October 2011

 expanded just in time according to the current content of the routing
 tables.

 This algorithm will use the multicast_range_start and
 multicast_range_end variables defined in the EventNotification
 structure to carry the range information. Beacause the 1h-Calot peer
 will notify and construct its multicasting tree as soon as the peer
 detects the overlay changes, so there is only one update message on a
 multicasting tree which means that the variable
 event_notification_item_counts will always be one.

7.2.4. Two hop lookups

 Although the one hop lookups is a very efficient DHT algorithm, for
 systems of larger size, the bandwidth requirements of this scheme may
 become too large for a significant fraction of peers. The two hop
 lookups schema keeps a fixed fraction of the total routing state on
 each peer and consumes much less bandwidth, and thus scales to a
 larger system size.

 The overlay architecture of two hop lookups is as same as the one hop
 lookups. In addition, every slice leader chooses a group of its own
 peers for each other slice; the group may be chosen randomly or they
 may be based on proximity metrics. The slice leader sends routing
 information about one group which can be carried in the
 group_information_list defined in the EventNotificationItem structure
 to exactly one other slice leader. The information about the group
 is then dissemanated to all members of that slice as in the one hop
 lookups. At las, each peer not only keeps full routing information
 about peers in its own slice, but also has routing information for
 the peers in every other slice. The update message dissemanating is
 still accomplished by the event notification schema used in the one
 hop lookups.

8. Leaving

 The leaving action is also a kind of event, so it can be expressed by
 the update message. When a peer leaves the overlay peacefully, it
 needs to send a leaving message to its predecessor or successor which
 may just include some traditional information like the Node-ID and
 some security proves like the certificate. And the predecessor or
 succeor who receives this leaving message will verify its identity
 and address a update message contains the peer leaving information to
 its slice leader. The data transfer can also use the update
 messages, but it sometimes depends on the replication strategies.

 If a peer leaves the overlay without any notification, the neighbor

Peng, et al. Expires May 2, 2012 [Page 16]

Internet-Draft One Hop Lookups Plugin October 2011

 peer (predecessor or successor) must inform this event to the leader
 by the update messages, and then the backup peer of the leaving one
 should transfer the backup data to the new one who is charging the
 leaving peer's namespace. When a unit leader or slice leader leaves
 this overlay, the overlay should choose a new one to replace the old
 one.

9. Replication

 The replica placement policy of the one hop algorithm can use the way
 defined in SandStone. It is designed to maximize data reliability
 and availability, and to maximize network bandwidth utilization. In
 the SandStone, the subscriber data can be replicated on multiple
 peers, three on default. We can use a SandStone like replica
 replacement policy with three replications. The first replica is
 stored in the primary peer's successor; the second is saved in a peer
 of different unit but in same slice; and the third is put in a peer
 from different slice.

 Above all, one of the most important issues is the choosing of the
 replica peer. Maybe we can use a special function whose input is
 peer's Node-ID to calculate the three replica peers, and of course
 the root peer should know about the replication method in order to be
 able to search the data.

10. Fault tolerance

10.1. First hop fail

 In the one hop algorithm, if a query fails on its first attempt it
 does not return an error to an application. Instead, queries can be
 rerouted with the RELOAD message RouteQueryAns. We can define the
 RouteQueryAns as follows.

 struct {
 uint32 response_state;
 PeerContactItem destination_peer;
 } RouteQueryAns;

 The structure RouteQueryAns is composed by a state number and a
 Node-ID. The state number tells the query state and the
 PeerContactItem gives a peer's information that is closer to the
 destination. And in most of cases, two hops are enough to locate one
 peer or resource. If the two hops are still wrong, then we can know
 the lookup procedure is fail.

Peng, et al. Expires May 2, 2012 [Page 17]

Internet-Draft One Hop Lookups Plugin October 2011

 response_state
 The response mark of the RouteQueryReq message's; and it may
 include success, failure and errors.
 destination_peer
 If the query is failed, the application can send RouteQueryReq
 message to this peer again for finding resources.

 If a lookup query from peer A to peer B because the routing table is
 outdate or the peer B has left, peer A can retry the query by sending
 the RouteQueryReq to the peer C who is the successor of peer B. And
 at that time joining a peer D to be peer B's new successor and peer
 C's predecessor, then peer C can reply RouteQueryAns message with the
 redirect_peer of peer D's, and peer A can contact it in this routing
 step.

10.2. Leaders fail

 The most important issues are how to keep the correct functioning of
 unit leaders and slice leaders; we need to recover from their
 failure. When a slice or unit leader fails, its successor soon
 detects the failure and becomes the new leader; the successor of a
 failed slice leader will communicate with its unit leaders and other
 slice leaders to recover information about the missed events.

11. Security Considerations

 There is no specific security consideration associated with this
 draft.

12. IANA Considerations

 There are no IANA considerations associated to this memo.

13. Acknowledgements

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Peng, et al. Expires May 2, 2012 [Page 18]

Internet-Draft One Hop Lookups Plugin October 2011

 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-15 (work in
 progress), May 2011.

14.2. Informative References

 [RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm 1
 (SHA1)", RFC 3174, September 2001.

 [One-Hop-Lookups]
 Gupta, A., Liskov, B., and R. Rodrigues, "One Hop Lookups
 for Peer-to-Peer Overlays", June 2003.

 [SandStone]
 Shi, G., Chen, J., Gong, H., Fan, L., Xue, H., Lu, Q., and
 L. Liang, "SandStone: A DHT based Carrier Grade
 Distributed Storage System", September 2009.

 [TwoHopLookups]
 Gupta, A., Liskov, B., and R. Rodrigues, "Efficient
 Routing for Peer-to-Peer Overlays".

 [D1HT] Monnerat, L. and C. Amorim, "D1HT: A Distributed One Hop
 Hash Table".

 [1h-Calot]
 Tang, C., Buco, M., Chang, R., Dwarkadas, S., Luan, L.,
 Edward, E., and C. Ward, "On the Tradeoff among Capacity,
 Routing Hops, and Being Peer-to-Peer in the Design of
 Structured Overlay Networks".

 [SingleHopDHT]
 Monnerat, L. and C. Amorim, "Peer-to-Peer Single Hop
 Distributed Hash Tables".

Authors' Addresses

 Jin Peng
 China Mobile
 Unit 2, 28 Xuanwumenxi Ave,
 Xuanwu District
 Beijing 100053
 P.R.China

 Email: Penjin@chinamobile.com

https://datatracker.ietf.org/doc/html/draft-ietf-p2psip-base-15
https://datatracker.ietf.org/doc/html/rfc3174

Peng, et al. Expires May 2, 2012 [Page 19]

Internet-Draft One Hop Lookups Plugin October 2011

 Lifeng Le
 China Mobile
 Unit 2, 28 Xuanwumenxi Ave,
 Xuanwu District
 Beijing 100053
 P.R.China

 Email: Lelifeng@chinamobile.com

 Kai Feng
 Beijing University of Posts and Telecommunications
 10 Xi Tu Cheng Rd.
 Haidian District
 Beijing 100876
 P.R.China

 Email: fengkai_sunny@139.com

Peng, et al. Expires May 2, 2012 [Page 20]

