
Network Working Group V. Birk
Internet-Draft B. Hoeneisen
Intended status: Standards Track H. Marques
Expires: 8 December 2023 pEp Foundation
 6 June 2023

pretty Easy privacy (pEp): Key Synchronization Protocol (KeySync)
draft-pep-keysync-03

Abstract

 This document describes the pEp KeySync protocol, which is designed
 to perform secure peer-to-peer synchronization of private keys across
 devices belonging to the same user.

 Modern users of messaging systems typically have multiple devices for
 communicating, and attempting to use encryption on all of these
 devices often leads to situations where messages cannot be decrypted
 on a given device due to missing private key data. Current
 approaches to resolve key synchronicity issues are cumbersome and
 potentially insecure. The pEp KeySync protocol is designed to
 facilitate this personal key synchronization in a user-friendly
 manner.

About This Document

 This note is to be removed before publishing as an RFC.

 Status information for this document may be found at
https://datatracker.ietf.org/doc/draft-pep-keysync/.

 Discussion of this document takes place on the medup non-WG mailing
 list (mailto:medup@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/medup/.

 Source for this draft and an issue tracker can be found at
https://gitea.pep.foundation/pEp.foundation/internet-drafts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Birk, et al. Expires 8 December 2023 [Page 1]

https://datatracker.ietf.org/doc/draft-pep-keysync/
https://mailarchive.ietf.org/arch/browse/medup/
https://gitea.pep.foundation/pEp.foundation/internet-drafts
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 December 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3
1.2. Terms . 4
1.3. Problem Statement . 6
1.4. Main Challenge . 6
1.5. Approach . 7

2. General Description . 7
2.1. Use Cases for pEp KeySync 7
2.1.1. Form Device Group 8
2.1.2. Add New Device to Existing Device Group 8
2.1.3. Exchange Private Keys 9
2.1.4. Leave Device Group 9
2.1.5. Remove other Device from Device Group 9

2.2. Interaction Diagrams 10
2.2.1. Form Device Group 10
2.2.2. Add New Device to Existing Device Group 17
2.2.3. Exchange Private Keys 25
2.2.4. Leave Device Group 25
2.2.5. Remove other Device from Device Group 25

3. Security Considerations 25
4. Privacy Considerations 25
5. IANA Considerations . 25
6. Acknowledgments . 26
7. References . 26
7.1. Normative References 26

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Birk, et al. Expires 8 December 2023 [Page 2]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

7.2. Informative References 26
Appendix A. Reference Implementation 27
A.1. Description of Finite State Machine 28
A.1.1. States . 28
A.1.2. Conditions . 39
A.1.3. Actions . 41
A.1.4. Transitions . 47
A.1.5. Events . 47
A.1.6. Messages . 49

Appendix B. Code excerpts 56
B.1. Finite State Machine 56
B.2. ASN.1 Type Definitions 71

Appendix C. Document Changelog 73
Appendix D. Open Issues . 74

 Authors' Addresses . 74

1. Introduction

 The pretty Easy privacy (pEp) [I-D.pep-general] protocols describe a
 set of conventions for the automation of operations traditionally
 seen as barriers to the use and deployment of secure end-to-end
 interpersonal messaging. These include, but are not limited to, key
 management, key discovery, and private key handling.

 This document specifies the pEp KeySync protocol, a means for secure,
 decentralized, peer-to-peer synchronization of private keys across
 devices belonging to the same user, allowing that user to send and
 receive encrypted communications from any of their devices.

 For pEp implementations, pEp KeySync is a critical part of the
 broader pEp Sync protocol, which is designed to be extensible to
 allow for the synchronization of additional user data, such as
 configuration settings and peer trust status information across a
 single user's devices.

 This document will provide a general description of pEp KeySync,
 including idealized use cases, diagrams, and examples of messages
 that may be generated during the KeySync process.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Birk, et al. Expires 8 December 2023 [Page 3]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

1.2. Terms

 The following terms are defined for the scope of this document:

 * pEp Handshake: The process of one User contacting another over an
 independent channel in order to verify Trustwords (or fingerprints
 as a fallback). This can be done in-person or through established
 verbal communication channels, like a phone call.
 [I-D.pep-handshake]

 Note: In pEp KeySync, the Handshake is used to authenticate own
 devices (the User normally compares the Trustwords directly by
 looking at the screens of the devices involved).

 * Trustwords: A representation of 16-bit natural numbers (0 to
 65535) as natural language words: For each natural language a
 fixed number-to-word map can be defined as convention and
 registered with IANA. Trustwords are generated from the combined
 public key fingerprints of a both communication partners.
 Trustwords are used for verification and establishment of trust
 (for the respective keys and communication partners).
 [I-D.pep-trustwords]

 * Transport: A general description of what Transport means in pEp
 context can be found in [I-D.pep-general].

 For pEp Sync there are special requirements to the Transport,
 i.e., that messages can be sent to ones own devices and that every
 own device (including the sender) receives the messages in the
 same order.

 * Trust On First Use (TOFU): cf. [RFC7435], which states: "In a
 protocol, TOFU calls for accepting and storing a public key or
 credential associated with an asserted Identity, without
 authenticating that assertion. Subsequent communication that is
 authenticated using the cached key or credential is secure against
 an MiTM attack, if such an attack did not succeed during the
 vulnerable initial communication."

 * Man-in-the-middle (MITM) attack: cf. [RFC4949], which states: "A
 form of active wiretapping attack in which the attacker intercepts
 and selectively modifies communicated data to masquerade as one or
 more of the entities involved in a communication association."

 Note: Historically, MITM has stood for '_Man_-in-the-middle'.
 However, to indicate that the entity in the middle is not always a
 human attacker, MITM can also stand for 'Machine-in-the-middle' or
 'Meddler-in-the-middle'.

https://datatracker.ietf.org/doc/html/rfc7435
https://datatracker.ietf.org/doc/html/rfc4949

Birk, et al. Expires 8 December 2023 [Page 4]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 * User: An individual entity using pEp. A User may have one or more
 Identities.

 * User-ID: A unique identifier for a given User.

 * Address: An Address in pEp means the designator of a destination
 where messages can be routed to and accessed from, e.g., email
 address, Uniform Resource Identifier (URI), Network Access
 Identifier (NAI), phone number, etc. An Address may belong to one
 or more Users. A User may have multiple Addresses.

 * Identity: A binding between a User (unique User-ID) and an Address
 (email, network ID, URI, etc.). Each Identity is uniquely
 identified by this binding. Identities contain a number of
 different pieces of information, often including, but not limited
 to:

 - User-ID

 - Address

 - Default Key

 - Username

 - Preferred encryption format

 - Information about whether this is an Own Identity

 - ...

 A single User may have multiple identities. See also [RFC4949].

 * Own Identity: An Identity corresponding to one of the Own User's
 Addresses.

 * Device Group: A set of devices controlled by one pEp User that
 have successfully completed the KeySync setup process and
 synchronize Identity information, such as cryptographic keys.
 This data is synchronized through a common channel for a given
 Identity. For example, if a User's Identity is tied to a specific
 email address, the common channel for this Identity could be an
 inbox.

 * Sole Device: A device which is not part of a Device Group.

 * Grouped Device: A device which is already part of a Device Group.

https://datatracker.ietf.org/doc/html/rfc4949

Birk, et al. Expires 8 December 2023 [Page 5]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 * Beacon (message): A technical text message that is broadcast by
 Sole Devices and transmitted through a message sent to the channel
 of an Identity. Other Sole Devices, or a Grouped Device of the
 same unique Identity and using that Identity's channel, can
 interpret this Beacon in order to initiate negotiation for the
 formation of a Device Group.

 * Transaction ID (TID): A UUID version 4, variant 1 number generated
 by each device during the pEp KeySync process in order to identify
 the respective devices involved.

 * Default Key: The Identity's or User's key that is marked as the
 key to be used to encrypt to (in the case of communications
 partners) or to sign with (in the case of the Own User).

 * Own Key: A public/private keypair corresponding to a User's Own
 Identity.

1.3. Problem Statement

 Secure and private digital communication is becoming a necessity for
 many people. Encryption protocols which utilize key pairs are the
 most popular and easily implemented methods to ensure a message is
 authentic and can be trusted.

 However, most modern users have multiple devices for communicating,
 and attempting to use encryption on all of these devices often leads
 to situations where messages cannot be decrypted on a given device
 due to missing private key data. For example, Alice sends an
 encrypted message to Bob, using the public key of a key pair that Bob
 generated on his laptop. When Bob attempts to decrypt the message on
 his mobile phone, the private key that he generated on his laptop is
 not available. As a result, Bob must either use his laptop to
 decrypt the message, or attempt to copy the correct private key to
 his mobile device, which may expose his private key to potential
 leaks or theft. Using, in turn, centralized solutions to share the
 missing private key data has the disadvantage to be prone to
 infrastructure attacks and also leads to availability issues.

1.4. Main Challenge

 The main challenge that pEp KeySync is designed to overcome is to
 perform the synchronization in a secure manner so that private keys
 are not leaked or exposed to theft.

 Note: The case of an adversary getting physical access to the device
 itself is beyond the scope of this document.

Birk, et al. Expires 8 December 2023 [Page 6]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

1.5. Approach

 The basic approach to solving the multiple-device decryption problem
 is to synchronize private keys among the devices of a User in a
 secure manner. pEp achieves this by giving Users the option to form a
 Device Group with their devices. When the User initiates this
 process, a Handshake occurs, and the User is presented with a
 Trustwords dialog for pairing purposes (cf. [I-D.pep-trustwords]).
 Simply put, the User MUST complete this Trustwords dialog (to confirm
 for the authenticity of the transport channel) before the automatic
 and security-sensitive transfer of private key information can occur.

2. General Description

 The pEp KeySync protocol allows a User to securely synchronize
 private key data for multiple Identities across their various
 devices. This synchronization process is decentralized and performed
 as a two-phase commit (2PC) protocol structure. This structure
 ensures consensus among the devices at all stages of the KeySync
 process.

 KeySync's 2PC transaction is accomplished through the implementation
 of a Finite State Machine (FSM) on each pEp-enabled device. This FSM
 not only sends and receives network traffic, which allows devices to
 communicate with each other throughout the KeySync process, but also
 interacts with the core pEp implementation itself.

 Once activated by the User, pEp KeySync initiates the formation of a
 Device Group, and the User is guided through a Handshake process on
 its respective devices. A User can choose to reject or cancel this
 process at any time, from either device, and private key data is not
 exchanged until the group formation process is verified on both
 devices.

 Once a Device Group is formed, a User can add additional devices to
 its group through the same joining procedure. Upon adding the new
 device to the existing Device Group, key data is synchronized among
 all Grouped Devices, allowing a User to communicate privately from
 any of its secure Identities.

2.1. Use Cases for pEp KeySync

 This section describes ideal-condition use cases for pEp KeySync.
 The focus is on the core procedures and on the scenarios where
 everything works. Unexpected user behavior, error handling, race
 conditions, etc., are generally omitted from this section in order to
 focus on the general concepts of pEp KeySync. Additional use cases
 will be discussed in further detail throughout Appendix A.

Birk, et al. Expires 8 December 2023 [Page 7]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

2.1.1. Form Device Group

 Our User, Alice, has two devices that are configured with pEp-
 implementing messaging clients and share the same Identity for her
 preferred communication channel. In our example, this communication
 channel is the inbox for a specific email address, alice@example.org,
 which Alice has configured on each device. Let us call these devices
 Alice_Mobile and Alice_Tablet. Each device already has its own
 dedicated key pair, which was automatically generated by the pEp
 protocol when Alice configured her email inbox on her respective
 devices.

 When Alice sends an email from Alice_Mobile, it is encrypted by the
 key for that specific device, as are any replies she might receive.
 If she wishes to read that email (or replies to it) on Alice_Tablet,
 she is unable to do so because the key pair for Alice_Tablet is
 different. Alice wants to read all of her encrypted communications
 on both of her devices, but currently cannot do so, as the devices do
 not have any authenticated and secure established connection to each
 other and thus cannot share key pair data without compromising her
 privacy.

 Alice will use pEp KeySync to form a Device Group and add her devices
 to it. pEp KeySync provides an authenticated and secure connection
 for Alice to exchange private key data among her devices, which will
 allow her to have full access to all of her encrypted messages on
 both devices.

2.1.2. Add New Device to Existing Device Group

 Sometime after devices Alice_Mobile and Alice_Tablet have formed a
 Device Group (cf. Section 2.1.1), Alice buys another device,
 Alice_Laptop, which is also configured with pEp-implementing
 messaging clients and shares the same Identity for her preferred
 communication channel (the aforementioned email address).
 Alice_Laptop also has a key pair, which was automatically generated
 by the pEp protocol, just as the Grouped Devices Alice_Mobile and
 Alice_Tablet have. But while the Grouped Devices know each other and
 have exchanged private keys, Alice_Laptop and the Grouped Devices
 don't have any connection to each other. Thus, Alice does not have
 full, encrypted communication capability across the three devices.

 As before with devices Alice_Mobile and Alice_Tablet, Alice will use
 pEp KeySync to add device Alice_Laptop to the existing Device Group,
 allowing all three devices to exchange private key information, and
 Alice to have full access to her messages from any of them.

Birk, et al. Expires 8 December 2023 [Page 8]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

2.1.3. Exchange Private Keys

 All devices from Alice are part of a Device Group (cf. Section 2.1.1
 and Section 2.1.2). However, as keys may expire or get reset (cf.
 [I-D.pep-keyreset]), it is inevitable that new key pairs will be
 generated. For Alice to maintain her ability to read all encrypted
 messages on all devices, any new private key needs to be shared with
 the other devices in the Device Group.

 All devices in Alice's Device Group will share the latest private
 keys as they are generated, keeping all of her devices up to date and
 functioning as desired.

2.1.4. Leave Device Group

 Alice decides that her mobile phone, Alice_Mobile, should no longer
 have access to private keys of the Device Group.

 Alice will use pEp KeySync on her mobile phone to leave the Device
 Group. This also initiates the pEp KeyReset protocol, which resets
 keys for all Own Identities (cf. [I-D.pep-keyreset]) on the
 remaining devices. Furthermore, Sync is deactivated on Alice_Mobile.

 In the future, if Alice desires, she can re-add Alice_Mobile to a
 Device Group. If Alice wants to do this, she will first have to re-
 enable Sync on Alice_Mobile and then initiate the joining procedure
 (cf. Section 2.1.2) again. If there was only one device left, no
 Device Group exists anymore. In this case Alice will have to
 initiate the Form Device Group (cf. Section 2.1.1) instead of the
 joining procedure.

2.1.5. Remove other Device from Device Group

 Let's assume one of Alice's devices, Alice_Tablet, was stolen or
 became otherwise compromised. To limit the damage, she needs to
 ensure that Alice_Tablet no longer receives updates to private keys
 from other Device Group members. Furthermore, she needs to reset the
 keys for all Own Identities (cf. [I-D.pep-keyreset]) on the
 remaining devices, which includes informing communication partners to
 no longer use the (potentially) compromised keys.

 Note: In order to prevent any reset (new) keys to reach Alice_Tablet,
 the channel credentials (e.g., IMAP password) should be changed
 before this step.

 On all of her remaining Grouped Devices, Alice needs to initiate the
 Leave Device Group procedure as described in Section 2.1.4. As a
 result, the Device Group will be dissolved.

Birk, et al. Expires 8 December 2023 [Page 9]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 For KeySync to work again on her remaining devices, a new Device
 Group needs to be formed. Therefore, Alice will first have to re-
 enable Sync on her remaining devices and then initiate the Form
 Device Group procedure (cf. Section 2.1.1) again. For every
 additional remaining device (if any), she will have to initiate the
 joining procedure (cf. Section 2.1.2) again.

2.2. Interaction Diagrams

 The following interaction diagrams depict what happens during Alice's
 KeySync scenarios in a simplified manner. For each scenario, we
 first present a successful case, then an unsuccessful case and,
 finally, a case that has been interrupted, or discontinued. Some
 details are skipped here for the sake of readability. Descriptions
 of the interactions are included after each diagram.

 Each pEp-enabled device runs its own Finite State Machine (FSM),
 which interact with each other throughout the KeySync process, and
 drive the UI options presented to Alice (the 'User' in all diagrams,
 unless otherwise noted). All Messages are 'broadcast' between
 devices. The TIDs added to each Message allow the identification of
 received Messages which pertain to the ongoing transaction and the
 device which sent it.

 For events requiring Alice's interaction in order to proceed, it does
 not matter which device has the specified option chosen first unless
 otherwise indicated. For example, if an event states that Alice must
 choose 'Accept' on the 'Offerer' device in order to continue, the
 process will be unaffected if she does so on the 'Requester' device
 first. The only difference is that the order of the roles for the
 remainder of the given scenario will be swapped.

2.2.1. Form Device Group

2.2.1.1. Successful Case

 ,-.
 `-'
 /|\
 |
 ,----------------. / \ ,------------------.
 |'Offerer' device| User |'Requester' device|
 `-------+--------' | `--------+---------'
 | | |
 | | |
 | 1(r). Beacon (challenge TID) |
 |<--|

Birk, et al. Expires 8 December 2023 [Page 10]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 | | |
 | 1(o). Beacon (challenge TID) |
 |-->|
 | | |
 | 2. NegotiationRequest |
 |<--|
 | | |
 | | 3. Display Trustwords|
 | |<- - - - - - - - - - -|
 | | |
 | 4. NegotiationOpen |
 |-->|
 | | |
 | 5. Display Trustwords| |
 | - - - - - - - - - - >| |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) successful | |
 | `-----------------------------' |
 | | |
 ,-----------------------------------. |
 |User presses 'Accept' button | |
 |on 'Requester' device | |
 `-----------------------------------' |
 | | 6. Accept |
 | | - - - - - - - - - - >|
 | | |
 | 7. CommitAcceptRequester |
 |<--|
 | | |
 | | |
 ,-----------------------------------. |
 |User presses 'Accept' button | |
 |on 'Offerer' device | |
 `-----------------------------------' |
 | 8. Accept | |
 |<- - - - - - - - - - -| |
 | | |
 | 9. CommitAcceptOfferer |
 |-->|
 | | |
 | 10. OwnKeysRequester + keys |
 |<--|
 | | |
 ,--------------------. | |
 |Offerer is Grouped | | |
 `--------------------' | |

Birk, et al. Expires 8 December 2023 [Page 11]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 | | |
 | 11. OwnKeysOfferer + keys |
 |-->|
 | | |
 | | ,----------------------.
 | | |Requester is Grouped |
 | | `----------------------'
 | | |
 | | |
 ,-------+--------. | ,--------+---------.
 |'Offerer' device| User |'Requester' device|
 `----------------' ,-. `------------------'
 `-'
 /|\
 |
 / \

 As depicted above, our User, Alice, intends to form a Device Group in
 order to share key material between her devices in an authenticated
 and secure manner. The group is formed by an 'Offerer' device and a
 'Requester' device. The names 'Offerer' and 'Requester' are derived
 from the FSM (cf. Appendix A.1), in which the device roles are
 defined during the start sequence, which is necessary for the FSM to
 work as intended.

 During initialization of pEp KeySync, each device generates a
 Transaction-ID (TID). These TIDs are sent as a Challenge in a Beacon
 over the mutual channel, and the device roles of 'Offerer' and
 'Requester' are determined by the numeric value of each device's
 unique TID.

 1. Every device sends a Beacon Message containing a Challenge TID.
 Upon receipt of a Beacon Message from another device, the
 received Challenge TID is compared with the device's own
 Challenge TID. The device which has a TID with a lower
 numerical value is assigned as the 'Requester', and the other
 device is automatically assigned as the 'Offerer'.

 Note: The 'Offerer' device MUST NOT start a negotiation. In the
 event the earlier Beacon Message is lost, the 'Offerer' device
 re-sends its own Beacon and waits for a response. Message 1(r)
 depicts the Beacon Message sent by the 'Requester' device and is
 not required for the process to continue.

 2. After determination of the role, the 'Requester' device sends a
 NegotiationRequest Message.

Birk, et al. Expires 8 December 2023 [Page 12]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 3. The 'Requester' device displays the Trustwords to Alice.

 4. Upon receipt of the NegotiationRequest Message, the 'Offerer'
 device sends a NegotiationOpen Message.

 5. The 'Offerer' device displays the Trustwords to Alice.

 6. Alice compares the Trustwords of both devices. As the
 Trustwords are the same on both devices, she chooses the
 'Accept' option on the 'Requester' device.

 Note: Alice may choose 'Accept' on the 'Offerer' device first,
 in which case the sequence of the messages is slightly different
 (i.e. message 8 is sent before message 6). However, the result
 will be exactly the same.

 7. On receipt of Alice's 'Accept' from the 'Offerer' device, the
 'Requester' device sends a CommitAcceptRequester Message.

 The 'Offerer' device receives this Message and waits for Alice
 to choose 'Accept'.

 8. Alice compares the Trustwords of both devices and chooses the
 'Accept' option on the 'Offerer' device.

 9. Once Alice chooses 'Accept', the 'Offerer' device sends a
 CommitAcceptOfferer Message.

 10. Upon receipt of the CommitAcceptOfferer Message, the 'Requester'
 device sends an OwnKeysRequester Message along with Alice's
 local key pairs (private and public keys) to be synchronized.

 11. Upon receipt of the OwnKeysRequester Message, the 'Offerer'
 device saves the 'Requester' device keys and combines them with
 the existing 'Offerer' device keys. This means that the
 'Offerer' device is grouped.

 The 'Offerer' device sends an OwnKeysOfferer Message along with
 its own existing local key pairs (private and public keys) to be
 synchronized.

 Upon receipt of the OwnKeysOfferer Message, the 'Requester'
 device saves the 'Offerer' keys combined with the 'Requester'
 keys. This means that the 'Requester' device is also grouped.

 The formation of the Device Group has been successful.

Birk, et al. Expires 8 December 2023 [Page 13]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

2.2.1.2. Unsuccessful Case

 ,-.
 `-'
 /|\
 |
 ,----------------. / \ ,------------------.
 |'Offerer' device| User |'Requester' device|
 `-------+--------' | `--------+---------'
 | | |
 | | |
 ,--!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `--'
 | | |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) unsuccessful | |
 | `-----------------------------' |
 | ,------------------------------------.
 | |User presses 'Reject' button |
 | |on 'Requester' device |
 | `------------------------------------'
 | | R6. Reject |
 | | - - - - - - - - - - >|
 | | |
 | R7. CommitReject |
 |<---|
 | | |
 ,--!.
 | Devices (still not grouped) will not try again |_\
 `--'
 | | |
 ,-------+--------. | ,--------+---------.
 |'Offerer' device| User |'Requester' device|
 `----------------' ,-. `------------------'
 `-'
 /|\
 |
 / \

 For unsuccessful KeySync attempts, messages 1-5 are the same as in a
 successful attempt (see above), but once the Trustwords are shown,
 events are as follows:

Birk, et al. Expires 8 December 2023 [Page 14]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 R6. Our User, Alice, compares the Trustwords of both devices. As the
 Trustwords do not match, she chooses the 'Reject' option on the
 'Requester' device.

 Note: The User may choose 'Reject' on the 'Offerer' device, in
 which case the origin and/or destination of the messages
 change. However, the result will be exactly the same.

 R7. Once Alice chooses the 'Reject' option, the 'Requester' device
 sends a CommitReject Message to the 'Offerer' device.

 Once the CommitReject Message is sent and received by the respective
 devices, they cannot form a Device Group, and pEp KeySync is disabled
 on both devices. As a result, there are no further attempts to form
 a Device Group involving either of these two devices. KeySync may be
 re-enabled in the pEp settings on the affected device(s).

2.2.1.3. Discontinuation Case

Birk, et al. Expires 8 December 2023 [Page 15]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 ,-.
 `-'
 /|\
 |
 ,----------------. / \ ,------------------.
 |'Offerer' device| User |'Requester' device|
 `-------+--------' | `--------+---------'
 | | |
 | | |
 ,--!.
 |Messages (1-5) are same as in the successful case (see above) |_\
 `--'
 | | |
 | | |
 | ,-----------------------------. |
 | |Handshake (user comparison | |
 | |of Trustwords) discontinued | |
 | `-----------------------------' |
 | ,------------------------------------.
 | |User presses 'Cancel' button |
 | |on 'Requester' device |
 | `------------------------------------'
 | | C6. Cancel |
 | | - - - - - - - - - - >|
 | | |
 | C7. Rollback |
 |<---|
 | | |
 ,--!.
 | Devices (still not grouped) will try again |_\
 `--'
 | | |
 ,-------+--------. | ,--------+---------.
 |'Offerer' device| User |'Requester' device|
 `----------------' ,-. `------------------'
 `-'
 /|\
 |
 / \

 For discontinued (canceled) KeySync attempts, messages 1-5 are the
 same as in a successful attempt (see above), but once the Trustwords
 are shown, events are as follows:

Birk, et al. Expires 8 December 2023 [Page 16]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 C6. Our User, Alice, decides to discontinue the process and chooses
 the 'Cancel' option on the 'Requester' device.

 Note: The User may choose 'Cancel' on the 'Offerer' device, in
 which case the origin and/or destination of the messages
 change. However, the result will be exactly the same.

 C7. Once Alice chooses the 'Cancel' option, the 'Requester' device
 sends a rollback Message to the 'Offerer' device.

 The devices do not form a Device Group. KeySync remains enabled on
 both devices, and Alice can attempt to form a Device Group again.

2.2.2. Add New Device to Existing Device Group

2.2.2.1. Successful Case

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 | 1. Beacon | |
 |--------------------------------->|------------------>|
 | | | |
 | 2(w). NegotiationRequestGrouped | |
 |<---------------------------------| |
 | | | |
 | 2(l). NegotiationRequestGrouped (discarded) |
 |<---|
 | | | |
 | 3. NegotiationOpen | |
 |--------------------------------->| |
 | 4. Display | | |
 | Trustwords | | |
 | - - - - - - - >| | |
 | | | 5. GroupHandshake |
 | | 6(w). Display |------------------>|
 | | Trustwords | |
 | |<- - - - - - - - | |
 | | | |
 | | 6(l) Display Trustwords |
 | |<- - - - - - - - - - - - - - - - - - |
 | | | |

Birk, et al. Expires 8 December 2023 [Page 17]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 | ,-----------------------------. | | | |
 | |Handshake (user comparison | | |
 | |of Trustwords) successful | | |
 | `-----------------------------' | |
 | | | |
 | ,------------------------------. |
 | |User presses 'Accept' button | |
 | |on a device in group | |
 | `------------------------------' |
 | | 7. Accept | |
 | | - - - - - - - ->| |
 | | | 8. GroupTrust |
 | | | ThisKey |
 | | |------------------>|
 | | | |
 | 9. CommitAcceptForGroup | |
 |<---------------------------------| |
 | | | |
 ,------------------------------. | |
 |User presses 'Accept' button | | |
 |on new device | | |
 `------------------------------' | |
 | 10. Accept | | |
 |<- - - - - - - -| | |
 | | | |
 | 11. CommitAccept | |
 |--------------------------------->| |
 | | | |
 | 12. GroupKeysForNewMember (key data) |
 |<---------------------------------| |
 | | | |
 ,------------. | | |
 |New device | | | |
 |is grouped | | | |
 `------------' | | |
 | | | | |
 | 13. GroupKeysAndClose (key data) | |
 |--------------------------------->| |
 | | | |
 | | ,------------. |
 | | |New device | |
 | | |is accepted | |
 | | `------------' |
 | | | |
 | 13. GroupKeysAndClose (key data) |
 |--->|
 | | | |
 | | | ,------------.

Birk, et al. Expires 8 December 2023 [Page 18]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 | | | |New device |
 | | | |is accepted |
 | | | `------------'
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

 As depicted above, our User, Alice, intends to add a new device to
 her existing Device Group.

 1. When Alice initializes the pEp KeySync process, the new device
 sends a Beacon Message.

 2. Upon receipt of a Beacon Message from this new, Ungrouped
 Device, all Grouped Devices in Alice's existing Device Group
 send a NegotiationRequestGrouped Message to the New Device.

 Note: Messages 2(w) and 2(l) are instances of the same
 (NegotiationRequestGrouped) Message type sent from the Grouped
 Devices. Only the first NegotiationRequestGrouped Message
 received by the New Device is acknowledged. In this example,
 2(w) (the "winner") is processed, while message 2(l) (the
 "loser") will be ignored and discarded. The result will be the
 same, no matter which NegotiationRequestGrouped Message is
 processed first.

 3. Upon receipt of the NegotiationRequestGrouped Message 2(w), the
 New Device answers with a NegotiationOpen Message to the device
 that issued the "winning" NegotiationRequestGrouped Message.

 4. The New Device displays the Trustwords to Alice.

 5. Upon receipt of the NegotiationOpen Message, the "winner" device
 sends a GroupHandshake Message to the "loser" device(s), in
 order to activate the Trustwords dialog on all Grouped Devices.

 6. All Grouped Devices display the Trustwords to the User.

 Note: Messages 6(w) and 6(l) are instances of the same Action on
 different devices.

 7. Alice compares the Trustwords of all devices and chooses the
 'Accept' option on any of the Grouped Devices.

Birk, et al. Expires 8 December 2023 [Page 19]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 Note 1: The Grouped Device that Alice chooses the 'Accept'
 option on assumes the role of the Active Device for the
 remainder of the KeySync process, while the other device(s) in
 the Device Group are assigned the passive role.

 Note 2: Alice may choose 'Accept' on the new device first, in
 which case sequence of the messages is slightly different (i.e.,
 message 10 is sent before message 7). However, the result will
 be exactly the same.

 8. Once Alice chooses the 'Accept' option, the Active Device sends
 a GroupTrustThisKey Message to the Passive Device(s) in the
 existing Device Group.

 9. The Active Device also sends a CommitAcceptForGroup Message to
 the new device. Upon receipt, the New Device waits for Alice to
 choose 'Accept'.

 10. Alice compares the Trustwords on both the New Device and the
 Active Device, then chooses the 'Accept' option on the new
 device.

 11. Once Alice chooses 'Accept', the New Device sends a CommitAccept
 Message to the Active Device.

 12. Upon receipt of the CommitAccept Message, the Active Device
 device sends a GroupKeysForNewMember Message to the New Device,
 along with Alice's local key pairs (private and public keys) for
 synchronization.

 13. The New Device receives the GroupKeysForNewMember Message and
 saves the received keys combined with its Own Keys. The new
 device has successfully joined the Device Group.

 The New Device sends a GroupKeysAndClose Message to all devices
 in the Device Group, along with its own original local key pairs
 (private and public keys) for synchronization.

 Note: In the diagram, all messages marked "13.
 GroupKeysAndClose (key data)" are a single message, but drawn
 separately in order to convey that the message is sent to all
 devices in the Device Group.

 Upon receipt of the GroupKeysAndClose Message from the New
 Device, the Active and Passive Devices save the New Device keys
 and combine them with their Own Keys. All keys are now
 synchronized among the devices.

Birk, et al. Expires 8 December 2023 [Page 20]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 Note: There is no Event Handler to process the GroupKeysAndClose
 Message explicitly, as all decryptable Messages containing keys
 are implicitly processed and the received keys saved.

 [[TODO: Decide whether the implicit importing keys should
 rather be replaced by explicit Actions in Event Handlers.]]

2.2.2.2. Unsuccessful Case

Birk, et al. Expires 8 December 2023 [Page 21]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 ,---!.
 |Messages (1-6) are same as in the successful case (see above) |_\
 `---'
 | | | | |
 | | | |
 | ,-----------------------------. | |
 | |Handshake (user comparison | | |
 | |of Trustwords) unsuccessful | | |
 | `-----------------------------' | |
 | ,------------------------------. |
 | |User presses 'Reject' button | |
 | |on a device in group | |
 | `------------------------------' |
 | | R7. Reject | |
 | | - - - - - - - ->| |
 | | | |
 | R8. CommitReject | |
 |<---------------------------------|------------------>|
 | | | |
 ,----------!. | | |
New device	_\		
(still not			
grouped)			
will not			
try again			
 `------------' | | |
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

 For unsuccessful KeySync attempts, messages 1-6 are the same as in a
 successful attempt (see above), but once the Trustwords are shown,
 events are as follows:

Birk, et al. Expires 8 December 2023 [Page 22]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 R7. Our User, Alice, compares the Trustwords displayed on both
 devices. If the Trustwords do not match, she chooses the
 'Reject' option on one of the Grouped Devices (which becomes
 the Active Device).

 Note: Alice may choose 'Reject' on the new device, in which
 case the origin and/or destination of the messages
 change. However, the result will be exactly the same.

 R8. Upon receipt of the 'Reject' Event, the Active Device sends
 a CommitReject Message to both the New Device which attempted to
 join, and the Passive Device(s) in the Device Group.

 Note: In the diagram, "R8. CommitReject" represents the message
 that is sent to all devices participating in the handshake.

 Once the CommitReject Message is sent and received by the respective
 devices, they cannot form a Device Group, and pEp KeySync is disabled
 on the New Device. pEp KeySync may be re-enabled in the pEp settings
 on the affected device.

2.2.2.3. Discontinuation Case

Birk, et al. Expires 8 December 2023 [Page 23]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 ,-------. ,-.
 |New | `-' ,--------. ,--------.
 |device | /|\ |Active | |Passive |
 |to join| | |device | |devices |
 |group | / \ |in group| |in group|
 `---+---' User `---+----' `---+----'
 | | | |
 | | | |
 ,---!.
 |Messages (1-6) are same as in the successful case (see above) |_\
 `---'
 | | | | |
 | | | |
 | ,-----------------------------. | |
 | |Handshake (user comparison | | |
 | |of Trustwords) discontinued | | |
 | `-----------------------------' | |
 | ,------------------------------. |
 | |User presses 'Cancel' button | |
 | |on a device in group | |
 | `------------------------------' |
 | | C7. Cancel | |
 | | - - - - - - - ->| |
 | | | |
 | C8. Rollback | |
 |<---------------------------------|------------------>|
 | | | |
 ,----------!. | | |
New device	_\		
(still not			
grouped)			
will try			
again			
 `------------' | | |
 | | | |
 ,---+---. User ,---+----. ,---+----.
 |New | ,-. |Active | |Passive | |
 |device | `-' |device | |devices |
 |to join| /|\ |in group| |in group|
 |group | | `--------' `--------'
 `-------' / \

 For discontinued (canceled) KeySync attempts, messages 1-6 are the
 same as in a successful attempt (see above), but once the Trustwords
 are shown, events are as follows:

Birk, et al. Expires 8 December 2023 [Page 24]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 C7. Our User, Alice, decides to discontinue the process and chooses
 the 'Cancel' option on one of the Grouped Devices (which becomes
 the Active Device).

 Note: Alice may choose 'Cancel' on the New Device, in which
 case the origin and/or destination of the messages
 change. However, the result will be the same.

 C8. When Alice chooses 'Cancel', the Active Device sends a Rollback
 Message to both the New Device and any Passive Devices in the
 Device Group.

 Note: In the diagram, all messages marked "C8. Rollback"
 represents the message that is sent to all devices participating
 in the handshake.

 The new device does not join the Device Group. KeySync remains
 enabled and joining a Device Group can start again at any time.

2.2.3. Exchange Private Keys

 [[TODO]]

2.2.4. Leave Device Group

 [[TODO]]

2.2.5. Remove other Device from Device Group

 [[TODO]]

3. Security Considerations

 [[TODO]]

4. Privacy Considerations

 [[TODO]]

5. IANA Considerations

 This document has no actions for IANA.

Birk, et al. Expires 8 December 2023 [Page 25]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

6. Acknowledgments

 The authors would like to thank the following people who provided
 substantial contributions, helpful comments or suggestions for this
 document: Berna Alp, Claudio Luck, Damian Rutz, Damiano Boppart,
 Itzel Vazquez Sandoval, Kelly Bristol Krista Bennett, Nana
 Karlstetter, and Sofia Balicka.

 This work was initially created by pEp Foundation, and then reviewed
 and extended with funding by the Internet Society's Beyond the Net
 Programme on standardizing pEp. [ISOC.bnet]

7. References

7.1. Normative References

 [I-D.pep-general]
 Birk, V., Marques, H., and B. Hoeneisen, "pretty Easy
 privacy (pEp): Privacy by Default", Work in Progress,
 Internet-Draft, draft-pep-general-02, 16 December 2022,
 <https://datatracker.ietf.org/doc/html/draft-pep-general-

02>.

 [I-D.pep-keyreset]
 Hoeneisen, B., "pretty Easy privacy (pEp): Key Reset",
 Work in Progress, Internet-Draft, draft-pep-keyreset-00,
 15 December 2022, <https://datatracker.ietf.org/doc/html/

draft-pep-keyreset-00>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [I-D.pep-handshake]
 Marques, H. and B. Hoeneisen, "pretty Easy privacy (pEp):
 Contact and Channel Authentication through Handshake",
 Work in Progress, Internet-Draft, draft-pep-handshake-00,
 16 December 2022, <https://datatracker.ietf.org/doc/html/

draft-pep-handshake-00>.

https://datatracker.ietf.org/doc/html/draft-pep-general-02
https://datatracker.ietf.org/doc/html/draft-pep-general-02
https://datatracker.ietf.org/doc/html/draft-pep-general-02
https://datatracker.ietf.org/doc/html/draft-pep-keyreset-00
https://datatracker.ietf.org/doc/html/draft-pep-keyreset-00
https://datatracker.ietf.org/doc/html/draft-pep-keyreset-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-pep-handshake-00
https://datatracker.ietf.org/doc/html/draft-pep-handshake-00
https://datatracker.ietf.org/doc/html/draft-pep-handshake-00

Birk, et al. Expires 8 December 2023 [Page 26]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 [I-D.pep-trustwords]
 Hoeneisen, B. and H. Marques, "IANA Registration of
 Trustword Lists: Guide, Template and IANA Considerations",
 Work in Progress, Internet-Draft, draft-pep-trustwords-01,
 23 December 2022, <https://datatracker.ietf.org/doc/html/

draft-pep-trustwords-01>.

 [ISOC.bnet]
 Simao, I., "Beyond the Net. 12 Innovative Projects
 Selected for Beyond the Net Funding. Implementing Privacy
 via Mass Encryption: Standardizing pretty Easy privacy's
 protocols", June 2017, <https://www.internetsociety.org/

blog/2017/06/12-innovative-projects-selected-for-beyond-
the-net-funding/>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",
 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,
 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC7435] Dukhovni, V., "Opportunistic Security: Some Protection
 Most of the Time", RFC 7435, DOI 10.17487/RFC7435,
 December 2014, <https://www.rfc-editor.org/info/rfc7435>.

Appendix A. Reference Implementation

 [[Note: The full Finite State Machine code can be found in
Appendix B.1. This section is not a complete reference at this time.

 The authors intend to refine this section in future revisions of this
 document.]]

 The pEp KeySync Finite State Machine (FSM) is based on a two-phase
 commit protocol (2PC) structure. This section describes the States,
 Conditions, Actions, Events, and Messages which comprise the pEp
 KeySync FSM, and are intended to allow readers to understand the
 general functionality and Message flow of the FSM.

 States are used to direct Actions, Events, and Messages. States may
 have timeouts. If a timeout is triggered certain functionality is
 executed.

 Conditions are checks performed to determine a specify different
 behaviors of the FSM depending on the environment, for example, the
 content of I/O buffers.

 Actions describe internal FSM functionality, and fall into two
 general types. The first Action type directs the State transitions
 within the FSM, and the second type drives UI functionality. Actions
 may call internal functions, which are not further described here.

https://datatracker.ietf.org/doc/html/draft-pep-trustwords-01
https://datatracker.ietf.org/doc/html/draft-pep-trustwords-01
https://datatracker.ietf.org/doc/html/draft-pep-trustwords-01
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://www.internetsociety.org/blog/2017/06/12-innovative-projects-selected-for-beyond-the-net-funding/
https://datatracker.ietf.org/doc/html/rfc4949
https://www.rfc-editor.org/info/rfc4949
https://datatracker.ietf.org/doc/html/rfc7435
https://www.rfc-editor.org/info/rfc7435

Birk, et al. Expires 8 December 2023 [Page 27]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 Events are exchanged both between negotiation partners as well as the
 pEp core implementation itself to trigger Actions and send Messages.

 Messages contain information to ensure the integrity of the KeySync
 session as well as additional data, depending on the type of Message
 (cf. Appendix A.1.6).

A.1. Description of Finite State Machine

 A full diagram of the implemented pEp KeySync FSM can be found at the
 following URL:

https://gitea.pep.foundation/pEp.foundation/internet-
drafts/raw/branch/master/pep-keysync/figures/keysync_fsm_full.svg

 For convenience (better readability), there is also a simplified
 diagram of the implemented pEp KeySync FSM, which does not contain
 the transitions that occur when choosing the 'Cancel' or 'Reject'
 options. The simplified diagram can be found at the following URL:

https://gitea.pep.foundation/pEp.foundation/internet-
drafts/raw/branch/master/pep-keysync/figures/

 keysync_fsm_simplified.svg

 The first letter of the terms State, Condition, Action, Event and
 Message is capitalized, whenever it said term refers to the FSM.

A.1.1. States

 The FSM has two types of States:

 1. Stable States:

 The FSM of KeySync has two Stable States that do not time out:

 * Sole (cf. Appendix A.1.1.2)

 * Grouped (cf. Appendix A.1.1.10)

 2. Transitional States:

 All other States (cf. below) are Transitional States that time
 out.

https://gitea.pep.foundation/pEp.foundation/internet-drafts/raw/branch/master/pep-keysync/figures/keysync_fsm_full.svg
https://gitea.pep.foundation/pEp.foundation/internet-drafts/raw/branch/master/pep-keysync/figures/keysync_fsm_full.svg
https://gitea.pep.foundation/pEp.foundation/internet-drafts/raw/branch/master/pep-keysync/figures/
https://gitea.pep.foundation/pEp.foundation/internet-drafts/raw/branch/master/pep-keysync/figures/

Birk, et al. Expires 8 December 2023 [Page 28]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.1.1. InitState

 On initialization, the FSM enters InitState, which evaluates and
 determines a device's group status. If the device is detected to
 belong to a Device Group, it issues a SynchronizeGroupKeys Message to
 the Grouped Devices (to request an update on the Group Keys), and the
 FSM transitions to State Grouped (cf. Appendix A.1.2.1). Otherwise,
 a new Challenge TID is created and sent out inside of a Beacon
 Message, and the FSM transitions to State Sole.

A.1.1.2. Sole

 This is the default FSM State for an Ungrouped Device.

 On initialization, this State shows the device as being in the Sole
 State.

 The FSM also listens for Beacons from other devices. Upon receipt of
 a Beacon Message from another device, the received Challenge TID is
 compared with the own Challenge. The device with the lower Challenge
 TID is assigned the 'Requester' role, and the other device is
 automatically assigned the 'Offerer' role. If a device is determined
 to be the 'Offerer', it resends the Beacon. If a device is
 determined to be the 'Requester', it issues a NegotiationRequest
 Event to the 'Offerer'.

 When the 'Offerer' device receives this NegotiationRequest Message,
 it responds with a NegotiationOpen Message, and the 'Offerer' FSM
 transitions to State HandshakingOfferer where it awaits the
 'Requester' device response.

 On receipt of a Grouped device's NegotiationRequestGrouped Message,
 it responds with a NegotiationOpen Message, and the 'Requester' FSM
 transitions to State HandshakingToJoin.

 On receipt of the 'Offerer' device's NegotiationOpen Message, the
 'Requester' FSM transitions to State HandshakingRequester.

 In this State, other Events may also be processed, but these Events
 do not result in a transition to another State.

A.1.1.3. HandshakingOfferer

 This State can only be entered by the 'Offerer' device from Sole
 State.

Birk, et al. Expires 8 December 2023 [Page 29]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 On initialization, it drives user interface options, including the
 Trustwords dialog. The User is prompted to compare Trustwords and
 choose from the following options:

 * Accept: The 'Requester' public key used in the Handshake is
 trusted, and the FSM transitions to State
 HandshakingPhase1Offerer.

 * Reject: A CommitReject Message is sent to the 'Requester' device,
 pEp KeySync is disabled, and the FSM transitions to State End.

 * Cancel: A Rollback Message is sent to the 'Requester' device, and
 the FSM transitions to State Sole.

 If the User selects one of the above options on the 'Requester'
 device, the 'Requester' FSM sends a response to the 'Offerer' device.
 When this response is received, the 'Offerer' FSM performs a
 sameNegotiation Condition on the current negotiation session to
 verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM proceeds as
 follows, depending on the Message received:

 * CommitAcceptRequester: The 'Requester' FSM transitions to State
 HandshakingPhase2Offerer.

 * CommitReject: pEp KeySync is disabled, and the FSM transitions to
 State End.

 * Rollback: The FSM transitions to State Sole.

A.1.1.4. HandshakingRequester

 This State can only be entered by the 'Requester' device from Sole
 State.

 On initialization, it drives user interface options, including the
 Trustwords dialog. The User is prompted to compare Trustwords, and
 choose from the following options:

 * Accept: The 'Offerer' public key is trusted, a
 CommitAcceptRequester Message is sent to the 'Offerer' device, and
 the FSM transitions to State HandshakingPhase1Requester.

 * Reject: A CommitReject Message is sent to the 'Offerer' device,
 pEp KeySync is disabled, and the FSM transitions to State End.

 * Cancel: A Rollback Message is sent to the 'Offerer' device, and
 the FSM transitions to State Sole.

Birk, et al. Expires 8 December 2023 [Page 30]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 If the User selects the 'Cancel' or the 'Reject' options on the
 'Offerer' device, the 'Offerer' FSM sends a response to the
 'Requester' device. When this response is received, the 'Requester'
 FSM performs a sameNegotiation Condition on the current negotiation
 session to verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM proceeds as
 follows, depending on the Message received:

 * CommitReject: pEp KeySync is disabled, and the FSM transitions to
 State End.

 * Rollback: The FSM transitions to State Sole.

A.1.1.5. HandshakingPhase1Offerer

 This State can only be entered by the 'Offerer' device from
 HandshakingOfferer State.

 In this State the FSM awaits and processes the response from a
 'Requester' device in State HandshakingRequester. When this response
 is received, the 'Offerer' FSM performs a sameNegotiation Condition
 on the current negotiation session to verify that the current session
 has not been disrupted or compromised. If this Condition returns
 'true', the FSM proceeds as follows, depending on the Message
 received:

 * CommitAcceptRequester: A CommitAcceptOfferer Message is sent to
 the 'Requester' device, and the FSM transitions to State
 FormingGroupOfferer.

 * CommitReject: The 'Requester' public key is mistrusted, pEp
 KeySync is disabled, and the FSM transitions to State End.

 * Rollback: The 'Requester' public key is mistrusted, and the FSM
 transitions to State Sole.

A.1.1.6. HandshakingPhase1Requester

 This State can only be entered by the 'Requester' device from
 HandshakingRequester State.

 In this State the FSM awaits and processes the response from an
 'Offerer' device in State HandshakingOfferer or
 HandshakingPhase2Offerer. When this response is received, the
 'Requester' FSM performs a sameNegotiation Condition on the current
 negotiation session to verify that the current session has not been
 disrupted or compromised. If this Condition returns 'true', the FSM
 proceeds as follows, depending on the Message received:

Birk, et al. Expires 8 December 2023 [Page 31]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 * CommitAcceptOfferer: The FSM prepares the Own Keys on the
 'Requester' device for synchronization. The FSM then issues an
 OwnKeysRequester Message to the 'Offerer', which contains these
 keys, and transitions to State FormingGroupRequester.

 * CommitReject: The 'Offerer' public key is mistrusted, pEp KeySync
 is disabled, and the FSM transitions to State End.

 * Rollback: The 'Offerer' public key is mistrusted, and the FSM
 transitions to State Sole.

A.1.1.7. HandshakingPhase2Offerer

 This State can only be entered by the 'Offerer' device from a
 HandshakingOfferer State.

 In this State the FSM waits for the User's response on the 'Offerer'
 device. The User is still prompted to compare Trustwords and choose
 from the following options:

 * Accept: The 'Requester' public key used in the Handshake is
 trusted, a CommitAcceptOfferer Message is issued to the
 'Requester', and the FSM transitions to State FormingGroupOfferer.

 * Reject: A CommitReject Message is issued to the 'Requester'
 device, pEp KeySync is disabled, and the FSM transitions to State
 End.

 * Cancel: A Rollback Message is issued to the 'Requester' device,
 and the FSM transitions to State Sole.

A.1.1.8. FormingGroupOfferer

 This State can only be entered by the 'Offerer' device from
 HandshakingPhase1Offerer or HandshakingPhase2Offerer State.

 On initialization, the FSM prepares the Own Keys on the 'Offerer'
 device for synchronization and makes a backup of these Own Keys.
 Then it waits for the OwnKeysRequester Message from the 'Requester',
 which contains the Own Keys and the information about all Own
 Identities of the 'Requester'.

 When this Message is received, the 'Offerer' FSM performs a
 sameNegotiation Condition on the current negotiation session to
 verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM saves the
 'Requester' keys combined with the 'Offerer' keys in a shared
 GroupKeys array (saveGroupKeys) and the 'Requester' device keys are

Birk, et al. Expires 8 December 2023 [Page 32]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 marked as default for those respective Identities
 (receivedKeysAreDefaultKeys). Then, the FSM prepares the Own Keys on
 the 'Offerer' device for synchronization. Because the Keys are
 already set to those of the 'Requester' device, it is taking its
 former Own Keys and Own Identities from the backup (cf. above). The
 Offerer sends the OwnKeysOfferer Message (with key material of its
 Own Keys and Own Identities) to the 'Requester', a UI Event
 (showGroupCreated) indicates that the Device Group process is
 complete, and the FSM transitions to State Grouped.

 Note: In case the 'Requester' device has transitioned to Sole State
 due to a Cancel, this OwnKeysOfferer Message will not processed by
 the 'Requester' device.

 In case a (delayed) Cancel arrives (which normally cannot happen), a
 Rollback Message is issued to the 'Requester' device, and the FSM
 transitions to State Sole.

 In case a (delayed) Rollback Message is received (which normally
 cannot happen), the FSM transitions to State Sole.

A.1.1.9. FormingGroupRequester

 This State can only be entered by the 'Requester' device from a
 HandshakingPhase1Requester State.

 In this State the FSM awaits and processes the Message OwnKeysOfferer
 from an 'Offerer' device in State HandshakingPhase1Offerer or
 HandshakingPhase2Offerer.

 When this Message is received, the 'Requester' FSM performs a
 sameNegotiation Condition on the current negotiation session to
 verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM saves the
 'Offerer' keys in a shared GroupKeys array (saveGroupKeys), and
 prepares the device's Own Keys for synchronization. The 'Requester'
 device keys are marked as default for those respective Identities
 (ownKeysAreDefaultKeys). A UI Event (showGroupCreated) indicates
 that the Device Group process is complete, and the FSM transitions to
 State Grouped.

 In case a (delayed) Cancel arrives (which normally cannot happen), a
 Rollback Message is issued to the 'Offerer' device, and the FSM
 transitions to State Sole.

 Note: In case the 'Offerer' device has already transitioned to
 Grouped State, this Rollback Message will not be processed by the
 'Offerer' device.

Birk, et al. Expires 8 December 2023 [Page 33]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 In case a (delayed) Rollback Message is received (which normally
 cannot happen), the FSM transitions to State Sole.

A.1.1.10. Grouped

 This is the default State for any Grouped Device.

 On initialization, this State generates a new Challenge TID and shows
 the device as being in the Grouped State. A UI Event
 (showBeingInGroup) indicates that the Device is part of a Device
 Group.

 In this State the FSM also listens for Beacons from other devices
 that are not yet part of the Device Group.

 Upon receipt of a Beacon Message from Sole Device, the device sends a
 NegotiationRequestGrouped Message and waits for the Sole Device to
 respond with a NegotiationOpen Message.

 On receipt of the NegotiationOpen Message from the Sole Device, the
 FSM of the Grouped Device stores the negotiation information and
 transitions to State HandshakingGrouped.

 If the User requests to leave the device group, LeaveDeviceGroup is
 triggered, i.e., an InitUnledGroupKeyReset Message is issued to the
 other Device Group members, Sync is disabled locally, and a
 resetOwnKeysUngrouped is performed (KeyReset on all Own Keys) .

 Upon receipt of an InitUnledGroupKeyReset Message from another member
 of the Device Group, useOwnResponse is performed (save the response
 into the I/O Buffer), an ElectGroupKeyResetLeader Message is issued,
 and the FSM transitions to State GroupKeyResetElection.

 In this State, other Events may also be processed, but these Events
 do not result in a transition to another State, e.g.,
 GroupKeysUpdate.

A.1.1.11. HandshakingToJoin

 This State can only be entered by a device in the Sole State that is
 attempting to join an existing Device Group.

 On initialization, this State drives user interface options,
 including the Trustwords dialog for joining a Device Group. The User
 on the new device is prompted to compare Trustwords and choose from
 the following options:

Birk, et al. Expires 8 December 2023 [Page 34]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 * Accept: The existing Device Group's public key used in the
 Handshake is trusted, and the FSM transitions to State
 HandshakingToJoinPhase1.

 * Reject: A CommitReject Message is sent to the existing Device
 Group, pEp KeySync is disabled (on new device), and the FSM
 transitions to State End.

 * Cancel: A Rollback Message is sent to the existing Device Group,
 and the FSM transitions to State Sole.

 If the User selects one of the above options on a device that is part
 of the existing Device Group, its FSM sends a response to the new
 device. When this response is received, the FSM of the new device
 performs a sameNegotiation Condition on the current negotiation
 session to verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM proceeds as
 follows, depending on the Message received:

 * CommitAcceptForGroup: The FSM of the new device transitions to
 State HandshakingToJoinPhase2.

 * CommitReject: pEp KeySync is disabled (on the new device), and the
 FSM transitions to State End.

 * Rollback: The FSM transitions to State Sole.

A.1.1.12. HandshakingToJoinPhase1

 This State is entered by a new device only, i.e., a device that is
 not yet part of a Device Group.

 In this State the FSM awaits and processes the response from a device
 that is part of the existing Device Group. When this response is
 received, the FSM of the new device performs a sameNegotiation
 Condition on the current negotiation session to verify that the
 current session has not been disrupted or compromised. If this
 Condition returns 'true', the FSM proceeds as follows, depending on
 the Message received:

 * CommitAcceptForGroup: A CommitAccept Message is sent to the
 existing Device Group, and the The FSM transitions to State
 JoiningGroup.

 * CommitReject: The existing Device Group's public key is
 mistrusted, pEp KeySync is disabled (on the new device), and the
 FSM transitions to State End.

Birk, et al. Expires 8 December 2023 [Page 35]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 * Rollback: The existing Device Group's public key is mistrusted,
 and the FSM transitions to State Sole.

A.1.1.13. HandshakingToJoinPhase2

 This State is entered by a new device only, i.e., a device that is
 not yet part of a Device Group.

 In this State the FSM waits for the User's response on the new
 device. The User is still prompted to compare Trustwords and choose
 from the following options:

 * Accept: The existing Device Groups's public key used in the
 Handshake is trusted, a CommitAccept Message is issued to the
 'Requester', and the FSM transitions to State JoiningGroup.

 * Reject: A CommitReject Message is issued to the exiting Device
 Group, pEp KeySync is disabled (on the new device), and the FSM
 transitions to State End.

 * Cancel: A Rollback Message is issued to the existing Device Group,
 and the FSM transitions to State Sole.

A.1.1.14. JoiningGroup

 This State is entered by a new device only, i.e., a device that is
 not yet part of a Device Group.

 On initialization, the FSM prepares the Own Keys on the new device
 for synchronization and makes a backup of these Own Keys. Then it
 waits for the OwnKeysForNewMember Message from the exiting Device
 Group, which contains the Own Keys and the information about all Own
 Identities of the existing Device Group.

Birk, et al. Expires 8 December 2023 [Page 36]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 When this Message is received, the FSM of the new device performs a
 sameNegotiationAndPartner Condition on the current negotiation
 session to verify that both the current session and negotiation
 partner have not been disrupted or compromised. If this Condition
 returns 'true', the FSM saves the 'Requester' keys combined with the
 keys of the existing group in a shared GroupKeys array
 (saveGroupKeys) and the Device Group's keys are marked as default for
 those respective Identities (receivedKeysAreDefaultKeys). Then, the
 FSM prepares the Own Keys on the new device for synchronization.
 Because the Keys are already set to the ones of the existing Device
 Group, it is taking its former Own Keys and Own Identities from the
 backup (cf. above). The new device sends the GroupKeysAndClose
 Message (with key material of its Own Keys and Own Identities) to the
 Device Group, a UI Event (showDeviceAdded) indicates that the join
 Device Group process is complete, and the FSM transitions to State
 Grouped.

A.1.1.15. HandshakingGrouped

 This State is entered by Grouped Devices only, i.e., devices that are
 part of a Device Group.

 On initialization, this State drives UI options, including the
 Trustwords dialog. The User is prompted to compare Trustwords, and
 choose from the following options on any device belonging to the
 existing Device Group:

 * Accept: The new device's public key is trusted, and the FSM
 transitions to State HandshakingGroupedPhase1.

 * Reject: A CommitReject Message is sent to the new device and the
 FSM transitions to State Grouped.

 * Cancel: A Rollback Message is sent to the new device, and the FSM
 transitions to State Grouped.

 If the User selects the 'Cancel' or the 'Reject' options on the new
 device, the new device's FSM sends a response to the existing Device
 Group. Whenever this response is received by a Grouped Device, the
 FSM performs a sameNegotiation Condition on the current negotiation
 session to verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM proceeds as
 follows, depending on the Message received:

 * CommitReject: The FSM transitions to State Grouped.

 * Rollback: The FSM transitions to State Grouped.

Birk, et al. Expires 8 December 2023 [Page 37]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 When a GroupTrustThisKey Message is received from another device
 group member, the key received along with this Message is trusted.
 If the sameNegotiation Condition returns 'true', the FSM transitions
 to State Grouped. This latter causes any device in a Device Group,
 which is not actively taking part in the joining process, to abort
 the User prompt to compare the Trustwords.

 Note: In this State, other Events are processed, but these Events do
 not result in a transition to another State and are not discussed
 here.

A.1.1.16. HandshakingGroupedPhase1

 This State is entered by Grouped Devices only, i.e., devices that are
 already part of a Device Group.

 On initialization, a Message GroupTrustThisKey is sent to the other
 members of the Device Group and a Message CommitAcceptForGroup is
 sent to the new device.

 In this State the FSM awaits and processes the response from an new
 device in State HandshakingToJoin or HandshakingToJoinPhase2. When
 this response is received, the Grouped Device's FSM performs a
 sameNegotiation Condition on the current negotiation session to
 verify that the current session has not been disrupted or
 compromised. If this Condition returns 'true', the FSM proceeds as
 follows, depending on the Message received:

 * CommitAccept: The FSM prepares the Own Keys on the Grouped Device
 for synchronization. The FSM then issues a
 SendGroupKeysForNewMember Message to the new device, which
 contains these keys. Then a UI Event (showDeviceAccepted)
 indicates that the new device has been successfully added to the
 Device Group, and the FSM transitions to State Grouped. [[TODO:
 Check whether 'go Grouped' should be removed in this Event Handler
]]

 * CommitReject: The 'Offerer' public key is mistrusted and the FSM
 transitions to State Grouped.

 * Rollback: The 'Offerer' public key is mistrusted, and the FSM
 transitions to State Grouped.

 In case a GroupKeysAndClose Message arrives from another group
 member, the FSM transitions to State Grouped.

 In this State also various other Events are processed, which do not
 result in a transition to another State.

Birk, et al. Expires 8 December 2023 [Page 38]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.1.17. GroupKeyResetElection

 This State is entered by Grouped Devices only, i.e., devices that are
 already part of a Device Group (normally at reception of an
 InitUnledGroupKeyReset Message). It is used to determine the
 "leader" for a KeyReset, to avoid multiple executions of KeyReset.
 Whichever device from a Device Group sends this Message first, will
 be the "leader" of the KeyReset.

 The device waits for the ElectGroupKeyResetLeader Message from any
 member of the Device Group (that is, including its own
 ElectGroupKeyResetLeader Message).

 If this Message is received, the FSM of the new device performs a
 sameResponse Condition to determine whether or not the Message was
 sent by its own device or another Device Group member. If the
 Message was sent by its own device, a resetOwnGroupedKeys Action is
 triggered, and the FSM transitions to State Grouped. If the Message
 was sent by another Device Group member, the FSM just transitions to
 State Grouped.

 Note: All other ElectGroupKeyResetLeader Messages will be ignored,
 once the FSM is back to State Grouped.

A.1.2. Conditions

 Conditions are implemented with the keyword 'condition'. The code of
 their implementations can contain all elements, which can be
 contained by the code of Event Handlers (cf. Appendix A.1.5.1), too.
 All Conditions can either yield 'true' or 'false' on successful
 execution, or, if the Condition fails, the FSM is brought into an
 error state and reinitialized.

A.1.2.1. deviceGrouped

 The 'deviceGrouped' Condition evaluates 'true' if a device is already
 in a Device Group. This is determined by checking if there are Group
 Keys already. This boolean value is available and eventually altered
 locally on every KeySync-enabled device. For example, in the
 reference implementation, this boolean value is stored in a local SQL
 database.

 The 'deviceGrouped' value is what the KeySync FSM uses upon
 initialization (in InitState) to determine whether a device should
 transition to State Sole or State Grouped.

Birk, et al. Expires 8 December 2023 [Page 39]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.2.2. fromGroupMember

 The 'fromGroupMember' Condition evaluates 'true' if the incoming Sync
 Message is coming from a Device Group member. This is used for
 "double checking".

A.1.2.3. keyElectionWon

 The 'keyElectionWon' Condition evaluates 'true', if the fingerprint
 (FPR) of the Sender Key of the partner is greater than the FPR of our
 Default Key for the Account, which is being used as Active Transport.
 In this case our Own Keys are going to be used as Group Keys.
 Otherwise, it evaluates 'false' and the Own Keys of the partner will
 be the Group Keys.

A.1.2.4. sameChallenge

 The 'sameChallenge' Condition evaluates 'true' if the Challenge of
 the incoming Sync Message is identical to the Challenge of the
 Device, i.e., this is a Sync Message that was sent by the device
 itself.

A.1.2.5. sameNegotiation

 The 'sameNegotiation' Condition is dependent upon the
 'storeNegotiation' Action, which stores the active negotiation
 session while the KeySync process is performed. This Condition
 evaluates 'true' if the 'storeNegotiation' value of the incoming Sync
 Message is identical to that of the 'storeNegotiation' value that the
 device is in, i.e. the incoming Sync Message is part of the same
 Negotiation.

 This serves as a session fidelity check. If this boolean evaluates
 'true', it confirms that the pEp KeySync session in progress is the
 same throughout.

A.1.2.6. sameNegotiationAndPartner

 Similar to the 'sameNegotiation' Condition, the
 'sameNegotiationAndPartner' Condition is dependent upon the
 'storeNegotiation' Action, which stores the active negotiation
 session while the KeySync process is performed. The
 'sameNegotiation' Condition evaluates 'true' if both
 'storeNegotiation' value of the incoming Sync Message is identical to
 that of the 'storeNegotiation' value that the Device is in, AND the
 negotiation partner did not change.

Birk, et al. Expires 8 December 2023 [Page 40]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 This Condition also serves as a session fidelity check. If this
 boolean evaluates 'true', it confirms that the pEp KeySync session in
 progress is the same throughout, and that the negotiation partner has
 not changed.

A.1.2.7. sameResponse

 The 'sameResponse' Condition evaluates 'true' if the Response of the
 incoming Sync Message is identical to the Response of the device. In
 this case the Response was correctly echoed.

A.1.2.8. weAreOfferer

 The 'weAreOfferer' Condition evaluates 'true' if the Challenge of the
 incoming Sync Message is greater than the Challenge of the device.
 Otherwise we are the Requester and the Condition evaluates 'false'.

A.1.3. Actions

 Actions are implemented with the keyword 'action'. Actions are
 unconditionally executing the code of their implementation. Any or
 all Actions may fail. In the event of failure, Actions bring the FSM
 into an error state, and the FSM will be reinitialized.

A.1.3.1. backupOwnKeys

 The 'backupOwnKeys' Action is to make a backup of all Own Keys, and
 allows for restoration of the Own Keys.

A.1.3.2. disable

 The 'disable' Action does as it implies. This Action shuts down the
 FSM and disables KeySync functionality on the impacted device. It is
 most commonly called in 'Reject' scenarios. For example, if a User
 rejects a pEp Handshake on a device involved in a pEp Handshake, the
 'disable' Action is called. Invoking the 'disable' Action results in
 the FSM transitioning to State End, which automatically disables the
 KeySync feature.

 Note: pEp KeySync can be manually re-enabled in the pEp settings on
 the disabled device.

A.1.3.3. newChallengeAndNegotiationBase

 The 'newChallengeAndNegotiationBase' Action is to randomly compute a
 new Challenge and a new Response (Negotiation Base). Both are copied
 into the I/O Buffer.

Birk, et al. Expires 8 December 2023 [Page 41]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 The 'newChallengeAndNegotiationBase' Action is invoked by a device
 during an Init Event in either the Sole or Grouped State, and serves
 to clear and generate a new Challenge TID and negotiation state.

A.1.3.4. openNegotiation

 The 'openNegotiation' Action clears Key and Identity of the partner
 and calculates the Negotiation ID from the Negotiation Base and the
 Challenge of the partner (by XOR).

 An 'openNegotiation' Action is carried out either by a Sole Device in
 the 'Requester' role, or a Grouped device upon receipt of a Beacon
 Message from another Sole Device. Most importantly, this Action
 ensures that the own TID and the Challenge TID of the Sole Device get
 combined by the mathematical XOR function. In this way, a common TID
 exists which can be used by both devices a User wishes to pair. This
 TID is crucial in allowing the devices to recognize themselves in a
 particular pairing process, as multiple pairing processes can occur
 simultaneously.

A.1.3.5. ownKeysAreDefaultKeys

 The 'ownKeysAreDefaultKeys' Action is to flag Default Keys of Own
 Identities as Group Keys.

 The ownKeysAreDefaultKeys Action is invoked by the 'Requester' device
 during the final step of Device Group formation between two Sole
 devices, and ensures that the Own Keys for the Identities on the
 'Requester' device are set as the default for those respective
 Identities.

A.1.3.6. prepareOwnKeys

 The 'prepareOwnKeys' Action is to write a list of Own Identities into
 the I/O Buffer and load the list of Own Keys into the device state.

 The prepareOwnKeys Action is invoked during the latter phases of the
 KeySync protocol for both new and existing Device Group joining
 processes. This Action indicates to a device that all key
 information that has been selected for synchronization should be
 prepared for sending to the other negotiation partner.

A.1.3.7. prepareOwnKeysFromBackup

 The 'prepareOwnKeysFromBackup' Action is to restore the formerly
 backed up Own Keys (cf. Appendix A.1.3.1) into the I/O Buffer. This
 Action is similar to prepareOwnKeys (cf. Appendix A.1.3.6).

Birk, et al. Expires 8 December 2023 [Page 42]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.3.8. receivedKeysAreDefaultKeys

 The 'receivedKeysAreDefaultKeys' Action is to set the received Own
 Keys as Default Keys for the Own Identities.

A.1.3.9. resetOwnGroupedKeys

 The 'resetOwnGroupedKeys' Action is to carry out a KeyReset on Own
 Group Keys (cf. [I-D.pep-keyreset]).

A.1.3.10. resetOwnKeysUngrouped

 The 'resetOwnKeysUngrouped' Action is to carry out a KeyReset on all
 Own Keys (cf. [I-D.pep-keyreset]).

A.1.3.11. saveGroupKeys

 The 'saveGroupKeys' Action is to load Own Identities from the I/O
 Buffer and store them as Own Identities.

 The 'saveGroupKeys' Action directs the addition of any keys received
 during a KeySync process to a GroupKeys array, along with any
 existing Own or Grouped Device Keys.

A.1.3.12. showBeingInGroup

 The 'showBeingInGroup' Action is to signal to the application that
 the device is member of a Device Group.

 The showBeingInGroup Action in State Grouped drives a UI Event that
 can be used to notify a pEp User that their device belongs to a
 Device Group.

A.1.3.13. showBeingSole

 The 'showBeingSole' Action is to signal to the application that the
 device is not member of a Device Group.

 The 'showBeingSole' Action in State Sole drives a UI Event that can
 be used to notify a pEp User that its device is Sole (ungrouped).

A.1.3.14. showDeviceAccepted

 The 'showDeviceAccepted' Action is to signal to the application that
 the device has been accepted as member of the Device Group.

Birk, et al. Expires 8 December 2023 [Page 43]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 The 'showDeviceAccepted' Action drives a UI Event that is used to
 notify a pEp User that a Sole Device was accepted as member of an
 existing Device Group.

A.1.3.15. showDeviceAdded

 The 'showDeviceAdded' Action is to signal to the application that the
 device has been added as member of the Device Group.

 The 'showDeviceAdded' Action drives a UI Event that is used to notify
 a pEp User that a Sole Device was added to an already existing Device
 Group.

A.1.3.16. showGroupCreated

 The 'showGroupCreated' Action is to signal to the application that
 the Device Group has been created.

 In either role that a Sole Device can assume ('Requester' or
 'Offerer'), the Action 'showGroupCreated' drives a UI Event which
 notifies a User that a new Device Group was formed from two Sole
 Devices.

A.1.3.17. showGroupedHandshake

 The 'showGroupedHandshake' Action is to signal to the application of
 a Grouped Device that a new device is about to join that Device
 Group.

 The 'showGroupedHandshake' Action drives a UI Event on a Grouped
 device, which a pEp implementer uses to display a pEp Handshake
 dialog. This dialog indicates that there is a new Sole Device that
 is requesting to join the Device Group that this Grouped Device
 belongs to.

A.1.3.18. showJoinGroupHandshake

 The 'showJoinGroupHandshake' Action is to signal to the application
 of an Ungrouped Device that it is about to join an existing Device
 Group.

 The 'showJoinGroupHandshake' Action drives a UI Event on a Sole
 Device attempting to join an existing Device Group, and is used by
 pEp implementers to show a Handshake dialog on the Sole Device.

Birk, et al. Expires 8 December 2023 [Page 44]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.3.19. showSoleHandshake

 The 'showSoleHandshake' Action is to signal to the application of an
 Ungrouped Device that it is about to from a new Device Group.

 For cases where two Sole Devices are attempting to form a new Device
 Group, the showSoleHandshake Action drives a UI Event, which a pEp
 implementer uses to display a pEp Handshake dialog to each of the
 devices in negotiation.

A.1.3.20. storeNegotiation

 The 'storeNegotiation' Action is to store the Negotiation for the
 device in the I/O Buffer. Both, the Sender FPR and partner's
 Identity are stored for later comparison.

 The storeNegotiation Action saves the received non-own negotiation
 information, which is used, e.g., by the sameNegotiation Condition to
 perform a session fidelity check (cf. Appendix A.1.2.5).

A.1.3.21. storeThisKey

 The 'storeThisKey' Action is to load the Sender Key of the partner
 from the I/O Buffer and store it for later use.

A.1.3.22. tellWeAreGrouped

 The 'tellWeAreGrouped' Action is to set the is_grouped Field in the
 I/O Buffer to 'true'.

 The tellWeAreGrouped Action is used by devices already in the Grouped
 State. It is sent in a Beacon and indicates to Sole Devices that
 they are entering a negotiation with a Grouped Device. For the Sole
 Device, receiving this Action determines which State the FSM will
 transition to next.

A.1.3.23. tellWeAreNotGrouped

 The 'tellWeAreNotGrouped' Action is to set the is_grouped Field in
 the I/O Buffer to 'false'.

 The 'tellWeAreNotGrouped' Action is used by Sole Devices which are
 assigned the role of 'Requester' upon Challenge TID comparison, and
 is sent along with a NegotiationRequest Event to indicate to the
 'Offerer' device that a negotiation request with a Sole Device is
 being entered.

Birk, et al. Expires 8 December 2023 [Page 45]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.3.24. trustThisKey

 The 'trustThisKey' Action applies trust to the stored Key of the
 negotiation partner and loads this Key into the I/O Buffer.

 The trustThisKey Action is executed in all States when a User chooses
 'Accept' on the Handshake dialog. Trust for the public key from the
 negotiation partner is granted so the rest of the KeySync process can
 be conducted securely and authenticated. The trust also extends to
 the private key portion of the key pair at a later stage in the
 KeySync process, i.e., after the User has chosen 'Accept' on both
 devices. If the process is canceled or rejected at any point after
 the public key trust has been granted, that trust will be removed
 (cf. Appendix A.1.3.25).

A.1.3.25. untrustThisKey

 The 'untrustThisKey' Action is to revoke trust from the formerly
 stored Key of the partner and clear the Key in the I/O Buffer.

 If the 'Cancel' or 'Reject' options are chosen at any point during
 the KeySync process after a negotiation partner's public key has been
 trusted, trust on that public key is removed (cf.

Appendix A.1.3.24). The 'untrustThisKey' Action ensures that the
 negotiation partner's public key can never be attached to Messages
 sent to any outside peers from the recipient's device.

A.1.3.26. useOwnChallenge

 The 'useOwnChallenge' Action is to copy the Challenge of the device
 into the I/O Buffer.

 Once a Beacon is received by a device in either the Sole or Grouped
 State, the 'useOwnChallenge' Action attaches the device's generated
 Challenge TID to an outgoing Beacon or NegotiationRequest Event for
 comparison and session verification purposes.

A.1.3.27. useOwnResponse

 The 'useOwnResponse' Action is to copy the Response of the device
 into the I/O Buffer.

A.1.3.28. useThisKey

 The 'useThisKey' Action is to copy the stored Sender Key of the
 partner into the I/O Buffer.

Birk, et al. Expires 8 December 2023 [Page 46]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.4. Transitions

 Transitions are changes between States within the FSM, and are
 indicated by the 'go' command in an Event Handler.

 Example:

 on Init {
 if deviceGrouped {
 send SynchronizeGroupKeys;
 go Grouped;
 }
 do newChallengeAndNegotiationBase;
 debug > initial Beacon
 send Beacon;
 go Sole;
 }

 In this example there are two Transitions, one to State Grouped and
 one to State Sole:

 Please see the desired State (Appendix A.1.1 and Appendix B.1) for
 additional information on why and when these changes are triggered.

A.1.5. Events

 While in a State, Events receive incoming Messages and prompt the
 execution of any Event Handlers contained within (cf.

Appendix A.1.5.1).

A.1.5.1. Event Handlers

 Event Handlers are code sections (containing Conditions, Actions,
 Messages, or transitions) executed on receiving an Event. Please
 refer to the desired State (Appendix B.1) for additional information
 on specific Event Handlers.

A.1.5.2. Init Event

 When the FSM transitions to a new State for the first time, the Init
 Event (if present) is called. Init Events typically drive UI actions
 and Event Handlers associated with core functionality of the
 protocol. All States may have a handler for an Init Event (including
 the InitState).

 Example of an Init Event Handler:

Birk, et al. Expires 8 December 2023 [Page 47]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 on Init {
 if deviceGrouped {
 send SynchronizeGroupKeys;
 go Grouped;
 }
 do newChallengeAndNegotiationBase;
 debug > initial Beacon
 send Beacon;
 go Sole;
 }

A.1.5.3. Message Event

 If a Sync Message (cf. Appendix A.1.6) arrives through the network
 then the Event with the name of the Message occurs.

 Example of a Message Event Handler:

 In this example an Event Handler is defined, which is executed when a
 Beacon Message arrives:

 on Beacon {
 do openNegotiation;
 do tellWeAreGrouped;
 do useOwnResponse;
 send NegotiationRequestGrouped;
 do useOwnChallenge;
 }

A.1.5.4. Signaled Events

 Events that are signaled from the core pEp implementation, unless
 they share their name with a Message.

 Example of a Signaled Event Handler:

 The KeyGen Event has no corresponding Message. Therefore, it does
 not occur when a Sync Message arrives, but rather when it is signaled
 from code:

 on KeyGen {
 do prepareOwnKeys;
 send GroupKeysUpdate;
 }

Birk, et al. Expires 8 December 2023 [Page 48]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.5.5. External Events

 External Event may be used to signal a User Interaction to the FSM.

 Example:

 on Accept {
 do trustThisKey;
 send CommitAcceptRequester;
 go HandshakingPhase1Requester;
 }

 If Events are part of an API then their IDs must be well-defined.
 Therefore, it is possible to define such IDs in the FSM.

 Example:

 external Accept 129;

A.1.6. Messages

 KeySync is a network protocol, which is implemented using Sync
 Messages. The Sync Messages for KeySync are defined at the end of
 the FSM code in Appendix B.1.

 Example:

 message Beacon 2, type=broadcast, ratelimit=10, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

 The wire format of Sync Messages is defined in Abstract Syntax
 Notation One (ASN.1), cf. Appendix B.2, using Packed Encoding Rules
 (PER).

 Sync Messages are transported inside (e.g., as attachments of) pEp
 Messages. Hence those are carried by the same Transports, which
 transmit pEp messages (like, e.g., SMTP and IMAP for email). Some
 Sync Messages must be sent in copy on all Transports. Others are
 transported on the Active Transport only. The Active Transport is
 the transport on which the last Sync Message was received.

A.1.6.1. Message Name and ID

 Each Sync Message has a name and an ID.

Birk, et al. Expires 8 December 2023 [Page 49]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.6.2. Message Types

 There are different types of Messages:

 * type=broadcast: Messages, which are meant to be copied on all
 Transports

 * type=anycast: Messages, which are meant to be sent on the Active
 Transport only (default)

A.1.6.3. Security Context

 Each Sync Message has a Security Context. The available Security
 Contexts are:

 * security=unencrypted: send and receive as unencrypted but signed
 Sync Message

 * security=untrusted: only accept when encrypted and signed

 * security=trusted (default): only accept when coming over a Trusted
 Channel and when originating from the Device Group

 * security=attach_own_keys_for_new_member: like 'security=trusted'
 but attach all Own Keys for a new member of the Device Group

 * security=attach_own_keys_for_group: like 'security=trusted' but
 attach all Own Keys for other Device Group members

A.1.6.4. Rate Limit

 A Sync Message can have a Rate Limit 'ratelimit=<numeric>'. That
 means it is only possible to send out one Message each <numeric>
 second(s). A Rate Limit of 0 means no Rate Limit checking (default).

A.1.6.5. Fields

 A Sync Message can have Fields. There are two types of Fields:

 1. automatically calculated Fields, defined with the 'auto' keyword,
 and

 2. Fields, which are copied in and out from the I/O Buffer, marked
 with the 'fields' keyword

 The wire format of the Fields is depending on their type. The types
 are defined in Appendix B.2. Additionally, the two basic types bool
 (ASN.1: BOOLEAN) and int (ASN.1: INTEGER) are supported.

Birk, et al. Expires 8 December 2023 [Page 50]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 Example for an 'auto' Field:

 auto Version version;

 This Field will be filled with the pEp Sync Protocol version. The
 Version type is the only automatically calculated type so far.

 Example for a Field coming from I/O Buffer:

 field TID challenge;

A.1.6.6. Example

 Here an example Message named 'Beacon' with ID=2 (and further
 attributes) containing 'field' TID and 'auto' Version:

 message Beacon 2, type=broadcast, ratelimit=10, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

A.1.6.7. I/O Buffer

 There is an I/O Buffer for all Fields which occur in Messages. All
 Messages share this I/O Buffer. Fields with the same name share one
 space in the I/O Buffer. Hence, the I/O Buffer is built as superset
 of all Fields' buffers.

A.1.6.8. Sending

 Sending is performed as follows:

 1. Calculating all 'auto' Fields and copying the result into the I/O
 Buffer

 2. Loading all Fields of the Message from I/O Buffer

 3. Creating a Sync Message

 4. Creating a transporting pEp message by attaching the Sync Message
 using Base Protocol

 5. Calling 'messageToSend()' with this pEp message

 Example

 send SynchronizeGroupKeys;

Birk, et al. Expires 8 December 2023 [Page 51]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.6.9. Receiving

 When a Message is being received the field values are being copied
 into the I/O Buffer and the corresponding Event is being signaled.

A.1.6.10. Messages used in KeySync

 In the following, a list of Messages (including format) used by the
 KeySync FSM as described in Appendix A.1.1 is shown.

A.1.6.10.1. Beacon (ID=2)

 Send beacon to everyone on channel.

 message Beacon 2, type=broadcast, ratelimit=10, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

A.1.6.10.2. NegotiationRequest (ID=3)

 Request negotiation (normally sent after own role has been determined
 to be the Requester).

 message NegotiationRequest 3, security=untrusted {
 field TID challenge;
 field TID response;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

A.1.6.10.3. NegotiationOpen (ID=4)

 Open negotiation (normally sent by Offerer or the device joining a
 group as a response to 'NegotiationRequest').

 message NegotiationOpen 4, security=untrusted {
 field TID response;
 auto Version version;
 field TID negotiation;
 }

A.1.6.10.4. Rollback (ID=5)

 Rollback the transaction (normally sent after the User has pressed
 'Cancel').

Birk, et al. Expires 8 December 2023 [Page 52]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 message Rollback 5, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.5. CommitReject (ID=6)

 Abort the transaction (normally sent after the User has pressed
 'Reject').

 message CommitReject 6, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.6. CommitAcceptOfferer (ID=7)

 Commit the transaction (normally sent by the Offerer after the User
 has pressed 'Accept' as a response to 'CommitAcceptRequester').

 message CommitAcceptOfferer 7, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.7. CommitAcceptRequester (ID=8)

 Commit the transaction (normally sent by the Requester after the User
 has pressed 'Accept').

 message CommitAcceptRequester 8, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.8. CommitAccept (ID=9)

 Commit the transaction (normally sent by the Sole Device joining a
 Group, after the User has pressed 'Accept' as a response to
 'CommitAcceptGroup').

 message CommitAccept 9, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.9. CommitAcceptForGroup (ID=10)

 Commit the transaction for the group (normally sent by a Grouped
 Device after the User has pressed 'Accept').

Birk, et al. Expires 8 December 2023 [Page 53]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 message CommitAcceptForGroup 10, security=untrusted {
 field TID negotiation;
 }

A.1.6.10.10. GroupTrustThisKey (ID=11)

 The whole Device Group can trust this key (normally sent by a Grouped
 Device to transfer a new key to the other members of the Device
 Group).

 message GroupTrustThisKey 11 {
 field Hash key;
 field TID negotiation;
 }

A.1.6.10.11. GroupKeysForNewMember (ID=12)

 Transfer Group Keys and Identities (normally sent by a Grouped Device
 in reply to a 'CommitAccept' Message from the Sole Device joining the
 group).

 message GroupKeysForNewMember 12,
 security=attach_own_keys_for_new_member {
 field IdentityList ownIdentities;
 }

A.1.6.10.12. GroupKeysAndClose (ID=13)

 Transfer Keys and Identities of the new group member (normally sent
 by the new group member in reply to a 'GroupKeysForNewMember' Message
 from a Grouped Device).

 message GroupKeysAndClose 13, security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

A.1.6.10.13. OwnKeysOfferer (ID=14)

 Transfer the Offerer's Keys and Identities (normally sent by the
 Offerer in reply to a 'OwnKeysRequester' Message from the Requester).

 message OwnKeysOfferer 14, security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

Birk, et al. Expires 8 December 2023 [Page 54]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.6.10.14. OwnKeysRequester (ID=15)

 Transfer the Requester's Keys and Identities (normally sent by the
 Requester in reply to a 'CommitAcceptOfferer' Message from the
 Offerer).

 message OwnKeysRequester 15, security=attach_own_keys_for_new_member {
 field IdentityList ownIdentities;
 }

A.1.6.10.15. NegotiationRequestGrouped (ID=16)

 Request negotiation to join the group (normally sent by a Grouped
 Device after receiving a 'Beacon' Message from a Sole Device).

 message NegotiationRequestGrouped 16, security=untrusted {
 field TID challenge;
 field TID response;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

A.1.6.10.16. GroupHandshake (ID=17)

 Inform other members of the Device group about a new handshake
 (normally sent by a Grouped Device after receiving a
 'NegotiationOpen' Message from a Sole Device).

 message GroupHandshake 17 {
 field TID negotiation;
 field Hash key;
 }

A.1.6.10.17. GroupKeysUpdate (ID=18)

 Transfer the Group Keys and Identities (normally sent by a Grouped
 Device to the other members of the Device Group).

 message GroupKeysUpdate 18, security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

Birk, et al. Expires 8 December 2023 [Page 55]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

A.1.6.10.18. InitUnledGroupKeyReset (ID=19)

 Initiate unled group KeyReset, i.e., the initiating device does not
 perform the KeyReset itself. (This Message is normally sent by a
 Grouped Device after a 'LeaveDeviceGroup' has been requested by the
 User.)

 Further information on KeyReset can be found in [I-D.pep-keyreset].

 message InitUnledGroupKeyReset 19 {
 }

A.1.6.10.19. ElectGroupKeyResetLeader (ID=20)

 Initiate determination of "leader" for a KeyReset (normally sent by
 all Grouped Devices to the all other members of the Device Group in
 response to an InitUnledGroupKeyReset Message).

 Further information can be found in Appendix A.1.1.17 and
 [I-D.pep-keyreset].

 message ElectGroupKeyResetLeader 20 {
 field TID response;
 }

A.1.6.10.20. SynchronizeGroupKeys (ID=21)

 Request synchronization of Group Keys (normally sent by a Grouped
 Device to the other members of the Device Group to trigger a
 'GroupKeysUpdate' Message).

 message SynchronizeGroupKeys 21, ratelimit=60 {
 }

Appendix B. Code excerpts

B.1. Finite State Machine

 Below you can find the code excerpt for the pEp KeySync FSM,
 including Messages and external Events:

 // This file is under BSD License 2.0

 // Sync protocol for pEp
 // Copyright (c) 2016-2020, pEp foundation

 // Written by Volker Birk

Birk, et al. Expires 8 December 2023 [Page 56]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 include ./fsm.yml2

 protocol Sync 1 {
 // all messages have a timestamp,
 // time out and are removed after timeout

 fsm KeySync 1, threshold=300 {
 version 1, 2;

 state InitState {
 on Init {
 if deviceGrouped {
 send SynchronizeGroupKeys;
 go Grouped;
 }
 do newChallengeAndNegotiationBase;
 debug > initial Beacon
 send Beacon;
 go Sole;
 }
 }

 state Sole timeout=off {
 on Init {
 do showBeingSole;
 }

 on KeyGen {
 debug > key generated
 send Beacon;
 }

 on CannotDecrypt {
 debug > cry, baby
 send Beacon;
 }

 on Beacon {
 if sameChallenge {
 debug > this is our own Beacon; ignore
 }
 else {
 if weAreOfferer {
 do useOwnChallenge;
 debug > we are Offerer
 send Beacon;
 }
 else /* we are requester */ {

Birk, et al. Expires 8 December 2023 [Page 57]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 do openNegotiation;
 do tellWeAreNotGrouped;
 // requester is sending NegotiationRequest
 do useOwnResponse;
 send NegotiationRequest;
 do useOwnChallenge;
 }
 }
 }

 // we get this from another sole device
 on NegotiationRequest {
 if sameChallenge { // challenge accepted
 do storeNegotiation;
 // offerer is accepting by confirming NegotiationOpen
 // repeating response is implicit
 send NegotiationOpen;
 go HandshakingOfferer;
 }
 }

 // we get this from an existing device group
 on NegotiationRequestGrouped {
 if sameChallenge { // challenge accepted
 do storeNegotiation;
 // offerer is accepting by confirming NegotiationOpen
 // repeating response is implicit
 send NegotiationOpen;
 go HandshakingToJoin;
 }
 }

 on NegotiationOpen {
 if sameResponse {
 debug > Requester is receiving NegotiationOpen
 do storeNegotiation;
 go HandshakingRequester;
 }
 else {
 debug > cannot approve NegotiationOpen
 }
 }
 }

 // handshaking without existing Device group
 state HandshakingOfferer timeout=600 {
 on Init
 do showSoleHandshake;

Birk, et al. Expires 8 December 2023 [Page 58]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback {
 if sameNegotiation
 go Sole;
 }

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitReject {
 if sameNegotiation {
 do disable;
 go End;
 }
 }

 // Accept means init Phase1Commit
 on Accept {
 do trustThisKey;
 go HandshakingPhase1Offerer;
 }

 // got a CommitAccept from requester
 on CommitAcceptRequester {
 if sameNegotiation
 go HandshakingPhase2Offerer;
 }
 }

 // handshaking without existing Device group
 state HandshakingRequester timeout=600 {
 on Init
 do showSoleHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Sole;
 }

Birk, et al. Expires 8 December 2023 [Page 59]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 on Rollback {
 if sameNegotiation
 go Sole;
 }

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitReject {
 if sameNegotiation {
 do disable;
 go End;
 }
 }

 // Accept means init Phase1Commit
 on Accept {
 do trustThisKey;
 send CommitAcceptRequester;
 go HandshakingPhase1Requester;
 }
 }

 state HandshakingPhase1Offerer {
 on Rollback {
 if sameNegotiation {
 do untrustThisKey;
 go Sole;
 }
 }

 on CommitReject {
 if sameNegotiation {
 do untrustThisKey;
 do disable;
 go End;
 }
 }

 on CommitAcceptRequester {
 if sameNegotiation {
 send CommitAcceptOfferer;
 go FormingGroupOfferer;
 }

Birk, et al. Expires 8 December 2023 [Page 60]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 }
 }

 state HandshakingPhase1Requester {
 on Rollback {
 if sameNegotiation {
 do untrustThisKey;
 go Sole;
 }
 }

 on CommitReject {
 if sameNegotiation {
 do untrustThisKey;
 do disable;
 go End;
 }
 }

 on CommitAcceptOfferer {
 if sameNegotiation {
 do prepareOwnKeys;
 send OwnKeysRequester;
 go FormingGroupRequester;
 }
 }
 }

 state HandshakingPhase2Offerer {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on Accept {
 do trustThisKey;
 send CommitAcceptOfferer;
 go FormingGroupOfferer;
 }
 }

 state FormingGroupOfferer {

Birk, et al. Expires 8 December 2023 [Page 61]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 on Init {
 // we need to keep in memory which keys
 // we have before forming a new group
 do prepareOwnKeys;
 do backupOwnKeys;
 }

 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback
 go Sole;

 on OwnKeysRequester {
 if sameNegotiationAndPartner {
 do saveGroupKeys;
 do receivedKeysAreDefaultKeys;
 // send the keys we had before forming a new group
 do prepareOwnKeysFromBackup;
 send OwnKeysOfferer;
 do showGroupCreated;
 go Grouped;
 }
 }
 }

 state FormingGroupRequester {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Rollback
 go Sole;

 on OwnKeysOfferer {
 if sameNegotiation {
 do saveGroupKeys;
 do prepareOwnKeys;
 do ownKeysAreDefaultKeys;
 do showGroupCreated;
 go Grouped;
 }
 }
 }

Birk, et al. Expires 8 December 2023 [Page 62]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 state Grouped timeout=off {
 on Init {
 do newChallengeAndNegotiationBase;
 do showBeingInGroup;
 }

 on CannotDecrypt {
 debug > cry, baby
 send SynchronizeGroupKeys;
 }

 on SynchronizeGroupKeys {
 do prepareOwnKeys;
 send GroupKeysUpdate;
 }

 on GroupKeysUpdate {
 if fromGroupMember // double check
 do saveGroupKeys;
 }

 on KeyGen {
 do prepareOwnKeys;
 send GroupKeysUpdate;
 }

 on Beacon {
 do openNegotiation;
 do tellWeAreGrouped;
 do useOwnResponse;
 send NegotiationRequestGrouped;
 do useOwnChallenge;
 }

 on NegotiationOpen {
 if sameResponse {
 do storeNegotiation;
 do useThisKey;
 send GroupHandshake;
 go HandshakingGrouped;
 }
 else {
 debug > cannot approve NegotiationOpen
 }
 }

 on GroupHandshake {
 do storeNegotiation;

Birk, et al. Expires 8 December 2023 [Page 63]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 do storeThisKey;
 go HandshakingGrouped;
 }

 on GroupTrustThisKey {
 if fromGroupMember // double check
 do trustThisKey;
 }

 on LeaveDeviceGroup {
 send InitUnledGroupKeyReset;
 do disable;
 do resetOwnKeysUngrouped;
 }

 on InitUnledGroupKeyReset {
 debug > unled group key reset; new group keys will be elected
 do useOwnResponse;
 send ElectGroupKeyResetLeader;
 go GroupKeyResetElection;
 }
 }

 state GroupKeyResetElection {
 on ElectGroupKeyResetLeader {
 if sameResponse {
 // the first one is from us, we're leading this
 do resetOwnGroupedKeys;
 go Grouped;
 }
 else {
 // the first one is not from us
 go Grouped;
 }
 }
 }

 // sole device handshaking with group
 state HandshakingToJoin {
 on Init
 do showJoinGroupHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Sole;
 }

Birk, et al. Expires 8 December 2023 [Page 64]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 on Rollback {
 if sameNegotiation
 go Sole;
 }

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on CommitAcceptForGroup {
 if sameNegotiation
 go HandshakingToJoinPhase2;
 }

 on CommitReject {
 if sameNegotiation {
 do disable;
 go End;
 }
 }

 // Accept is Phase1Commit
 on Accept {
 do trustThisKey;
 go HandshakingToJoinPhase1;
 }
 }

 state HandshakingToJoinPhase1 {
 on Rollback {
 if sameNegotiation {
 do untrustThisKey;
 go Sole;
 }
 }

 on CommitReject {
 if sameNegotiation {
 do untrustThisKey;
 do disable;
 go End;
 }
 }

 on CommitAcceptForGroup {

Birk, et al. Expires 8 December 2023 [Page 65]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 if sameNegotiation {
 send CommitAccept;
 go JoiningGroup;
 }
 }
 }

 state HandshakingToJoinPhase2 {
 on Cancel {
 send Rollback;
 go Sole;
 }

 on Reject {
 send CommitReject;
 do disable;
 go End;
 }

 on Accept {
 do trustThisKey;
 send CommitAccept;
 go JoiningGroup;
 }
 }

 state JoiningGroup {
 on Init {
 // we need to keep in memory which keys
 // we have before joining
 do prepareOwnKeys;
 do backupOwnKeys;
 }
 on GroupKeysForNewMember {
 if sameNegotiationAndPartner {
 do saveGroupKeys;
 do receivedKeysAreDefaultKeys;
 // send the keys we had before joining
 do prepareOwnKeysFromBackup;
 send GroupKeysAndClose;
 do showDeviceAdded;
 go Grouped;
 }
 }
 }

 state HandshakingGrouped {
 on Init

Birk, et al. Expires 8 December 2023 [Page 66]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 do showGroupedHandshake;

 // Cancel is Rollback
 on Cancel {
 send Rollback;
 go Grouped;
 }

 on Rollback {
 if sameNegotiation
 go Grouped;
 }

 // Reject is CommitReject
 on Reject {
 send CommitReject;
 go Grouped;
 }

 on CommitReject {
 if sameNegotiation
 go Grouped;
 }

 // Accept is Phase1Commit
 on Accept {
 do trustThisKey;
 go HandshakingGroupedPhase1;
 }

 on GroupTrustThisKey {
 if fromGroupMember { // double check
 do trustThisKey;
 if sameNegotiation
 go Grouped;
 }
 }

 on GroupKeysUpdate {
 if fromGroupMember // double check
 do saveGroupKeys;
 }
 }

 state HandshakingGroupedPhase1 {
 on Init {
 send GroupTrustThisKey;
 send CommitAcceptForGroup;

Birk, et al. Expires 8 December 2023 [Page 67]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 }

 on Rollback {
 if sameNegotiation {
 do untrustThisKey;
 go Grouped;
 }
 }

 on CommitReject {
 if sameNegotiation {
 do untrustThisKey;
 go Grouped;
 }
 }

 on CommitAccept {
 if sameNegotiation {
 do prepareOwnKeys;
 send GroupKeysForNewMember;
 do showDeviceAccepted;
 go Grouped;
 }
 }

 on GroupTrustThisKey {
 if fromGroupMember // double check
 do trustThisKey;
 }

 on GroupKeysUpdate {
 if fromGroupMember // double check
 do saveGroupKeys;
 }

 on GroupKeysAndClose {
 if fromGroupMember { // double check
 // do not save GroupKeys as default keys; key data is
 // already imported
 go Grouped;
 }
 }
 }

 external Accept 129;
 external Reject 130;
 external Cancel 131;

Birk, et al. Expires 8 December 2023 [Page 68]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 // beacons are always broadcasted

 message Beacon 2, type=broadcast,
 ratelimit=10, security=unencrypted {
 field TID challenge;
 auto Version version;
 }

 message NegotiationRequest 3, security=untrusted {
 field TID challenge;
 field TID response;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

 message NegotiationOpen 4, security=untrusted {
 field TID response;
 auto Version version;
 field TID negotiation;
 }

 message Rollback 5, security=untrusted {
 field TID negotiation;
 }

 message CommitReject 6, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptOfferer 7, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptRequester 8, security=untrusted {
 field TID negotiation;
 }

 message CommitAccept 9, security=untrusted {
 field TID negotiation;
 }

 message CommitAcceptForGroup 10, security=untrusted {
 field TID negotiation;
 }

 // default: security=trusted
 // messages are only accepted when coming from the device group

Birk, et al. Expires 8 December 2023 [Page 69]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 message GroupTrustThisKey 11 {
 field Hash key;
 field TID negotiation;
 }

 // trust in future
 message GroupKeysForNewMember 12,
 security=attach_own_keys_for_new_member {
 field IdentityList ownIdentities;
 }

 message GroupKeysAndClose 13,
 security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

 message OwnKeysOfferer 14, security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

 message OwnKeysRequester 15,
 security=attach_own_keys_for_new_member {
 field IdentityList ownIdentities;
 }

 // grouped handshake
 message NegotiationRequestGrouped 16, security=untrusted {
 field TID challenge;
 field TID response;
 auto Version version;
 field TID negotiation;
 field bool is_group;
 }

 message GroupHandshake 17 {
 field TID negotiation;
 field Hash key;
 }

 // update group
 message GroupKeysUpdate 18, security=attach_own_keys_for_group {
 field IdentityList ownIdentities;
 }

 // initiate unled group key reset
 message InitUnledGroupKeyReset 19 {
 }

Birk, et al. Expires 8 December 2023 [Page 70]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 message ElectGroupKeyResetLeader 20 {
 field TID response;
 }

 message SynchronizeGroupKeys 21, ratelimit=60 {
 }

 [...]
 }

 [...]

 }

B.2. ASN.1 Type Definitions

 Below you can find the ASN.1 Type definitions for the Messages used
 in pEp KeySync FSM:

 -- This file is under BSD License 2.0

 -- Sync protocol for pEp
 -- Copyright (c) 2016-2021 pEp foundation

 -- Written by Volker Birk

 PEP
 { iso(1) org(3) dod(6) internet(1) private(4)
 enterprise(1) pEp(47878) basic(0) }

 DEFINITIONS AUTOMATIC TAGS EXTENSIBILITY IMPLIED ::=

 BEGIN

 EXPORTS Identity, IdentityList, TID, Hash, Version, Rating, PString,
 PStringList, PStringPair, PStringPairList, ISO639-1;

 ISO639-1 ::= PrintableString(FROM ("a".."z")) (SIZE(2))
 Hex ::= PrintableString(FROM ("A".."F" | "0".."9"))
 Hash ::= Hex(SIZE(16..128)) -- 32bit Key ID to SHA512 in hex
 PString ::= UTF8String (SIZE(0..1024))
 PStringList ::= SEQUENCE OF PString
 TID ::= OCTET STRING (SIZE(16)) -- UUID version 4 variant 1

 Identity ::= SEQUENCE {
 address PString,
 fpr Hash,
 user-id PString,

Birk, et al. Expires 8 December 2023 [Page 71]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 username PString,
 comm-type INTEGER (0..255),
 lang ISO639-1
 }

 IdentityList ::= SEQUENCE OF Identity

 Version ::= SEQUENCE {
 major INTEGER (0..255) DEFAULT 1,
 minor INTEGER (0..255) DEFAULT 2
 }

 Rating ::= ENUMERATED {
 -- no color

 cannot-decrypt (1),
 have-no-key (2),
 unencrypted (3),
 unreliable (5),

 b0rken (-2),

 -- yellow

 reliable (6),

 -- green

 trusted (7),
 trusted-and-anonymized (8),
 fully-anonymous (9),

 -- red

 mistrust (-1),
 under-attack (-3)
 }

 PStringPair ::= SEQUENCE {
 key PString,
 value PString
 }

 PStringPairList ::= SEQUENCE OF PStringPair

 END

Birk, et al. Expires 8 December 2023 [Page 72]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

Appendix C. Document Changelog

 [[RFC Editor: This section is to be removed before publication]]

 * draft-pep-keysync-03:

 - Updated Use Cases 'Leave Device Group' and 'Remove other Device
 from Device Group'

 - Updated States, Conditions, Actions, Transitions, Events,
 Messages

 - Updated/Added Term definitions

 - Harmonized capitalization

 - Updated to xml2rfc v3

 - Added venue tags

 - Several minor edits

 - Updated authors' list

 * draft-pep-keysync-02:

 - Improve clarity and readability

 - Updated Section 2.1.1

 * draft-pep-keysync-01:

 - Updated FSM States, Actions, Messages, Events and interaction
 diagrams to reflect recent design changes

 - added latest revision of code and ASN.1 Type definitions

 * draft-pep-keysync-00:

 - Updated docname and author's section

 * draft-hoeneisen-pep-keysync-01:

 - Major rewrite of upper sections

 - Adjust to reflect code changes

https://datatracker.ietf.org/doc/html/draft-pep-keysync-03
https://datatracker.ietf.org/doc/html/draft-pep-keysync-02
https://datatracker.ietf.org/doc/html/draft-pep-keysync-01
https://datatracker.ietf.org/doc/html/draft-pep-keysync-00
https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-keysync-01

Birk, et al. Expires 8 December 2023 [Page 73]

Internet-Draft pretty Easy privacy (pEp) KeySync June 2023

 - Move Finite State Machine reference and code to Appendices A &
 B

 * draft-hoeneisen-pep-keysync-00:

 - Initial version

Appendix D. Open Issues

 [[RFC Editor: This section should be empty and is to be removed
 before publication]]

 * Resolve several TODOs / add missing text

Authors' Addresses

 Volker Birk
 pEp Foundation
 Oberer Graben 4
 CH- 8400 Winterthur
 Switzerland
 Email: volker.birk@pep.foundation
 URI: https://pep.foundation/

 Bernie Hoeneisen
 pEp Foundation
 Oberer Graben 4
 CH- 8400 Winterthur
 Switzerland
 Email: bernie.hoeneisen@pep.foundation
 URI: https://pep.foundation/

 Hernani Marques
 pEp Foundation
 Oberer Graben 4
 CH- 8400 Winterthur
 Switzerland
 Email: hernani.marques@pep.foundation
 URI: https://pep.foundation/

https://datatracker.ietf.org/doc/html/draft-hoeneisen-pep-keysync-00
https://pep.foundation/
https://pep.foundation/
https://pep.foundation/

Birk, et al. Expires 8 December 2023 [Page 74]

