
Network Working Group C. Perkins
Internet-Draft Futurewei
Intended status: Standards Track S. Ratliff
Expires: January 4, 2018 Idirect
 J. Dowdell
 Airbus Defence and Space
 L. Steenbrink
 HAW Hamburg, Dept. Informatik
 V. Mercieca
 Airbus Defence and Space
 July 3, 2017

Ad Hoc On-demand Distance Vector Version 2 (AODVv2) Routing
draft-perkins-manet-aodvv2-01

Abstract

 The Ad Hoc On-demand Distance Vector Version 2 (AODVv2) routing
 protocol is intended for use by mobile routers in wireless, multihop
 networks. AODVv2 determines unicast routes among AODVv2 routers
 within the network in an on-demand fashion.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Perkins, et al. Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft AODVv2 July 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 4
2. Terminology . 5
3. Applicability Statement 9
4. Data Structures . 11
4.1. Interface Set . 11
4.2. Router Client Set . 12
4.3. Neighbor Set . 12
4.4. Sequence Numbers . 13
4.5. Local Route Set . 15
4.6. Multicast Route Message Set 17
4.7. Route Error (RERR) Set 18

5. Metrics . 18
6. AODVv2 Protocol Operations 20
6.1. Initialization . 21
6.2. Next Hop Monitoring 21
6.3. Neighbor Set Update 23
6.4. Interaction with the Forwarding Plane 24
6.5. Message Transmission 25
6.6. Route Discovery, Retries and Buffering 26
6.7. Processing Received Route Information 28
6.7.1. Evaluating Route Information 29
6.7.2. Applying Route Updates 30

 6.8. Suppressing Redundant Messages (Multicast Route Message
 Set) . 32
 6.9. Suppressing Redundant Route Error Messages (Route Error
 Set) . 35

6.10. Local Route Set Maintenance 35
6.10.1. LocalRoute State Changes 36
6.10.2. Reporting Invalid Routes 38

7. AODVv2 Protocol Messages 38
7.1. Route Request (RREQ) Message 38
7.1.1. RREQ Generation 40
7.1.2. RREQ Reception 41
7.1.3. RREQ Forwarding 42

7.2. Route Reply (RREP) Message 42
7.2.1. RREP Generation 44
7.2.2. RREP Reception 45
7.2.3. RREP Forwarding 47

7.3. Route Reply Acknowledgement (RREP_Ack) Message 47

Perkins, et al. Expires January 4, 2018 [Page 2]

Internet-Draft AODVv2 July 2017

7.3.1. RREP_Ack Request Generation 48
7.3.2. RREP_Ack Reception 48
7.3.3. RREP_Ack Response Generation 49

7.4. Route Error (RERR) Message 49
7.4.1. RERR Generation 50
7.4.2. RERR Reception 52
7.4.3. RERR Regeneration 53

8. RFC 5444 Representation 54
8.1. Route Request Message Representation 55
8.1.1. Message Header 55
8.1.2. Message TLV Block 55
8.1.3. Address Block . 55
8.1.4. Address Block TLV Block 56

8.2. Route Reply Message Representation 56
8.2.1. Message Header 56
8.2.2. Message TLV Block 57
8.2.3. Address Block . 57
8.2.4. Address Block TLV Block 57

8.3. Route Reply Acknowledgement Message Representation . . . 58
8.3.1. Message Header 58
8.3.2. Message TLV Block 58
8.3.3. Address Block . 58
8.3.4. Address Block TLV Block 58

8.4. Route Error Message Representation 58
8.4.1. Message Header 58
8.4.2. Message TLV Block 59
8.4.3. Address Block . 59
8.4.4. Address Block TLV Block 59

9. Simple External Network Attachment 60
10. Precursor Lists . 62
11. Application of RFC 7182 to AODVv2 63
11.1. RREQ Generation and Reception 66
11.2. RREP Generation and Reception 66
11.3. RREP_Ack Generation and Reception 67
11.4. RERR Generation and Reception 68

12. Configuration . 68
12.1. Timers . 69
12.2. Protocol Constants 71
12.3. Local Settings . 72
12.4. Network-Wide Settings 72

13. IANA Considerations . 72
13.1. RFC 5444 Message Type Allocation 73
13.2. RFC 5444 Message TLV Types 73
13.3. RFC 5444 Address Block TLV Type Allocation 73
13.4. MetricType Allocation 74
13.5. ADDRESS_TYPE TLV Values 74

14. Security Considerations 75
14.1. Availability . 75

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 3]

Internet-Draft AODVv2 July 2017

14.1.1. Denial of Service 75
14.1.2. Malicious RERR messages 76
14.1.3. False Confirmation of Link Bidirectionality 77
14.1.4. Message Deletion 78

14.2. Confidentiality . 78
14.3. Integrity of Routes 78
14.3.1. Message Insertion 79
14.3.2. Message Modification - Man in the Middle 79
14.3.3. Replay Attacks 80

14.4. Protection Mechanisms 80
14.4.1. Confidentiality and Authentication 80
14.4.2. Message Integrity using ICVs 80
14.4.3. Replay Protection using Timestamps 81

14.5. Key Management . 81
15. Acknowledgments . 82
16. References . 83
16.1. Normative References 83
16.2. Informative References 83

Appendix A. AODVv2 Draft Updates 84
 Authors' Addresses . 85

1. Overview

 The Ad hoc On-Demand Distance Vector Version 2 (AODVv2) protocol
 enables dynamic, multihop routing between participating mobile nodes
 wishing to establish and maintain an ad hoc network. The basic
 operations of the AODVv2 protocol are route discovery and route
 maintenance. AODVv2 does not require nodes to maintain routes to
 destinations that are not in active communication. AODVv2 allows
 mobile nodes to respond to link breakages and changes in network
 topology in a timely manner. The operation of AODVv2 is loop-free,
 and by avoiding the Bellman-Ford "counting to infinity" problem
 offers quick convergence when the ad hoc network topology changes
 (typically, when a node moves in the network). When links break,
 AODVv2 causes the affected set of nodes to be notified so that they
 are able to invalidate the routes using the lost link.

 One distinguishing feature of AODVv2 is its use of a destination
 sequence number for each route entry. The destination sequence
 number is created by the destination to be included along with any
 route information it sends to requesting nodes. Using destination
 sequence numbers ensures loop freedom and is simple to program.
 Given the choice between two routes to a destination, a requesting
 node is required to select the one with the greatest sequence number.

 Compared to AODV [RFC3561], AODVv2 has moved some features out of the
 scope of the document, notably intermediate route replies, expanding
 ring search, and route lifetimes. However, the document has been

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires January 4, 2018 [Page 4]

Internet-Draft AODVv2 July 2017

 designed to allow their specification in a separate document. Hello
 messages and local repair have been removed. AODVv2 provides a
 mechanism for the use of multiple metric types. Message formats have
 been updated and made compliant with [RFC5444]. AODVv2 control
 messages are defined as sets of data, which are mapped to message
 elements using the Generalized MANET Packet/Message Format defined in
 [RFC5444] and sent using the parameters in [RFC5498]. Verification
 of link bidirectionality has been substantially improved, and
 additional refinements made for route timeouts and state management.
 Finally, multihoming is now supported.

 The basic protocol mechanisms are as follows. Since AODVv2 is a
 reactive protocol, route discovery is initiated only when a route to
 the target is needed (i.e. when a router's client has data to send).
 For this purpose, AODVv2 uses Route Request (RREQ) and Route Reply
 (RREP) messages as follows: an RREQ is distributed across the
 network. When forwarding an RREQ, all routers across the network
 also store a possible reverse route back to the originator of the
 RREQ. When the target receives the RREQ, it answers with an RREP,
 which is then relayed back to the originator along the path stored by
 the intermediate routers. A metric value is included within the
 messages to indicate the cost of the route. AODVv2 uses sequence
 numbers to identify stale routing information, and compares route
 metric values to determine if advertised routes could form loops.
 Route maintenance includes confirming bidirectionality of links to
 next-hop AODVv2 routers, managing route timeouts, using Route Error
 (RERR) messages to inform other routers of broken links, and reacting
 to received Route Error messages.

 The on-demand nature of AODVv2 requires indications to be exchanged
 between AODVv2 and the forwarding plane for the following conditions:

 o a packet is to be forwarded and route discovery is needed

 o packet forwarding fails, in order to report a route error

 o packet forwarding succeeds, in order to manage route timeouts.

 Security for authentication of AODVv2 routers and encryption of
 control messages is accomplished using the TIMESTAMP and ICV TLVs
 defined in [RFC7182].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires January 4, 2018 [Page 5]

Internet-Draft AODVv2 July 2017

 [RFC2119]. In addition, this document uses terminology from
 [RFC5444], and defines the following terms:

 AddressList
 A list of IP addresses as used in AODVv2 messages.

 AckReq
 Used in a Route Reply Acknowledgement message to indicate that a
 Route Reply Acknowledgement is expected in return.

 AdvRte
 A route advertised in an incoming route message.

 AODVv2 Router
 An IP addressable device in the ad hoc network that performs the
 AODVv2 protocol operations specified in this document.

 CurrentTime
 The current time as maintained by the AODVv2 router.

 ENAR (External Network Access Router)
 An AODVv2 router with an interface to an external, non-AODVv2
 network.

 Interface Set
 The set of all network interfaces supporting AODVv2.

 Invalid route
 A route that cannot be used for forwarding but still contains
 useful sequence number information.

 LocalRoute
 An entry in the Local Route Set as defined in Section 4.5.

 MANET
 A Mobile Ad Hoc Network as defined in [RFC2501].

 MetricType
 The metric type for a metric value included in a message.

 MetricTypeList
 A list of metric types associated with the addresses in the
 AddressList of a Route Error message.

 Neighbor
 An AODVv2 router from which an RREQ or RREP message has been
 received. Neighbors exchange routing information and verify

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc2501

Perkins, et al. Expires January 4, 2018 [Page 6]

Internet-Draft AODVv2 July 2017

 bidirectionality of the link to a neighbor before installing a
 route via that neighbor into the Local Route Set.

 OrigAddr
 The source IP address of the IP packet triggering route discovery.

 OrigMetric
 The metric value associated with the route to OrigPrefix.

 OrigPrefix
 The prefix configured in the Router Client Set entry which
 includes OrigAddr.

 OrigPrefixLen
 The prefix length, in bits, configured in the Router Client Set
 entry which includes OrigAddr.

 OrigSeqNum
 The sequence number of the AODVv2 router which originated the
 Route Request on behalf of OrigAddr.

 PktSource
 The source address of the IP packet that triggered a Route Error
 message.

 PrefixLengthList
 A list of routing prefix lengths associated with the addresses in
 the AddressList of a message.

 Reactive
 Performed only in reaction to specific events. In AODVv2, routes
 are requested only when data packets need to be forwarded. In
 this document, "reactive" is synonymous with "on-demand".

 RERR (Route Error)
 The AODVv2 message type used to indicate that an AODVv2 router
 does not have a valid LocalRoute toward one or more destinations.

 RERR_Gen (RERR Generating Router)
 The AODVv2 router generating a Route Error message.

 RerrMsg (RERR Message)
 A Route Error (RERR) message.

 Routable Unicast IP Address
 A unicast IP address that is scoped sufficiently to be forwarded
 by a router. Globally-scoped unicast IP addresses and Unique

Perkins, et al. Expires January 4, 2018 [Page 7]

Internet-Draft AODVv2 July 2017

 Local Addresses (ULAs) [RFC4193] are examples of routable unicast
 IP addresses.

 Router Client
 An address within an address range configured on an AODVv2 router,
 on behalf of which that router will initiate and respond to route
 discoveries. These addresses may be used by the AODVv2 router
 itself or by devices that are reachable without traversing another
 AODVv2 router.

 RREP (Route Reply)
 The AODVv2 message type used to reply to a Route Request message.

 RREP_Gen (RREP Generating Router)
 The AODVv2 router that generates the Route Reply message, i.e.,
 the router configured with TargAddr as a Router Client.

 RREQ (Route Request)
 The AODVv2 message type used to discover a route to TargAddr and
 distribute information about a route to OrigPrefix.

 RREQ_Gen (RREQ Generating Router)
 The AODVv2 router that generates the Route Request message, i.e.,
 the router configured with OrigAddr as a Router Client.

 RteMsg (Route Message)
 A Route Request (RREQ) or Route Reply (RREP) message.

 SeqNum
 The sequence number maintained by an AODVv2 router to indicate
 freshness of route information.

 SeqNumList
 A list of sequence numbers associated with the addresses in the
 AddressList of a message.

 TargAddr
 The target address of a route request, i.e., the destination
 address of the IP packet triggering route discovery.

 TargMetric
 The metric value associated with the route to TargPrefix.

 TargPrefix
 The prefix configured in the Router Client Set entry which
 includes TargAddr.

 TargPrefixLen

https://datatracker.ietf.org/doc/html/rfc4193

Perkins, et al. Expires January 4, 2018 [Page 8]

Internet-Draft AODVv2 July 2017

 The prefix length, in bits, configured in the Router Client Set
 entry which includes TargAddr.

 TargSeqNum
 The sequence number of the AODVv2 router which originated the
 Route Reply on behalf of TargAddr.

 Unreachable Address
 An address reported in a Route Error message, as described in

Section 7.4.1.

 Upstream
 In the direction from destination to source (from TargAddr to
 OrigAddr).

 Valid route
 A route that can be used for forwarding.

 This document uses the notational conventions in Table 1 to simplify
 the text.

 +-----------------------+------------------------------------+
 | Notation | Meaning |
 +-----------------------+------------------------------------+
 | Route[Address] | A route toward Address |
 | Route[Address].Field | A field in a route toward Address |
 | RteMsg.Field | A field in either RREQ or RREP |
 | RerrMsg.Field | A field in a RERR |
 +-----------------------+------------------------------------+

 Table 1: Notational Conventions

3. Applicability Statement

 The AODVv2 routing protocol is a reactive routing protocol designed
 for use in mobile ad hoc wireless networks, and may also be useful in
 networks where the nodes are not mobile but economical route
 maintenance is still required. A reactive protocol only sends
 messages to discover a route when there is data to send on that
 route. This requires an interaction with the forwarding plane, to
 indicate when a packet is to be forwarded, in case reactive route
 discovery is needed. The set of signals exchanged between AODVv2 and
 the forwarding plane are discussed in Section 6.4.

 AODVv2 is designed for stub or disconnected mobile ad hoc networks,
 i.e., non-transit networks or those not connected to the internet.
 AODVv2 routers can, however, be configured to perform gateway

Perkins, et al. Expires January 4, 2018 [Page 9]

Internet-Draft AODVv2 July 2017

 functions when attached to external networks, as discussed in
Section 9.

 AODVv2 handles a wide variety of mobility and traffic patterns by
 determining routes on-demand. In networks with a large number of
 routers, AODVv2 is best suited for relatively sparse traffic
 scenarios where each router forwards IP packets to a small percentage
 of destination addresses in the network. In such cases fewer routes
 are needed, and far less control traffic is produced. In large
 networks with dense traffic patterns, AODVv2 control messages may
 cause a broadcast storm, overwhelming the network with control
 messages. The transmission priorities described in Section 6.5
 prioritize route maintenance traffic over route discovery traffic.

 Data packets may be buffered until a route to their destination is
 available, as described in Section 6.6.

 AODVv2 is well suited to reactive scenarios such as emergency and
 disaster relief, where the ability to communicate might be more
 important than being assured of secure operations. For many other ad
 hoc networking applications, in which insecure operation could negate
 the value of establishing communication paths, it is important for
 neighboring AODVv2 routers to establish security associations with
 one another.

 AODVv2 provides for message integrity and security against replay
 attacks by using integrity check values, timestamps and sequence
 numbers, as described in Section 14. When security associations have
 been established, encryption can be used for AODVv2 messages to
 ensure that only trusted routers participate in routing operations.

 The AODVv2 route discovery process aims for a route to be established
 in both directions along the same path. Uni-directional links are
 not suitable; AODVv2 will detect and exclude those links from route
 discovery. The route discovered is optimized for the requesting
 router, and the return path may not be the optimal route.

 AODVv2 is applicable to memory constrained devices, since only a
 little routing state is maintained in each AODVv2 router. AODVv2
 routes that are not needed for forwarding data do not need to be
 maintained.

 AODVv2 supports routers with multiple interfaces and multiple IP
 addresses per interface. A router may also use the same IP address
 on multiple interfaces. AODVv2 requires only that each interface
 configured for AODVv2 has at least one unicast IP address. Address
 assignment procedures are out of scope for AODVv2.

Perkins, et al. Expires January 4, 2018 [Page 10]

Internet-Draft AODVv2 July 2017

 AODVv2 supports Router Clients with multiple interfaces, as long as
 each interface is configured with its own unicast IP address.

 The routing algorithm in AODVv2 has been operated at layers other
 than the network layer, using layer-appropriate addresses.

 AODVv2 is based on AODV [RFC3561]. The following important protocol
 mechanisms have changed:

 o Bidirectionality is ensured using a new mechanism

 o Alternate metrics may be used to determine route quality

 o Support for multiple interfaces has been improved

 o Support for multi-interface IP addresses has been added

 o A new security model allowing end to end integrity checks has been
 added

 o A new message format ([RFC5444]) is used.

4. Data Structures

4.1. Interface Set

 The Interface Set is a conceptual data structure which contains
 information about all interfaces configured for use by AODVv2. Any
 interface with an IP address can be used. Multiple interfaces on a
 single router can be used. Multiple interfaces on the same router
 may be configured with the same IP address.

 Each member in the Interface Set MUST contain the following:

 Interface.Id
 An identifier that is unique in node-local scope, allowing the
 AODVv2 implementation to identify exactly one local network
 interface.

 If multiple interfaces of the AODVv2 router are configured for use by
 AODVv2, they MUST be configured in the Interface Set.
 Implementations using only one interface do not need the Interface
 Set, since their single interface is already uniquely identifiable.

https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 11]

Internet-Draft AODVv2 July 2017

4.2. Router Client Set

 An AODVv2 router discovers routes for its own local applications and
 also for its Router Clients that are reachable without traversing
 another AODVv2 router. The addresses used by these devices, and the
 AODVv2 router itself, are configured in the Router Client Set. An
 AODVv2 router will only originate Route Request and Route Reply
 messages on behalf of its configured Router Client addresses.

 Router Client Set entries contain:

 RouterClient.IPAddress
 An IP address or the start of an address range that requires route
 discovery services from the AODVv2 router.

 RouterClient.PrefixLength
 The length, in bits, of the routing prefix associated with the
 RouterClient.IPAddress. If the prefix length is not equal to the
 address length of RouterClient.IPAddress, the AODVv2 router MUST
 participate in route discovery on behalf of all addresses within
 that prefix.

 RouterClient.Cost
 The cost associated with reaching this address or address range.

4.3. Neighbor Set

 A Neighbor Set MUST be maintained with information about neighboring
 AODVv2 routers. Neighbor Set entries are stored when AODVv2 messages
 are received. If the Neighbor is chosen as a next hop on an
 installed route, the link to the Neighbor MUST be verified to be
 bidirectional and the result stored in this set. A route is not
 valid until the link is confirmed to be bidirectional.

 Neighbor Set entries MUST contain:

 Neighbor.IPAddress
 An IP address of the neighboring router.

 Neighbor.State
 Indicates whether the link to the neighbor is bidirectional.
 There are three possible states: Confirmed, Heard, and
 Blacklisted. Heard is the initial state. Confirmed indicates
 that the link to the neighbor has been confirmed as bidirectional.
 Blacklisted indicates that the link to the neighbor is being
 treated as uni-directional. Section 6.2 discusses how to monitor
 link bidirectionality.

Perkins, et al. Expires January 4, 2018 [Page 12]

Internet-Draft AODVv2 July 2017

 Neighbor.Timeout
 Indicates the time at which the Neighbor.State should be updated:

 o If the value of Neighbor.State is Blacklisted, this indicates the
 time at which Neighbor.State will revert to Heard. This value is
 calculated at the time the router is blacklisted and by default is
 equal to CurrentTime + MAX_BLACKLIST_TIME.

 o If Neighbor.State is Heard, and an RREP_Ack has been requested
 from the neighbor, it indicates the time at which Neighbor.State
 will be set to Blacklisted, if an RREP_Ack has not been received.

 o If the value of Neighbor.State is Heard and no RREP_Ack has been
 requested, or if Neighbor.State is Confirmed, this time is set to
 INFINITY_TIME.

 Neighbor.Interface
 The interface on which the link to the neighbor was established.

 Neighbor.AckSeqNum
 The next sequence number to use for the TIMESTAMP value in an
 RREP_Ack request, in order to detect replay of an RREP_Ack
 response. AckSeqNum is initialized to a random value.

 Neighbor.HeardRERRSeqNum
 The last heard sequence number used as the TIMESTAMP value in a
 RERR received from this neighbor, saved in order to detect replay
 of a RERR message. HeardRERRSeqNum is initialized to zero.

 See Section 11.3 and Section 11.4 for more information on how
 Neighbor.AckSeqNum and Neighbor.HeardRERRSeqNum are used.

4.4. Sequence Numbers

 Sequence Numbers enable AODVv2 routers to determine the temporal
 order of route discovery messages that originate from a AODVv2
 router, and thus to identify stale routing information so that it can
 be discarded. The sequence number fulfills the same roles as the
 "Destination Sequence Number" of DSDV [Perkins94], and the AODV
 Sequence Number in [RFC3561]. The sequence numbers from two
 different routers are not comparable; route discovery messages with
 sequence numbers belonging to two different routers cannot be
 compared to determine temporal ordering.

 Each AODVv2 router in the network MUST maintain its own sequence
 number. All RREQ and RREP messages created by an AODVv2 router
 include the router's sequence number, reported as a 16-bit unsigned
 integer. Each AODVv2 router MUST ensure that its sequence number is

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires January 4, 2018 [Page 13]

Internet-Draft AODVv2 July 2017

 strictly increasing, and that it is incremented by one (1) whenever
 an RREQ or RREP is created, except when the sequence number is 65,535
 (the maximum value of a 16-bit unsigned integer), in which case it
 MUST be reset to one (1) to achieve wrap around. The value zero (0)
 is reserved to indicate that the router's sequence number is unknown.

 An AODVv2 router MUST use its sequence number only on behalf of its
 configured Router Clients; route messages forwarded by other routers
 retain the originator's sequence number.

 To determine if newly received information is stale and therefore
 redundant compared to other information originated by the same
 router, the sequence number attached to the information is compared
 to the sequence number of existing information about the same route.
 The comparison is carried out by subtracting the existing sequence
 number from the newly received sequence number, using unsigned
 arithmetic. The result of the subtraction is to be interpreted as a
 signed 16-bit integer.

 o If the result is negative, the newly received information is
 considered older than the existing information and therefore stale
 and redundant and MUST therefore be discarded.

 o If the result is positive, the newly received information is newer
 than the existing information and is not considered stale or
 redundant and MUST therefore be processed.

 o If the result is zero, the newly received information is not
 considered stale, and therefore MUST be processed further in case
 the new information offers a better route (see Section 6.7.1 and

Section 6.8).

 Along with the algorithm in Section 6.7.1, maintaining temporal
 ordering ensures loop freedom.

 An AODVv2 router SHOULD maintain its sequence number in persistent
 storage. On routers unable to store persistent AODVv2 state,
 recovery can impose a performance penalty (e.g., in case of AODVv2
 router reboot), since if a router loses its sequence number, there is
 a delay (by default, on the order of minutes) before the router can
 resume full operations. If the sequence number is lost, the router
 MUST follow the procedure in Section 6.1 to safely resume routing
 operations with a new sequence number.

Perkins, et al. Expires January 4, 2018 [Page 14]

Internet-Draft AODVv2 July 2017

4.5. Local Route Set

 All AODVv2 routers MUST maintain a Local Route Set, containing
 information obtained from AODVv2 route messages. The Local Route Set
 is considered to be stored separately from the forwarding plane's
 routing table (referred to as Routing Information Base (RIB)), which
 may be updated by other routing protocols operating on the AODVv2
 router as well. The Routing Information Base is updated using
 information from the Local Route Set. Alternatively, if the
 information specified below can be added to RIB entries,
 implementations MAY choose to modify the Routing Information Base
 directly instead of maintaining a dedicated Local Route Set.

 Routes obtained from AODVv2 route messages are referred to in this
 document as LocalRoutes, and MUST contain the following information:

 LocalRoute.Address
 An address, which, when combined with LocalRoute.PrefixLength,
 describes the set of destination addresses for which this route
 enables forwarding.

 LocalRoute.PrefixLength
 The prefix length, in bits, associated with LocalRoute.Address.

 LocalRoute.SeqNum
 The sequence number associated with LocalRoute.Address, obtained
 from the last route message that successfully updated this entry.

 LocalRoute.NextHop
 The source IP address of the IP packet containing the AODVv2
 message advertising the route to LocalRoute.Address, i.e., an IP
 address of the AODVv2 router used for the next hop on the path
 toward LocalRoute.Address.

 LocalRoute.NextHopInterface
 The interface used to send IP packets toward LocalRoute.Address.

 LocalRoute.LastUsed
 If this route is installed in the Routing Information Base, the
 time it was last used to forward an IP packet. If not, the time
 at which the LocalRoute was created.

 LocalRoute.LastSeqNumUpdate
 The time LocalRoute.SeqNum was last updated.

 LocalRoute.MetricType
 The type of metric associated with this route. See Section 5 for
 information about AODVv2's handling of multiple metric types.

Perkins, et al. Expires January 4, 2018 [Page 15]

Internet-Draft AODVv2 July 2017

 LocalRoute.Metric
 The cost of the route toward LocalRoute.Address expressed in units
 consistent with LocalRoute.MetricType.

 LocalRoute.Precursors (optional feature)
 A list of upstream neighbors using the route (see Section 10).

 LocalRoute.SeqNoRtr
 If nonzero, the IP address of the router that originated the
 Sequence Number for this route.

 LocalRoute.State
 The last known state (Unconfirmed, Idle, Active, or Invalid) of
 the route.

 There are four possible states for a LocalRoute:

 Unconfirmed
 A route obtained from a Route Request message, which has not yet
 been confirmed as bidirectional. It MUST NOT be stored in the RIB
 to forward general data-plane traffic, but it can be used to
 transmit RREP packets along with a request for bidirectional link
 verification. An Unconfirmed route is not otherwise considered a
 valid route. This state is only used for routes obtained through
 RREQ messages.

 Idle
 A route that has been confirmed to be bidirectional, but has not
 been used in the last ACTIVE_INTERVAL. It can be used for
 forwarding IP packets, and therefore it is considered a valid
 route.

 Active
 A valid route that has been used for forwarding IP packets during
 the last ACTIVE_INTERVAL.

 Invalid
 A route that has expired or has broken. It MUST NOT be used for
 forwarding IP packets. Invalid routes contain the destination's
 sequence number, which may be useful when assessing freshness of
 incoming routing information.

 If the Local Route Set is stored separately from the RIB, routes are
 added to the RIB when LocalRoute.State becomes Active, and removed
 from the RIB when LocalRoute.State becomes Invalid. Changes to
 LocalRoute state are detailed in Section 6.10.1.

Perkins, et al. Expires January 4, 2018 [Page 16]

Internet-Draft AODVv2 July 2017

4.6. Multicast Route Message Set

 Multicast Route Request (RREQ) messages can be tested for redundancy
 to avoid unnecessary processing and forwarding.

 The Multicast Route Message Set is a conceptual set which contains
 information about previously received multicast route messages, so
 that incoming route messages can be compared with previously received
 messages to determine if the incoming information is redundant or
 stale, so that the router can avoid sending redundant control
 traffic.

 Multicast Route Message Set entries contain the following
 information:

 RteMsg.OrigPrefix
 The prefix associated with OrigAddr, the source address of the IP
 packet triggering the route request.

 RteMsg.OrigPrefixLen
 The prefix length associated with RteMsg.OrigPrefix, originally
 from the Router Client Set entry on RREQ_Gen which includes
 OrigAddr.

 RteMsg.TargPrefix
 The prefix associated with TargAddr, the destination address of
 the IP packet triggering the route request. In an RREQ this MUST
 be set to TargAddr.

 RteMsg.OrigSeqNum
 The sequence number associated with the route to OrigPrefix, if
 RteMsg is an RREQ.

 RteMsg.TargSeqNum
 The sequence number associated with the route to TargPrefix.

 RteMsg.MetricType
 The metric type of the route requested.

 RteMsg.Metric
 The metric value received in the RteMsg.

 RteMsg.Timestamp
 The last time this Multicast Route Message Set entry was updated.

 RteMsg.RemovalTime
 The time at which this entry MUST be removed from the Multicast
 Route Message Set.

Perkins, et al. Expires January 4, 2018 [Page 17]

Internet-Draft AODVv2 July 2017

 RteMsg.Interface
 The interface on which the message was received.

 RteMsg.SeqNoRtr
 If nonzero, the IP address of the router that originated the
 Sequence Number for this route.

 The Multicast Route Message Set is maintained so that no two entries
 have the same OrigPrefix, OrigPrefixLen, TargPrefix, and MetricType.
 See Section 6.8 for details about updating this set.

4.7. Route Error (RERR) Set

 Each RERR message sent because no route exists for packet forwarding
 SHOULD be recorded in a conceptual set called the Route Error (RERR)
 Set. Each entry contains the following information:

 RerrMsg.Timeout
 The time after which the entry SHOULD be deleted.

 RerrMsg.UnreachableAddress
 The UnreachableAddress reported in the AddressList of the RERR.

 RerrMsg.PktSource:
 The PktSource of the RERR.

 See Section 6.9 for instructions on how to update the set.

5. Metrics

 Metrics measure a cost or quality associated with a route or a link,
 e.g., latency, delay, financial cost, energy, etc. Metric values are
 reported in Route Request and Route Reply messages.

 In Route Request messages, the metric describes the cost of the route
 from OrigPrefix to the router transmitting the Route Request. For
 RREQ_Gen, this is the cost associated with the Router Client Set
 entry which includes OrigAddr. For routers which forward the RREQ,
 this is the cost from OrigPrefix to the forwarding router, combining
 the metric value from the received RREQ message with knowledge of the
 link cost from the sender to the receiver, i.e., the incoming link
 cost. This updated route cost is included when forwarding the Route
 Request message, and used to install a route to OrigPrefix.

 Similarly, in Route Reply messages, the metric reflects the cost of
 the route from TargPrefix to the router transmitting the Route Reply.
 For RREP_Gen, this is the cost associated with the Router Client Set
 entry which includes TargAddr. For routers which forward the RREP,

Perkins, et al. Expires January 4, 2018 [Page 18]

Internet-Draft AODVv2 July 2017

 this is the cost from TargPrefix to the forwarding router, combining
 the metric value from the received RREP message with knowledge of the
 link cost from the sender to the receiver, i.e., the incoming link
 cost. This updated route cost is included when forwarding the Route
 Reply message, and used to install a route to TargPrefix.

 When link metrics are symmetric, the cost of the routes installed in
 the Local Route Set at each router will be correct. This assumption
 is often inexact, but calculating incoming/outgoing metric data is
 outside of scope of this document. The route discovered is good for
 the requesting router, but the return path may not be the optimal
 route.

 AODVv2 enables the use of multiple metric types. Each route
 discovery attempt indicates the metric type which is requested for
 the route. Multiple valid routes may exist in the Local Route Set
 for the same address and prefix length but for different metric
 types. More than one route to a particular address and prefix length
 MUST NOT exist in the Routing Information Base unless each packet can
 be inspected to determine which route in the RIB has the proper
 metric type as required for that packet. Otherwise, only one route
 at a time to a particular address and prefix length may exist in the
 RIB. The algorithm used to inspect the packet and make the
 determination about which the routes should be installed in the
 Routing Information Base is outside the scope of AODVv2.

 For each MetricType, AODVv2 requires:

 o A MetricType number, to indicate the metric type of a route.
 Currently allocated MetricType numbers are listed in Section 13.4.

 o A maximum value, denoted MAX_METRIC[MetricType]. This MUST always
 be the maximum expressible metric value of type MetricType. Field
 lengths associated with metric values are found in Section 13.4.
 If the cost of a route exceeds MAX_METRIC[MetricType], the route
 cannot be stored and is ignored.

 o A function for incoming link cost, denoted Cost(L). Using
 incoming link costs means that the route obtained has a metric
 accurate for the direction back towards the originating router.

 o A function for route cost, denoted Cost(R).

 o A function to analyze routes for potential loops based on metric
 information, denoted LoopFree(R1, R2). LoopFree verifies that a
 route R2 is not a sub-section of another route R1. An AODVv2
 router invokes LoopFree() as part of the process in Section 6.7.1,
 when an advertised route (R1) and an existing LocalRoute (R2) have

Perkins, et al. Expires January 4, 2018 [Page 19]

Internet-Draft AODVv2 July 2017

 the same destination address, metric type, and sequence number.
 LoopFree returns FALSE to indicate that an advertised route is not
 to be used to update a stored LocalRoute, as it may cause a
 routing loop. In the case where the existing LocalRoute is
 Invalid, it is possible that the advertised route includes the
 existing LocalRoute and came from a router which did not yet
 receive notification of the route becoming Invalid, so the
 advertised route should not be used to update the Local Route Set,
 in case it forms a loop to a broken route.

 AODVv2 currently supports cost metrics where Cost(R) is strictly
 increasing, by defining:

 o Cost(R) := Sum of Cost(L) of each link in the route

 o LoopFree(R1, R2) := (Cost(R1) <= Cost(R2))

 Implementers MAY consider metric types that are not strictly
 increasing, but the definitions of Cost and LoopFree functions for
 such types are undefined, and interoperability issues need to be
 considered.

6. AODVv2 Protocol Operations

 AODVv2 protocol operations include:

 o managing sequence numbers,

 o monitoring next hop AODVv2 routers on discovered routes and
 updating the Neighbor Set,

 o performing route discovery and dealing with requests from other
 routers,

 o processing incoming route information and updating the Local Route
 Set,

 o updating the Multicast Route Message Set and suppressing redundant
 messages, and

 o reporting broken routes.

 These processes are discussed in detail in the following sections.

Perkins, et al. Expires January 4, 2018 [Page 20]

Internet-Draft AODVv2 July 2017

6.1. Initialization

 When an AODVv2 router does not have information about its previous
 sequence number, or if its sequence number is lost at any point, the
 router reinitializes its sequence number to one (1). However, other
 AODVv2 routers may still hold sequence number information that this
 router previously issued. Since sequence number information is
 removed if there has been no update to the sequence number in
 MAX_SEQNUM_LIFETIME, the initializing router MUST wait for
 MAX_SEQNUM_LIFETIME before it creates any messages containing its new
 sequence number.

 During this wait period, the router is permitted to do the following:

 o Process information in a received RREQ or RREP message to obtain a
 route to the originator or target of that route discovery

 o Forward a received RREQ or RREP

 o Send an RREP_Ack

 o Maintain valid routes in the Local Route Set

 o Create, process and forward RERR messages

6.2. Next Hop Monitoring

 To ensure AODVv2 routers do not establish routes over uni-directional
 links, AODVv2 routers MUST verify that the link to the next hop
 router is bidirectional before marking a route as valid in the Local
 Route Set.

 AODVv2 provides a mechanism for testing bidirectional connectivity
 during route discovery, and blacklisting routers where bidirectional
 connectivity is not available. If a route discovery is retried by
 RREQ_Gen, the blacklisted routers are excluded from the process, and
 a different route can be discovered. Further, a route is not to be
 used for forwarding until the bidirectionality of the link to the
 next hop is confirmed. AODVv2 routers do not need to monitor
 bidirectionality for links to neighboring routers which are not used
 as next hops on routes in the Local Route Set.

 o Bidirectional connectivity to upstream routers is tested as
 necessary by requesting acknowledgement of RREP messages,
 including an AckReq element to indicate that an acknowledgement is
 requested. This MUST be answered by sending an RREP_Ack in
 response. Receipt of an RREP_Ack within RREP_Ack_SENT_TIMEOUT
 demonstrates that bidirectional connectivity exists. Otherwise,

Perkins, et al. Expires January 4, 2018 [Page 21]

Internet-Draft AODVv2 July 2017

 the link is considered to be unidirectional. All AODVv2 routers
 MUST support this process, which is explained in Section 7.2 and

Section 7.3.

 o Receipt of an RREP message containing the route to TargAddr
 confirms bidirectionality to the downstream router, since an RREP
 message is a reply to an RREQ message which previously crossed the
 link in the opposite direction.

 To assist with next hop monitoring, a Neighbor Set (Section 4.3) is
 maintained. When an RREQ or RREP is received, an AODVv2 router
 searches for an entry in the Neighbor Set where all of the following
 conditions are met:

 o Neighbor.IPAddress == IP address from which the RREQ or RREP was
 received

 o Neighbor.Interface == Interface on which the RREQ or RREP was
 received.

 If no such entry exists, a new entry is created as described in
Section 6.3. While the value of Neighbor.State is Heard,

 acknowledgement of RREP messages sent to that neighbor MUST be
 requested. If an acknowledgement is not received within the timeout
 period, the neighbor MUST have Neighbor.State set to Blacklisted. If
 an acknowledgement is received within the timeout period,
 Neighbor.State is set to Confirmed. When the value of Neighbor.State
 is Confirmed, the request for an acknowledgement of any other RREP
 message is unnecessary.

 Additional indications of connectivity may be available from other
 operations, for example:

 o MAC layer protocol assuring bidirectional links

 o Route timeout

 o Lower layer triggers, e.g. message reception or link status
 notifications

 o TCP timeouts

 o Promiscuous listening

 o receipt of a Neighborhood Discovery Protocol HELLO message with
 the receiving router listed as a neighbor [RFC6130]

 o Other monitoring mechanisms or heuristics

https://datatracker.ietf.org/doc/html/rfc6130

Perkins, et al. Expires January 4, 2018 [Page 22]

Internet-Draft AODVv2 July 2017

 If such an external process signals that the link to a neighbor is
 bidirectional, the AODVv2 router MAY update the matching Neighbor Set
 entry by changing the value of Neighbor.State to Confirmed. If an
 external process signals that a link is not bidirectional, the the
 value of Neighbor.State MAY be changed to Blacklisted.

6.3. Neighbor Set Update

 On receipt of an RREQ or RREP message, the Neighbor Set MUST be
 checked for an entry with Neighbor.IPAddress which matches the source
 IP address of a packet containing the AODVv2 message. If no matching
 entry is found, a new entry is created.

 A new Neighbor Set entry is created as follows:

 o Neighbor.IPAddress := Source IP address of the received route
 message

 o Neighbor.State := Heard

 o Neighbor.Timeout := INFINITY_TIME

 o Neighbor.Interface := Interface on which the RREQ or RREP was
 received. (see Section 4.1).

 When an RREP_Ack request is sent to a neighbor, the Neighbor Set
 entry is updated as follows:

 o Neighbor.Timeout := CurrentTime + RREP_Ack_SENT_TIMEOUT

 When a received message is one of the following:

 o an RREP which answers an RREQ sent within RREQ_WAIT_TIME over the
 same interface as Neighbor.Interface

 o an RREP_Ack response received from a Neighbor with Neighbor.State
 set to Heard, where Neighbor.Timeout > CurrentTime

 then the link to the neighbor is bidirectional and the Neighbor Set
 entry is updated as follows:

 o Neighbor.State := Confirmed

 o Neighbor.Timeout := INFINITY_TIME

 When the Neighbor.Timeout is reached and Neighbor.State is Heard,
 then an RREP_Ack response has not been received from the neighbor
 within RREP_Ack_SENT_TIMEOUT of sending the RREP_Ack request. The

Perkins, et al. Expires January 4, 2018 [Page 23]

Internet-Draft AODVv2 July 2017

 link is considered to be uni-directional and the Neighbor Set entry
 is updated as follows:

 o Neighbor.State := Blacklisted

 o Neighbor.Timeout := CurrentTime + MAX_BLACKLIST_TIME

 When the Neighbor.Timeout is reached and Neighbor.State is
 Blacklisted, the Neighbor Set entry is updated as follows:

 o Neighbor.State := Heard

 If an external mechanism reports a link as broken, the Neighbor Set
 entry SHOULD be removed.

 Route requests (RREQs) from neighbors with Neighbor.State set to
 Blacklisted MUST be ignored, to avoid persistent IP packet loss or
 protocol failures. Neighbor.Timeout allows the neighbor to again be
 allowed to participate in route discoveries after MAX_BLACKLIST_TIME,
 in case the link between the routers has become bidirectional.

6.4. Interaction with the Forwarding Plane

 The signals described in the following are conceptual in nature, and
 can be implemented in various ways. Conformant implementations of
 AODVv2 are not mandated to implement the forwarding plane separately
 from the control plane or data plane; these signals and interactions
 are identified simply as assistance for implementers who may find
 them useful.

 AODVv2 requires signals from the forwarding plane:

 o A packet cannot be forwarded because a route is unavailable:
 AODVv2 needs to know the source and destination IP addresses of
 the packet. If the source of the packet is configured as a Router
 Client, the router SHOULD initiate route discovery to the
 destination. If it is not a Router Client, the router SHOULD
 create a Route Error message.

 o A packet is to be forwarded: AODVv2 needs to check the state of
 the route to ensure it is still valid.

 o Packet forwarding succeeds: AODVv2 needs to update the record of
 when a route was last used to forward a packet.

 o Packet forwarding failure occurs: AODVv2 needs to create a Route
 Error message.

Perkins, et al. Expires January 4, 2018 [Page 24]

Internet-Draft AODVv2 July 2017

 AODVv2 needs to send signals to the forwarding plane when:

 o A route discovery is in progress: buffering might be configured
 for packets requiring a route, while route discovery is attempted.

 o A route discovery failed: any buffered packets requiring that
 route should be discarded, and the source of the packet should be
 notified that the destination is unreachable (using an ICMP
 Destination Unreachable message). Route discovery fails if an
 RREQ cannot be generated because the control message generation
 limit has been reached (seeSection 6.5), or if an RREP is not
 received within RREQ_WAIT_TIME (see Section 6.6).

 o A route discovery succeeded: install a corresponding route into
 the Routing Information Base and begin transmitting any buffered
 packets.

 o A route has been made invalid: remove the corresponding route from
 the Routing Information Base.

 o A route has been updated: update the corresponding route in the
 Routing Information Base.

 o If routes with more than one metric type are available to a
 destination, a way to identify the route that is allowable for the
 metric type associated with forwarding the incoming packet.

6.5. Message Transmission

 AODVv2 sends [RFC5444] formatted messages using the parameters for
 port number and IP protocol specified in [RFC5498]. Mapping of
 AODVv2 data to [RFC5444] messages is detailed in Section 8. AODVv2
 multicast messages are sent to the link-local multicast address LL-
 MANET-Routers [RFC5498]. All AODVv2 routers MUST subscribe to LL-
 MANET-Routers on all AODVv2 interfaces [RFC5498] to receive AODVv2
 messages. Note that multicast messages MAY be sent via unicast. For
 example, this may occur for certain link-types (non-broadcast media),
 for manually configured router adjacencies, or in order to improve
 robustness.

 When multiple interfaces are available, an AODVv2 router transmitting
 a multicast message to LL-MANET-Routers MUST send the message on all
 interfaces that have been configured for AODVv2 operation, as given
 in the Interface Set (Section 4.1).

 To avoid congestion, each AODVv2 router's rate of message generation
 SHOULD be administratively configurable and rate-limited
 (CONTROL_TRAFFIC_LIMIT). Messages SHOULD NOT be sent more frequently

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
https://datatracker.ietf.org/doc/html/rfc5498

Perkins, et al. Expires January 4, 2018 [Page 25]

Internet-Draft AODVv2 July 2017

 than one message per (1 / CONTROL_TRAFFIC_LIMIT)th of a second. If
 this threshold is reached, messages MUST be sent based on their
 priority:

 o Highest priority SHOULD be given to RREP_Ack messages. This
 allows links between routers to be confirmed as bidirectional and
 avoids undesired blacklisting of next hop routers.

 o Second priority SHOULD be given to RERR messages for undeliverable
 IP packets. This avoids repeated forwarding of packets over
 broken routes that are still in use by other routers.

 o Third priority SHOULD be given to RREP messages in order that
 RREQs do not time out.

 o Fourth priority SHOULD be given to RREQ messages.

 o Fifth priority SHOULD be given to RERR messages for newly
 invalidated routes.

 o Lowest priority SHOULD be given to RERR messages generated in
 response to RREP messages which cannot be forwarded. In this case
 the route request will be retried at a later point.

 To implement the congestion control, a queue length is set. If the
 queue is full, in order to queue a new message, a message of lower
 priority must be removed from the queue. If this is not possible,
 the new message MUST be discarded. The queue should be sorted in
 order of message priority

6.6. Route Discovery, Retries and Buffering

 AODVv2's RREQ and RREP messages are used for route discovery. RREQ
 messages are multicast to solicit an RREP, whereas RREP are unicast.
 The constants used in this section are defined in Section 12.

 When an AODVv2 router needs to forward an IP packet (with source
 address OrigAddr and destination address TargAddr) from one of its
 Router Clients, it needs a route to TargAddr in its Routing
 Information Base. If no route exists, the AODVv2 router generates
 (RREQ_Gen) and multicasts a Route Request message (RREQ), on all
 configured interfaces, containing information about the source and
 destination. The procedure for this is described in Section 7.1.1.
 Each generated RREQ results in an increment to the router's sequence
 number. The AODVv2 router generating an RREQ is referred to as
 RREQ_Gen.

Perkins, et al. Expires January 4, 2018 [Page 26]

Internet-Draft AODVv2 July 2017

 Buffering might be configured for IP packets awaiting a route for
 forwarding by RREQ_Gen, if sufficient memory is available. Buffering
 of IP packets might have both positive and negative effects. TCP
 connection establishment will benefit if packets are queued while
 route discovery is performed [Koodli01], but real-time traffic,
 voice, and scheduled delivery may suffer if packets are buffered and
 subjected to delays. Recommendations for appropriate buffer methods
 are out of scope for this specification. Determining which packets
 to discard first when the buffer is full is a matter of policy at
 each AODVv2 router. Using different (or no) buffer methods might
 affect performance but does not affect interoperability.

 RREQ_Gen awaits reception of a Route Reply message (RREP) containing
 a route toward TargAddr. This can be achieved by monitoring the
 entry in the Multicast Route Message Table that corresponds to the
 generated RREQ. When CurrentTime exceeds RteMsg.Timestamp +
 RREQ_WAIT_TIME and no RREP has been received, RREQ_Gen will retry the
 route discovery.

 To reduce congestion in a network, repeated attempts at route
 discovery for a particular target address utilize a binary
 exponential backoff: for each additional attempt, the time to wait
 for receipt of the RREP is multiplied by 2. If the requested route
 is not discovered within the wait period, another RREQ is sent, up to
 a total of DISCOVERY_ATTEMPTS_MAX. This is the same technique used
 in AODV [RFC3561].

 Through the use of bidirectional link monitoring and blacklists (see
Section 6.2), uni-directional links on an initially selected route

 will be ignored on subsequent route discovery attempts.

 After DISCOVERY_ATTEMPTS_MAX and the corresponding wait time for an
 RREP response to the final RREQ, route discovery is considered to
 have failed. If an attempted route discovery has failed, RREQ_Gen
 SHOULD wait at least RREQ_HOLDDOWN_TIME before attempting another
 route discovery to the same destination, in order to avoid repeatedly
 generating control traffic that is unlikely to discover a route. Any
 IP packets buffered for TargAddr are also dropped and a Destination
 Unreachable ICMP message (Type 3) with a code of 1 (Host Unreachable
 Error) is delivered to the source of the packet, so that the
 application knows about the failure.

 If RREQ_Gen does receive a route message containing a route to
 TargAddr within the timeout, it processes the message according to

Section 7. When a valid LocalRoute entry is created in the Local
 Route Set, the route is also installed in the Routing Information
 Base, and the router will begin sending the buffered IP packets. Any
 retry timers for the corresponding RREQ are then cancelled.

https://datatracker.ietf.org/doc/html/rfc3561

Perkins, et al. Expires January 4, 2018 [Page 27]

Internet-Draft AODVv2 July 2017

 During route discovery, all routers on the path obtain a route to
 both OrigPrefix and TargPrefix, so that routes are constructed in
 both directions. The route is optimized for the forward route.

6.7. Processing Received Route Information

 A Route Request (RREQ) contains a route to OrigPrefix, and a Route
 Reply (RREP) contains a route to TargPrefix. All AODVv2 routers that
 receive a route message are able to store the route contained within
 it in their Local Route Set. Incoming information is first checked to
 verify that it is both safe to use and offers an improvement to
 existing information, as explained in Section 6.7.1. If these checks
 pass, the Local Route Set MUST be updated according to Section 6.7.2.

 In the processes below, RteMsg is used to denote the received route
 message, AdvRte is used to denote the route contained within it, and
 LocalRoute denotes an existing entry in the Local Route Set which
 matches AdvRte on address, prefix length, metric type, and SeqNoRtr.

 AdvRte has the following properties:

 o AdvRte.Address := RteMsg.OrigPrefix (in RREQ) or RteMsg.TargPrefix
 (in RREP)

 o AdvRte.PrefixLength := RteMsg.OrigPrefixLen (in RREQ) or
 RteMsg.TargPrefixLen (in RREP). If no prefix length was included
 in RteMsg, prefix length is the address length, in bits, of
 RteMsg.OrigPrefix (in RREQ) or RteMsg.TargPrefix (in RREP)

 o AdvRte.SeqNum := RteMsg.OrigSeqNum (in RREQ) or RteMsg.TargSeqNum
 (in RREP)

 o AdvRte.NextHop := RteMsg.IPSourceAddress (an address of the
 sending interface of the router from which the RteMsg was
 received)

 o AdvRte.MetricType := RteMsg.MetricType

 o AdvRte.Metric := RteMsg.Metric

 o AdvRte.Cost := Cost(R) using the cost function associated with the
 route's metric type. For cost metrics, Cost(R) = AdvRte.Metric +
 Cost(L), as described in Section 5, where L is the link from the
 advertising router

 o AdvRte.SeqNoRtr := the IP address in the Address List of type
 SeqNoRtr if one exists, otherwise 0

Perkins, et al. Expires January 4, 2018 [Page 28]

Internet-Draft AODVv2 July 2017

6.7.1. Evaluating Route Information

 An incoming advertised route (AdvRte) is compared to existing
 LocalRoutes to determine whether the advertised route is to be used
 to update the AODVv2 Local Route Set. The incoming route information
 MUST be processed as follows:

 1. Search for LocalRoutes in the Local Route Set matching AdvRte's
 address, prefix length, metric type, and SeqNoRtr (the AODVv2
 router address corresponding to the sequence number).

 * If no matching LocalRoute exists, AdvRte MUST be used to
 update the Local Route Set and no further checks are required.

 * If matching LocalRoutes are found, continue to the next step.

 2. Compare sequence numbers using the technique described in
Section 4.4

 * If AdvRte is more recent than all matching LocalRoutes, AdvRte
 MUST be used to update the Local Route Set and no further
 checks are required.

 * If AdvRte is stale, AdvRte MUST NOT be used to update the
 Local Route Set. Ignore AdvRte for further processing.

 * If the sequence numbers are equal, continue to the next step.

 3. Check that AdvRte is safe against routing loops compared to all
 matching LocalRoutes (see Section 5)

 * If LoopFree(AdvRte, LocalRoute) returns FALSE, ignore AdvRte
 for further processing. AdvRte MUST NOT be used to update the
 Local Route Set because using the incoming information might
 cause a routing loop.

 * If LoopFree(AdvRte, LocalRoute) returns TRUE, continue to the
 next step.

 4. Compare route costs

 * If AdvRte is better than all matching LocalRoutes, it MUST be
 used to update the Local Route Set because it offers
 improvement.

 * If AdvRte is equal in cost and LocalRoute is valid, AdvRte
 SHOULD NOT be used to update the Local Route Set because it
 will offer no improvement.

Perkins, et al. Expires January 4, 2018 [Page 29]

Internet-Draft AODVv2 July 2017

 * If AdvRte is worse and LocalRoute is valid, ignore AdvRte for
 further processing. AdvRte MUST NOT be used to update the
 Local Route Set because it does not offer any improvement.

 * If AdvRte is not better (i.e., it is worse or equal) but
 LocalRoute is Invalid, AdvRte SHOULD be used to update the
 Local Route Set because it can safely repair the existing
 Invalid LocalRoute.

 If the advertised route is to be used to update the Local Route Set,
 the procedure in Section 6.7.2 MUST be followed. If not, non-optimal
 routes will remain in the Local Route Set.

 For information on how to apply these changes to the Routing
 Information Base, see Section 4.5.

6.7.2. Applying Route Updates

 After determining that AdvRte is to be used to update the Local Route
 Set (as described in Section 6.7.1), the following procedure applies.

 If AdvRte is obtained from an RREQ message, the link to the next hop
 neighbor may not be confirmed as bidirectional (see Section 4.3). If
 there is no existing matching route in the Local Route Set, AdvRte
 MUST be installed to allow a corresponding RREP to be sent. If a
 matching entry already exists, and the link to the neighbor can be
 confirmed as bidirectional, AdvRte offers potential improvement.

 The route update is applied as follows:

 1. If no existing entry in the Local Route Set matches AdvRte's
 address, prefix length, metric type and SeqNoRtr, continue to
 Step 4 and create a new entry in the Local Route Set.

 2. If two matching LocalRoutes exist in the Local Route Set, one is
 a valid route, and one is an Unconfirmed route, AdvRte may offer
 further improvement to the Unconfirmed route, or may offer an
 update to the valid route.

 * If AdvRte.NextHop's Neighbor.State is Heard, the advertised
 route may offer improvement to the existing valid route, if
 the link to the next hop can be confirmed as bidirectional.
 Continue processing from Step 5 to update the existing
 Unconfirmed LocalRoute.

 * If AdvRte.NextHop's Neighbor.State is Confirmed, the
 advertised route offers an update or improvement to the

Perkins, et al. Expires January 4, 2018 [Page 30]

Internet-Draft AODVv2 July 2017

 existing valid route. Continue processing from Step 5 to
 update the existing valid LocalRoute.

 3. If only one matching LocalRoute exists in the Local Route Set:

 * If AdvRte.NextHop's Neighbor.State is Confirmed, continue
 processing from Step 5 to update the existing LocalRoute.

 * If AdvRte.NextHop's Neighbor.State is Heard, AdvRte may offer
 improvement the existing LocalRoute, if the link to
 AdvRte.NextHop can be confirmed as bidirectional.

 * If LocalRoute.State is Unconfirmed, AdvRte is an improvement
 to an existing Unconfirmed route. Continue processing from
 Step 5 to update the existing LocalRoute.

 * If LocalRoute.State is Invalid, AdvRte can replace the
 existing LocalRoute. Continue processing from Step 5 to
 update the existing LocalRoute.

 * If LocalRoute.State is Active or Idle, AdvRte SHOULD be stored
 as an additional entry in the Local Route Set, with
 LocalRoute.State set to Unconfirmed. Continue processing from
 Step 4 to create a new LocalRoute.

 4. Create an entry in the Local Route Set and initialize as follows:

 * LocalRoute.Address := AdvRte.Address

 * LocalRoute.PrefixLength := AdvRte.PrefixLength

 * LocalRoute.MetricType := AdvRte.MetricType

 5. Update the LocalRoute as follows:

 * LocalRoute.SeqNum := AdvRte.SeqNum

 * LocalRoute.NextHop := AdvRte.NextHop

 * LocalRoute.NextHopInterface := interface on which RteMsg was
 received

 * LocalRoute.Metric := AdvRte.Cost

 * LocalRoute.LastUsed := CurrentTime

 * LocalRoute.LastSeqNumUpdate := CurrentTime

Perkins, et al. Expires January 4, 2018 [Page 31]

Internet-Draft AODVv2 July 2017

 * LocalRoute.SeqNoRtr := AdvRte.SeqNoRtr

 6. If a new LocalRoute was created, or if the existing
 LocalRoute.State is Invalid or Unconfirmed, update LocalRoute as
 follows:

 * LocalRoute.State := Unconfirmed (if the next hop's
 Neighbor.State is Heard)

 * LocalRoute.State := Idle (if the next hop's Neighbor.State is
 Confirmed)

 7. If an existing LocalRoute.State changed from Invalid or
 Unconfirmed to become Idle, any matching Unconfirmed LocalRoute
 with worse metric value SHOULD be expunged.

 8. If an existing LocalRoute was updated with a better metric value,
 any matching Unconfirmed LocalRoute with worse metric value
 SHOULD be expunged.

 9. If this update results in LocalRoute.State of Active or Idle,
 which matches a route request which is still in progress, the
 associated route request retry timers MUST be cancelled.

 If this update to the Local Route Set results in two LocalRoutes to
 the same address, the best LocalRoute will be Unconfirmed. In order
 to improve the route used for forwarding, the router SHOULD try to
 determine if the link to the next hop of that LocalRoute is
 bidirectional, by using that LocalRoute to forward future RREPs and
 request acknowledgements (see Section 7.2.1 and Section 7.3.

6.8. Suppressing Redundant Messages (Multicast Route Message Set)

 When route messages are flooded in a MANET, an AODVv2 router may
 receive several instances of the same message. Forwarding every one
 of these would provide little additional benefit, while generating
 unnecessary signaling traffic and consequently additional
 interference.

 Each AODVv2 router stores information about recently received route
 messages in the AODVv2 Multicast Route Message Set (Section 4.6).

 In this section, an entry in the Multicast Route Message Set will be
 called a "multicast entry" for short. Each multicast entry SHOULD be
 maintained for at least RteMsg_ENTRY_TIME after the last Timestamp
 update in order to account for long-lived RREQs traversing the
 network. An entry MUST be deleted when the sequence number is no

Perkins, et al. Expires January 4, 2018 [Page 32]

Internet-Draft AODVv2 July 2017

 longer valid, i.e., after MAX_SEQNUM_LIFETIME. Memory-constrained
 devices MAY remove the entry before this time.

 Received RteMsgs are tested against multicast entries containing
 information about previously received route messages. A multicast
 entry is considered to be compatible with a received RteMsg, or
 another multicast entry, if they both contain the same OrigPrefix,
 OrigPrefixLen, TargPrefix, and MetricType. A multicast entry is
 considered to be comparable with a received RteMsg, or another
 multicast entry, if they are compatible and if, in addition, they
 both have the same SeqNoRtr. These terms will be used in the
 following algorithm determining how to process a received RteMsg, and
 whether or not the RteMsg is redundant.

 If the received message is determined to be redundant, no forwarding
 or response to the message is needed. A message is considered to be
 redundant if either (a) a comparable newer (as determined by the
 OrigSeqNum) entry has already been received with information about
 the source and destination addresses of the route discovery operation
 or (b) it cannot be determined whether the message is newer compared
 to existing entries, but the received message metric value is not any
 better than metric values in compatible multicast entries.

 To use the received RteMsg to update the Multicast Route Message Set,
 and to determine whether or not the received RteMsg requires
 additional processing as specified in Section 7, perform the
 following steps:

 1. First, search for a comparable multicast entry. If there is no
 such entry, then create a new entry as follows:

 * RteMsg.OrigPrefix := OrigPrefix from the RteMsg

 * RteMsg.OrigPrefixLen := the prefix length associated with
 OrigPrefix

 * RteMsg.TargPrefix := TargPrefix from the message

 * RteMsg.SeqNoRtr := the SeqNoRtr associated with RteMsg if
 present, otherwise the sequence number associated with
 OrigPrefix, if RteMsg is an RREQ

 * RteMsg.OrigSeqNum := the sequence number associated with
 OrigPrefix, if RteMsg is an RREQ

 * RteMsg.TargSeqNum := the sequence number associated with
 TargPrefix, if RteMsg is an RREP

Perkins, et al. Expires January 4, 2018 [Page 33]

Internet-Draft AODVv2 July 2017

 * RteMsg.Metric := the metric value associated with OrigPrefix
 in a received RREQ

 * RteMsg.MetricType := the metric type associated with
 RteMsg.Metric

 * RteMsg.Interface := the network interface on which the RteMsg
 was received.

 * RteMsg.Timestamp := CurrentTime

 * RteMsg.RemovalTime := CurrentTime + MAX_SEQNUM_LIFETIME

 2. Otherwise, if there is a comparable multicast entry, first update
 the timing information:

 * RteMsg.Timestamp := CurrentTime

 * RteMsg.RemovalTime := CurrentTime + MAX_SEQNUM_LIFETIME

 Then compare sequence numbers using the technique described in
Section 4.4:

 * If the multicast entry is newer compared to the received
 RteMsg, drop the RteMsg and discontinue processing.

 * Otherwise, if the sequence numbers are the same, and the
 metric value for the multicast entry is no worse than the
 metric value in the received RteMsg, drop the RteMsg and
 discontinue processing.

 Otherwise the RteMsg is newer than the multicast entry or has a
 better metric. Continue as follows:

 * RteMsg.OrigSeqNum := the sequence number associated with
 OrigPrefix, if RteMsg is an RREQ

 * RteMsg.TargSeqNum := the sequence number associated with
 TargPrefix, if RteMsg is an RREP

 * RteMsg.Metric := the metric value associated with OrigPrefix
 in a received RREQ

 3. Compare the metric values for any other compatible entries with
 the updated multicast entry containing the information from the
 received RteMsg. If any other compatible entry has a metric as
 good or better than that from the received RteMsg, then drop the
 RteMsg and discontinue processing.

Perkins, et al. Expires January 4, 2018 [Page 34]

Internet-Draft AODVv2 July 2017

 If processing for the RteMsg has not been discontinued according to
 the above instructions, then continue processing the message as
 specified in Section 7.1.3.

6.9. Suppressing Redundant Route Error Messages (Route Error Set)

 In order to avoid flooding the network with RERR messages when a
 stream of IP packets to an unreachable address arrives, an AODVv2
 router SHOULD avoid creating duplicate messages by determining
 whether an equivalent RERR has recently been sent. This is achieved
 with the help of the Route Error Set (see Section 4.7).

 To determine if a RERR should be created:

 1. Search for an entry in the Route Error Set where:

 * RerrMsg.UnreachableAddress == UnreachableAddress to be
 reported

 * RerrMsg.PktSource == PktSource to be included in the RERR

 If a matching entry is found, no further processing is required
 and the RERR SHOULD NOT be sent.

 2. If no matching entry is found, a new entry with the following
 properties is created, and the RERR is created and sent as
 described in Section 7.4.1:

 * RerrMsg.Timeout := CurrentTime + RERR_TIMEOUT

 * RerrMsg.UnreachableAddress == UnreachableAddress to be
 reported

 * RerrMsg.PktSource == PktSource to be included in the RERR.

6.10. Local Route Set Maintenance

 Route maintenance involves the following operations:

 o monitoring LocalRoutes in the Local Route Set,

 o updating LocalRoute.State to handle route timeouts,

 o (for possibly unidirectional links) confirming a route to
 OrigAddr,

 o reporting routes that become Invalid.

Perkins, et al. Expires January 4, 2018 [Page 35]

Internet-Draft AODVv2 July 2017

6.10.1. LocalRoute State Changes

 During normal operation, AODVv2 does not require explicit timeouts to
 manage the lifetime of a valid route. At any time, any LocalRoute
 MAY be examined and updated according to the rules below. In case a
 Routing Information Base is used for forwarding, the corresponding
 RIB entry MUST be updated as soon as the state of a LocalRoute.State
 changes. Otherwise, if timers are not used to prompt updates of
 LocalRoute.State, the LocalRoute.State MUST be checked before IP
 packet forwarding and before any operation based on LocalRoute.State.

 Route timeout behaviour is as follows:

 o An Unconfirmed route MUST be expunged at MAX_SEQNUM_LIFETIME after
 LocalRoute.LastSeqNumUpdate.

 o An Idle route MUST be marked as Active when used to forward an IP
 packet.

 o If an Idle route is not used to forward an IP packet within
 MAX_IDLETIME, LocalRoute.State MUST be set to Invalid.

 o An Invalid route SHOULD remain in the Local Route Set, since
 LocalRoute.SeqNum is used to classify future information about
 LocalRoute.Address as stale or fresh.

 o In all cases, if the time since LocalRoute.LastSeqNumUpdate
 exceeds MAX_SEQNUM_LIFETIME, LocalRoute.SeqNum must be set to 0.
 This is required so that any AODVv2 routers following the
 initialization procedure can safely begin routing functions using
 a new sequence number. A LocalRoute with LocalRoute.State set to
 Active or Idle can remain in the Local Route Set after the
 sequence number has been set to 0, for example if the route is
 reliably carrying traffic. If LocalRoute.State is Invalid, or
 later becomes Invalid, the LocalRoute MUST be expunged from the
 Local Route Set.

 LocalRoutes can become Invalid before a timeout occurs, as follows:

 o If an external mechanism reports a link as broken, all LocalRoutes
 using that link for LocalRoute.NextHop MUST immediately have
 LocalRoute.State set to Invalid.

 o LocalRoute.State MUST immediately be set to Invalid if a Route
 Error (RERR) message is received where:

 * The sender is LocalRoute.NextHop, or PktSource is a Router
 Client address

Perkins, et al. Expires January 4, 2018 [Page 36]

Internet-Draft AODVv2 July 2017

 * There is an Address in AddressList which matches
 LocalRoute.Address, and:

 + The prefix length associated with this Address, if any,
 matches LocalRoute.PrefixLength

 + The sequence number associated with this Address, if any, is
 newer or equal to LocalRoute.SeqNum (see Section 4.4)

 + The metric type associated with this Address matches
 LocalRoute.MetricType

 A LocalRoute can be Confirmed by inferring connectivity to OrigAddr.

 o When an AODVv2 router sends an RREP to OrigAddr for destination
 TargAddr, and subsequently the AODVv2 router receives a packet
 from OrigAddr with destination TargAddr, the AODVv2 router infers
 that the route to OrigAddr has been confirmed. The corresponding
 state for LocalRoute.OrigAddr is changed to Active.

 LocalRoutes are updated when Neighbor.State is updated:

 o While the value of Neighbor.State is set to Heard, any routes in
 the Local Route Set using that neighbor as a next hop MUST have
 LocalRoute.State set to Unconfirmed.

 o When the value of Neighbor.State is set to Blacklisted, any valid
 routes in the Local Route Set using that neighbor for their next
 hop MUST have LocalRoute.State set to Invalid.

 o When a Neighbor Set entry is removed, all routes in the Local
 Route Set using that neighbor as next hop MUST have
 LocalRoute.State set to Invalid.

 Memory constrained devices MAY choose to expunge routes from the
 AODVv2 Local Route Set at other times, but MUST adhere to the
 following rules:

 o An Active route MUST NOT be expunged, as it is in use. If
 deleted, IP traffic forwarded to this router would prompt
 generation of a Route Error message, necessitating a Route Request
 to be generated by the originator's router to re-establish the
 route.

 o An Idle route SHOULD NOT be expunged, as it is still valid for
 forwarding IP traffic. If deleted, this could result in dropped
 IP packets and a Route Request could be multicasted to re-
 establish the route.

Perkins, et al. Expires January 4, 2018 [Page 37]

Internet-Draft AODVv2 July 2017

 o Any Invalid route MAY be expunged. Least recently used Invalid
 routes SHOULD be expunged first, since the sequence number
 information is less likely to be useful.

 o An Unconfirmed route MUST NOT be expunged if it was installed
 within the last RREQ_WAIT_TIME, because it may correspond to a
 route discovery in progress. A Route Reply message might be
 received which needs to use the LocalRoute.NextHop information.
 Otherwise, it MAY be expunged.

6.10.2. Reporting Invalid Routes

 When LocalRoute.State changes from Active to Invalid as a result of a
 broken link or a received Route Error (RERR) message, other AODVv2
 routers MUST be informed by sending an RERR message containing
 details of the invalidated route.

 An RERR message MUST also be sent when an AODVv2 router receives an
 RREP message to forward, but the LocalRoute to the OrigAddr in the
 RREP has been lost or is marked as Invalid.

 A packet or message triggering the RERR MUST be discarded.

 Generation of an RERR message is described in Section 7.4.1.

7. AODVv2 Protocol Messages

 AODVv2 defines four message types: Route Request (RREQ), Route Reply
 (RREP), Route Reply Acknowledgement (RREP_Ack), and Route Error
 (RERR).

 Each AODVv2 message is defined as a set of data. Rules for the
 generation, reception and forwarding of each message type are
 described in the following sections. Section 8 discusses how the
 data is mapped to [RFC5444] Message TLVs, Address Blocks, and Address
 TLVs.

7.1. Route Request (RREQ) Message

 Route Request messages are used in route discovery operations to
 request a route to a specified target address. RREQ messages have
 the following contents:

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 38]

Internet-Draft AODVv2 July 2017

 +---+
 | msg_hop_limit |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | OrigSeqNum, (optional) TargSeqNum |
 +---+
 | MetricType |
 +---+
 | OrigMetric |
 +---+

 Figure 1: RREQ message contents

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREQ
 message.

 AddressList
 Contains:

 * OrigPrefix, from the Router Client Set entry which includes
 OrigAddr, the source address of the IP packet for which a route
 is requested,

 * TargPrefix, set to TargAddr, the destination address of the IP
 packet for which a route is requested, and

 * Optionally, if RouterClient.SeqNoRtr is true, the IP address of
 OrigRtr -- i.e., the router that originated the Sequence Number
 for this RREQ.

 PrefixLengthList
 Contains OrigPrefixLen, i.e., the length, in bits, of the prefix
 associated with the Router Client Set entry which includes
 OrigAddr. If omitted, the prefix length is equal to OrigAddr's
 address length in bits.

 OrigSeqNum
 The sequence number associated with OrigPrefix.

 TargSeqNum
 A sequence number associated with an existing Invalid route to
 TargAddr. This MAY be included if available.

 MetricType

Perkins, et al. Expires January 4, 2018 [Page 39]

Internet-Draft AODVv2 July 2017

 The metric type associated with OrigMetric.

 OrigMetric
 The metric value associated with the route to OrigPrefix, as
 determined by the sender of the message.

7.1.1. RREQ Generation

 An RREQ is generated to discover a route when an IP packet needs to
 be forwarded for a Router Client, and no valid route currently exists
 for the packet's destination in the Routing Information Base.

 If the limit for the rate of AODVv2 control message generation has
 been reached, no message SHOULD be generated Section 6.5. Before
 creating an RREQ, the router SHOULD check the Multicast Route Message
 Set to see if a compatible RREQ has recently been sent for the
 requested destination. If so, and the wait time for a reply has not
 yet been reached, the router SHOULD continue to await a response
 without generating a new RREQ. If the timeout has been reached, a
 new RREQ MAY be generated. If buffering is configured, incoming IP
 packets awaiting this route SHOULD be buffered until the route
 discovery is completed.

 To generate the RREQ, the router (referred to as RREQ_Gen) follows
 this procedure:

 1. Set msg_hop_limit := MAX_HOPCOUNT

 2. Set AddressList := {OrigPrefix, TargPrefix}

 3. For the PrefixLengthList:

 * If OrigAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {RouterClient.PrefixLength,
 null}.

 * Otherwise, omit PrefixLengthList.

 * If RouterClient.SeqNoRtr is nonzero, then add the router's own
 IP address to AddressList, with AddressType SeqNoRtr.

 4. For OrigSeqNum:

 * Increment the router Sequence Number as specified in
Section 4.4.

 * Set OrigSeqNum := router Sequence Number.

Perkins, et al. Expires January 4, 2018 [Page 40]

Internet-Draft AODVv2 July 2017

 5. For TargSeqNum:

 * If an Invalid route exists in the Local Route Set matching
 TargAddr using longest prefix matching and has a valid
 sequence number, set TargSeqNum := LocalRoute.SeqNum.

 * If no Invalid route exists in the Local Route Set matching
 TargAddr, or the route doesn't have a sequence number, omit
 TargSeqNum.

 6. Include MetricType and set the type accordingly

 7. Find the Router Client Set entry where RouterClient.IPAddress ==
 OrigPrefix:

 * Set OrigMetric := RouterClient.Cost

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is handed to the RFC5444 multiplexer
 for further processing. By default, the multiplexer is instructed to
 multicast RREQ messages to LL-MANET-Routers on all interfaces
 configured for AODVv2 operation.

7.1.2. RREQ Reception

 Upon receiving a Route Request, an AODVv2 router performs the
 following steps:

 1. Check and update the Neighbor Set according to Section 6.3

 * If the sender has Neighbor.State set to Blacklisted, ignore
 this RREQ for further processing.

 2. Verify that the message contains the required data:
 msg_hop_limit, OrigPrefix, TargPrefix, OrigSeqNum, and
 OrigMetric, and that OrigPrefix and TargPrefix are valid address
 prefixes

 * If not, ignore this RREQ for further processing.

 3. Check that the MetricType is supported and configured for use

 * If not, ignore this RREQ for further processing.

 4. Determine whether the cost of the advertised route will exceed
 the maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 41]

Internet-Draft AODVv2 July 2017

 * If it will, ignore this RREQ for further processing.

 5. Process the route to OrigPrefix as specified in Section 6.7

 6. Determine whether or not the information in the message is
 redundant, by following the procedure in Section 6.8; if
 redundant, ignore this RREQ for further processing.

 7. Check if the TargPrefix matches an entry in the Router Client Set

 * If so, generate an RREP as specified in Section 7.2.1.

 * If not, continue to RREQ forwarding Section 7.2.3.

7.1.3. RREQ Forwarding

 Forwarding or responding to a RteMsg provides up-to-date information
 and improved metrics to other routers. If a RteMsg is not forwarded,
 routes needed by applications may not be discovered.

 By forwarding an RREQ, a router advertises that it will forward IP
 packets to the OrigPrefix contained in the RREQ according to the
 information enclosed. The router MAY choose not to forward the RREQ,
 for example if the router is heavily loaded or low on energy and
 therefore unwilling to advertise routing capability for more traffic.
 This could, however, decrease connectivity in the network or result
 in non-optimal paths.

 The RREQ MUST NOT be forwarded if the received msg_hop_limit = 1, or
 if the limit for the rate of AODVv2 control message generation has
 been reached. Otherwise, the RREQ is updated and forwarded as
 follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. Set OrigMetric := LocalRoute[OrigPrefix].Metric

 This modified RREQ is handed to the [RFC5444] multiplexer for further
 processing. By default, the multiplexer is instructed to multicast
 the message to LL-MANET-Routers on all interfaces configured for
 AODVv2 operation.

7.2. Route Reply (RREP) Message

 When a Route Request message is received, requesting a route to a
 target address (TargAddr) which is configured as part of a Router
 Client Set entry, a Route Reply message is sent in response. The
 RREP offers a route to TargPrefix.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 42]

Internet-Draft AODVv2 July 2017

 RREP messages have the following contents:

 +---+
 | msg_hop_limit |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | TargSeqNum |
 +---+
 | MetricType |
 +---+
 | TargMetric |
 +---+

 Figure 2: RREP message contents

 msg_hop_limit
 The remaining number of hops allowed for dissemination of the RREP
 message.

 AddressList
 Contains:

 * OrigPrefix, from the Router Client entry which includes
 OrigAddr, the source address of the IP packet for which a route
 is requested

 * TargPrefix, set to TargAddr, the destination address of the IP
 packet for which a route is requested.

 * Optionally, if RouterClient.SeqNoRtr is true, the IP address of
 TargRtr -- i.e., the router that originated the Sequence Number
 for this RREP.

 PrefixLengthList
 Contains TargPrefixLen, i.e., the length, in bits, of the prefix
 associated with the Router Client Set entry which includes
 TargAddr. If omitted, the prefix length is equal to TargAddr's
 address length, in bits.

 TargSeqNum
 The sequence number associated with TargPrefix.

 MetricType
 The metric type associated with TargMetric.

Perkins, et al. Expires January 4, 2018 [Page 43]

Internet-Draft AODVv2 July 2017

 TargMetric
 The metric value associated with the route to TargPrefix, as seen
 from the sender of the message.

7.2.1. RREP Generation

 A Route Reply message is generated when a Route Request for a Router
 Client of the AODVv2 router arrives. This is the case when
 RteMsg.TargPrefix matches an entry in the Router Client Set of the
 AODVv2 router.

 Before creating an RREP, the router SHOULD check whether
 CONTROL_TRAFFIC_LIMIT has been reached. If so, the RREP SHOULD NOT
 be created.

 The RREP will traverse the path of the route to OrigPrefix. If the
 best route to OrigPrefix in the Local Route Set is Unconfirmed, the
 link to the next hop neighbor is not yet confirmed as bidirectional
 (see Section 6.2). In this case an RREP_Ack MUST also be sent as
 described in Section 7.3, in order to request an acknowledgement
 message from the next hop router to prove that the link is
 bidirectional. If the best route to OrigPrefix in the Local Route
 Set is valid, the link to the next hop neighbor is already confirmed
 as bidirectional, and no acknowledgement is required.

 Implementations MAY allow a number of retries of the RREP if a
 requested acknowledgement is not received within
 RREP_Ack_SENT_TIMEOUT, doubling the timeout with each retry, up to a
 maximum of RREP_RETRIES, using the same exponential backoff described
 in Section 6.6 for RREQ retries. The acknowledgement MUST be
 considered to have failed after the wait time for an RREP_Ack
 response to the final RREP.

 To generate the RREP, the router (also referred to as RREP_Gen)
 follows this procedure:

 1. Set msg_hop_limit := MAX_HOPCOUNT - msg_hop_limit from the
 received RREQ message

 2. Set Address List := {OrigPrefix, TargPrefix}

 * If RouterClient.SeqNoRtr is nonzero, then add the router's own
 IP address to AddressList, with AddressType SeqNoRtr.

 3. For the PrefixLengthList:

Perkins, et al. Expires January 4, 2018 [Page 44]

Internet-Draft AODVv2 July 2017

 * If TargAddr is part of an address range configured as a Router
 Client, set PrefixLengthList := {null,
 RouterClient.PrefixLength}.

 * Otherwise, omit PrefixLengthList.

 4. For the TargSeqNum:

 * Increment the router Sequence Number as specified in
Section 4.4.

 * Set TargSeqNum := router Sequence Number.

 5. Include MetricType and set the type to match the MetricType in
 the received RREQ message.

 6. Set TargMetric := RouterClient.Cost for the Router Client Set
 entry which includes TargAddr.

 This AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8) which is handed to the RFC5444 multiplexer
 for further processing. The multiplexer is instructed to unicast the
 RREP to LocalRoute[OrigPrefix].NextHop. The RREP MUST be sent over
 LocalRoute[OrigPrefix].NextHopInterface.

7.2.2. RREP Reception

 Upon receiving a Route Reply, an AODVv2 router performs the following
 steps:

 1. Verify that the message contains the required data:
 msg_hop_limit, OrigPrefix, TargPrefix, TargSeqNum, and
 TargMetric, and that OrigPrefix and TargPrefix are valid
 addresses

 * If not, ignore this RREP for further processing.

 2. Check that the MetricType is supported and configured for use

 * If not, ignore this RREP for further processing.

 3. If this RREP does not correspond to an RREQ generated or
 forwarded in the last RREQ_WAIT_TIME, ignore for further
 processing.

 4. If the Multicast Route Message Set does not contain an entry
 where:

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 45]

Internet-Draft AODVv2 July 2017

 o RteMsg.OrigPrefix == RREP.OrigPrefix

 o RteMsg.OrigPrefixLen == RREP.OrigPrefixLen

 o RteMsg.TargAddr exists within RREP.TargPrefix

 o RteMsg.OrigSeqNum <= RREP.OrigSeqNum

 o RteMsg.SeqNoRtr = RREP.SeqNoRtr

 o RteMsg.MetricType == RREP.MetricType

 o RteMsg.Timestamp > CurrentTime - RREQ_WAIT_TIME

 o RteMsg.Interface == The interface on which the RREP was received

 then, ignore this RREP for further processing, since it does not
 correspond to a previously sent RREQ. Otherwise continue as follows:

 1. Update the Neighbor Set according to Section 6.3

 2. Determine whether the cost of the advertised route exceeds the
 maximum allowed metric value for the metric type (Metric <=
 MAX_METRIC[MetricType] - Cost(L))

 * If it does, ignore this RREP for further processing.

 3. Process the route to TargPrefix as specified in Section 6.7

 4. Determine whether the message is redundant by comparing to
 entries in the Multicast Route Message Set (Section 6.8)

 * If redundant, ignore this RREP for further processing.

 * If not redundant, save the information in the Multicast Route
 Message Set to identify future redundant RREP messages and
 continue processing.

 5. Determine whether the OrigPrefix matches an entry in the Router
 Client Set

 * If so, no further processing is necessary.

 * If not, continue to the next step.

 6. Determine whether a valid (Active or Idle) or Unconfirmed
 LocalRoute exists to OrigPrefix

Perkins, et al. Expires January 4, 2018 [Page 46]

Internet-Draft AODVv2 July 2017

 * If so, continue to RREP forwarding Section 7.2.3.

 * If not, a Route Error message SHOULD be transmitted toward
 TargPrefix according to Section 7.4.1; the RREP MUST be
 discarded and not forwarded.

7.2.3. RREP Forwarding

 A received Route Reply message is forwarded toward OrigPrefix. By
 forwarding the RREP, a router advertises that it has a route to
 TargPrefix.

 The RREP MUST NOT be forwarded if the received msg_hop_limit = 1, or
 if CONTROL_TRAFFIC_LIMIT has been reached. Otherwise, the router
 MUST forward the RREP.

 The procedure for RREP forwarding is as follows:

 1. Set msg_hop_limit := received msg_hop_limit - 1

 2. If the link to the next hop router toward OrigAddr is not known
 to be bidirectional, also verify bidirectionality (see

Section 6.2).

 3. Set TargMetric := LocalRoute[TargPrefix].Metric

 This modified message is handed to the [RFC5444] multiplexer for
 further processing. The multiplexer is instructed to unicast the
 RREP to LocalRoute[OrigPrefix].NextHop. The RREP MUST be sent over
 LocalRoute[OrigPrefix].NextHopInterface.

7.3. Route Reply Acknowledgement (RREP_Ack) Message

 The Route Reply Acknowledgement is used as both a request and a
 response message to test bidirectionality of a link over which a
 Route Reply has also been sent. The router which forwards the RREP
 MUST send a Route Reply Acknowledgement message to the intended next
 hop, if the link to the next hop neighbor is not yet confirmed as
 bidirectional.

 The receiving router MUST then reply with a Route Reply
 Acknowledgement response message.

 When the Route Reply Acknowledgement response message is received by
 the sender of the RREP, it confirms that the link between the two
 routers is bidirectional (see Section 6.2).

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 47]

Internet-Draft AODVv2 July 2017

 If the Route Reply Acknowledgement is not received within
 RREP_Ack_SENT_TIMEOUT, the link is determined to be unidirectional.

 +---+
 | AckReq (optional) |
 +---+

 Figure 3: RREP_Ack message contents

7.3.1. RREP_Ack Request Generation

 An RREP_Ack MUST be generated if a Route Reply is sent over a link
 which is not known to be bidirectional. It includes an AckReq
 element to indicate that it is a request for acknowledgement.

 The RREP_Ack SHOULD NOT be generated if the limit for the rate of
 AODVv2 control message generation has been reached.

 The [RFC5444] representation of the RREP_Ack is discussed in
Section 8.

 RREP_Ack requests MUST be unicast to LocalRoute[OrigPrefix].NextHop
 via LocalRoute[OrigPrefix].NextHopInterface. The multiplexer SHOULD
 be instructed to send the RREP_Ack in the same [RFC5444] packet as
 the RREP.

 The Neighbor Set entry for LocalRoute[OrigPrefix].NextHop MUST also
 be updated to indicate that an RREP_Ack is required (see

Section 6.3).

7.3.2. RREP_Ack Reception

 Upon receiving an RREP_Ack, an AODVv2 router performs the following
 steps:

 1. Determine whether an AckReq element is included:

 * If so, create an RREP_Ack Response as described in
Section 7.3.3. No further processing is required.

 * If not, continue to the next step.

 2. Determine whether the Neighbor Set contains an entry where:

 * Neighbor.IPAddress == IP.SourceAddress of the RREP_Ack message

 * Neighbor.State == Heard

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 48]

Internet-Draft AODVv2 July 2017

 * Neighbor.Timeout < CurrentTime

 * Neighbor.Interface matches the interface on which the RREP_Ack
 was received

 If no such entry is found, the RREP_Ack was not expected; no
 actions are required and processing ends. Otherwise, the router
 sets Neighbor.Timeout to INFINITY_TIME, and processing continues
 to the next step.

 3. Update the Neighbor Set according to Section 6.3, including
 updating routes using this Neighbor as LocalRoute.NextHop.

7.3.3. RREP_Ack Response Generation

 An RREP_Ack response MUST be generated if a received RREP_Ack
 includes an AckReq, unless the limit for the rate of AODVv2 control
 message generation has been reached in which case the RREP_Ack
 response SHOULD NOT be generated.

 There is no further data in an RREP_Ack response. The [RFC5444]
 representation is discussed in Section 8. In this case, the
 multiplexer is instructed to unicast the RREP_Ack to the source IP
 address of the RREP_Ack message that requested it, over the same
 interface on which the RREP_Ack was received.

7.4. Route Error (RERR) Message

 A Route Error message is generated by an AODVv2 router to notify
 other AODVv2 routers about routes that are no longer available. An
 RERR message has the following contents:

 +---+
 | PktSource (optional) |
 +---+
 | AddressList |
 +---+
 | PrefixLengthList (optional) |
 +---+
 | SeqNumList (optional) |
 +---+
 | MetricTypeList |
 +---+

 Figure 4: RERR message contents

 PktSource

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 49]

Internet-Draft AODVv2 July 2017

 The source address of the IP packet triggering the RERR. If the
 RERR is triggered by a broken link, PktSource is not required.

 AddressList
 The addresses of the routes not available through RERR_Gen.

 PrefixLengthList
 The prefix lengths, in bits, associated with the routes not
 available through RERR_Gen. These values indicate whether routes
 represent a single device or an address range.

 SeqNumList
 The sequence numbers (where known) of the routes not available
 through RERR_Gen.

 MetricTypeList
 The metric types associated with the routes not available through
 RERR_Gen.

7.4.1. RERR Generation

 A Route Error message is generated when an AODVv2 router (also
 referred to as RERR_Gen) needs to report that a destination is not
 reachable. There are three events that cause this response:

 o When an IP packet that has been forwarded from another router, but
 there is no valid route in the Routing Information Base for its
 destination, the source of the packet needs to be informed that
 the route to the destination of the packet does not exist. The
 RERR generated MUST include PktSource set to the source address of
 the IP packet, and MUST contain only one unreachable address in
 the AddressList, i.e., the destination address of the IP packet.
 RERR_Gen MUST discard the IP packet that triggered generation of
 the RERR. The prefix length, sequence number and metric type
 SHOULD be included if known from an existing Invalid LocalRoute to
 the unreachable address.

 o When an RREP message cannot be forwarded because the LocalRoute to
 OrigPrefix has been lost or is Invalid, RREP_Gen needs to be
 informed that the route to OrigPrefix does not exist. The RERR
 generated MUST include PktSource set to the TargPrefix of the
 RREP, and MUST contain only one unreachable address in the
 AddressList, the OrigPrefix from the RREP. RERR_Gen MUST discard
 the RREP message that triggered generation of the RERR. The
 prefix length, sequence number and metric type SHOULD be included
 if known from an Invalid LocalRoute to the unreachable address.

Perkins, et al. Expires January 4, 2018 [Page 50]

Internet-Draft AODVv2 July 2017

 o When a link breaks, multiple LocalRoutes may become Invalid, and
 the RERR generated MAY contain multiple unreachable addresses.
 The RERR MUST include MetricTypeList. PktSource is omitted. All
 previously Active LocalRoutes that used the broken link MUST be
 reported. The AddressList, SeqNumList, and MetricTypeList will
 contain entries for each LocalRoute which has become Invalid.
 PrefixLengthList will be included if needed to report invalid
 routes to a non-default prefix. An RERR message is only sent if
 an Active LocalRoute becomes Invalid, though an AODVv2 router can
 also include Idle LocalRoutes that become Invalid if the
 configuration parameter ENABLE_IDLE_IN_RERR is set (see

Section 12.3).

 The RERR SHOULD NOT be generated if CONTROL_TRAFFIC_LIMIT has been
 reached. The RERR also SHOULD NOT be generated if it is a duplicate,
 as determined by Section 6.9.

 Incidentally, if an AODVv2 router receives an ICMP error packet to or
 from the address of one of its Router Clients, it forwards the ICMP
 packet in the same way as any other IP packet, and will not generate
 any RERR message based on the contents of the ICMP packet.

 To generate the RERR, the router follows this procedure:

 1. If necessary, include PktSource and set the value as given above

 2. For each LocalRoute that needs to be reported:

 * Insert LocalRoute.Address into the AddressList.

 * Insert LocalRoute.PrefixLength into PrefixLengthList, if known
 and not equal to the address length.

 * Insert LocalRoute.SeqNum into SeqNumList, if known.

 * Insert LocalRoute.MetricType into MetricTypeList.

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8).

 If the RERR is sent in response to an undeliverable IP packet or RREP
 message (i.e., if PktSource is included), the RERR SHOULD be sent
 unicast to the next hop on the route to PktSource. It MUST be sent
 over the same interface on which the undeliverable IP packet was
 received. If there is no route to PktSource, the RERR SHOULD be
 multicast to LL-MANET-Routers. If the RERR is sent in response to a
 broken link, i.e., PktSource is not included, the RERR is, by
 default, multicast to LL-MANET-Routers.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 51]

Internet-Draft AODVv2 July 2017

Section 10 describes processing steps when the optional precursor
 lists feature is implemented.

7.4.2. RERR Reception

 Upon receiving a Route Error, an AODVv2 router performs the following
 steps:

 1. Determine whether the message contains at least one unreachable
 address; if not, ignore this RERR for further processing.
 Otherwise continue as follows:

 2. For each address in the AddressList, check that:

 * The address is valid (routable and unicast).

 * The MetricType is supported and configured for use.

 * There is a LocalRoute with the same MetricType matching the
 address using longest prefix matching.

 * Either the LocalRoute's next hop is the sender of the RERR and
 the next hop interface is the interface on which the RERR was
 received, or PktSource is present in the RERR and is a Router
 Client address.

 * The unreachable address' sequence number is either unknown, or
 is no less than the LocalRoute's sequence number.

 If any of the above are false the address does not match a
 LocalRoute and MUST NOT be processed or regenerated in a RERR.

 If all of the above are true, the LocalRoute which matches the
 unreachable address MUST be marked as Invalid. Otherwise,
 regeneration of the RERR proceeds as follows. If the LocalRoute
 was previously Active, it MUST be reported in a regenerated RERR.
 If the LocalRoute was previously Idle, it MAY be reported in a
 regenerated RERR, if ENABLE_IDLE_IN_RERR is configured. The
 Local Route Set MUST be updated according to these rules:

 * If the LocalRoute's prefix length is the same as the
 unreachable address' prefix length, set LocalRoute.State to
 Invalid.

 * If the LocalRoute's prefix length is longer than the
 unreachable address' prefix length, the LocalRoute MUST be
 expunged from the Local Route Set, since it is a sub-route of
 the route which is reported to be Invalid.

Perkins, et al. Expires January 4, 2018 [Page 52]

Internet-Draft AODVv2 July 2017

 * If the prefix length is different, create a new LocalRoute
 with the unreachable address, and its prefix length and
 sequence number, and set LocalRoute.State to Invalid. These
 Invalid routes are retained to avoid processing stale
 messages.

 * Update the sequence number on the existing LocalRoute, if the
 reported sequence number is determined to be newer using the
 comparison method described in Section 4.4.

 3. If there are previously Active LocalRoutes that MUST be reported,
 regenerate the RERR as detailed in Section 7.4.3.

7.4.3. RERR Regeneration

 The Route Error message SHOULD NOT be regenerated if
 CONTROL_TRAFFIC_LIMIT has been reached.

 The procedure for RERR regeneration is as follows:

 1. If PktSource was included in the received RERR, and PktSource is
 not a Router Client, copy it into the regenerated RERR

 2. For each LocalRoute that needs to be reported as identified in
Section 7.4.1:

 * Insert LocalRoute.Address into the AddressList.

 * Insert LocalRoute.PrefixLength into PrefixLengthList, if known
 and not equal to the address length.

 * Insert LocalRoute.SeqNum into SeqNumList, if known.

 * Insert LocalRoute.MetricType into MetricTypeList.

 The AODVv2 message is used to create a corresponding [RFC5444]
 message (see Section 8). If the RERR contains PktSource, the
 regenerated RERR SHOULD be sent unicast to the next hop on the
 LocalRoute to PktSource. It MUST be sent over the same interface on
 which the undeliverable IP packet was received. If there is no route
 to PktSource, or PktSource is a Router Client, it SHOULD be multicast
 to LL-MANET-Routers. If the RERR is sent in response to a broken
 link, the RERR is, by default, multicast to LL-MANET-Routers.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 53]

Internet-Draft AODVv2 July 2017

8. RFC 5444 Representation

 AODVv2 specifies that all control messages between routers MUST use
 the Generalized Mobile Ad Hoc Network Packet/Message Format
 [RFC5444], and therefore AODVv2's route messages comprise data which
 is mapped to message elements in [RFC5444].

 [RFC5444] provides a multiplexed transport for multiple protocols.
 An [RFC5444] implementation MAY choose to optimize the content of
 certain elements during message creation to reduce control message
 overhead.

 A brief summary of the [RFC5444] format:

 1. A packet contains zero or more messages

 2. A message contains a Message Header, one Message TLV Block, zero
 or more Address Blocks, and one Address Block TLV Block per
 Address Block

 3. The Message TLV Block contains zero or more Message TLVs

 4. An Address Block TLV Block includes zero or more Address Block
 TLVs

 5. Each TLV value in an Address Block TLV Block can be associated
 with all of the addresses, or with a contiguous set of addresses,
 or with a single address in the Address Block

 AODVv2 does not require access to the [RFC5444] packet header.

 In the message header, AODVv2 uses <msg-type>, <msg-hop-limit> and
 <msg-addr-length>. The <msg-addr-length> field indicates the length
 of any addresses in the message, using <msg-addr-length> := (address
 length in octets - 1), i.e. 3 for IPv4 and 15 for IPv6.

 The addresses in an Address Block MAY appear in any order, and values
 in a TLV in the Address Block TLV Block must be associated with the
 correct address in the Address Block by the [RFC5444] implementation.
 To indicate which value is associated with each address, the AODVv2
 message representation uses lists where the order of the addresses in
 the AODVv2 AddressList matches the order of values in other data
 lists, e.g., the order of SeqNums in the SeqNumList in an RERR.
 [RFC5444] maps this information to Address Block TLVs associated with
 the relevant addresses in the Address Block.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 54]

Internet-Draft AODVv2 July 2017

 Each address included in the Address Block is identified as
 OrigPrefix, TargPrefix, PktSource, SeqNoRtr, or Unreachable Address
 by including an ADDRESS_TYPE TLV in the Address Block TLV Block.

 The following sections show how AODVv2 data is represented in
 [RFC5444] messages. In Section 13.3, AODVv2 defines several new
 TLVs.

 Where the extension type of a TLV is set to zero, this is the default
 [RFC5444] value and the extension type will not be included in the
 message.

8.1. Route Request Message Representation

8.1.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREQ
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT, reduced by number
		of hops traversed so far by the
		message.
 +---------------+-----------------+---------------------------------+

8.1.2. Message TLV Block

 AODVv2 does not define any Message TLVs for an RREQ message.

8.1.3. Address Block

 An RREQ contains OrigPrefix and TargPrefix, and each of these
 addresses has an associated prefix length. If the prefix length has
 not been included in the AODVv2 message, it is equal to the address
 length in bits.

 +---------------------------+------------------------------+
 | Data | Address Block |
 +---------------------------+------------------------------+
 | OrigPrefix/OrigPrefixLen | <address> + <prefix-length> |
 | TargPrefix/TargPrefixLen | <address> + <prefix-length> |
 | SeqNoRtr/PrefixLen | <address> + <prefix-length> |
 +---------------------------+------------------------------+

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 55]

Internet-Draft AODVv2 July 2017

8.1.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.1.4.1. Address Block TLVs for OrigPrefix

 +-------------+--------------+------------+-------------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +-------------+--------------+------------+-------------------------+
None	ADDRESS_TYPE	0	ORIGPREFIX
OrigSeqNum	SEQ_NUM	0	Sequence number of
			RREQ_Gen, the router
			which initiated route
			discovery.
OrigMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to OrigPrefix,
			using MetricType.
 +-------------+--------------+------------+-------------------------+

8.1.4.2. Address Block TLVs for TargPrefix

 +------------+--------------+-------------+-------------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +------------+--------------+-------------+-------------------------+
None	ADDRESS_TYPE	0	TARGPREFIX
TargSeqNum	SEQ_NUM	0	The last known
			TargSeqNum for
			TargPrefix.
 +------------+--------------+-------------+-------------------------+

8.2. Route Reply Message Representation

8.2.1. Message Header

 +---------------+-----------------+---------------------------------+
 | Data | Header Field | Value |
 +---------------+-----------------+---------------------------------+
None	<msg-type>	RREP
msg_hop_limit	<msg-hop-limit>	MAX_HOPCOUNT - msg_hop_limit
		from the corresponding RREQ,
		reduced by number of hops
		traversed so far by the
		message.
 +---------------+-----------------+---------------------------------+

Perkins, et al. Expires January 4, 2018 [Page 56]

Internet-Draft AODVv2 July 2017

8.2.2. Message TLV Block

 AODVv2 does not define any Message TLVs for an RREP message.

8.2.3. Address Block

 An RREP contains OrigPrefix and TargPrefix, and each of these
 addresses has an associated prefix length. If the prefix length has
 not been included in the AODVv2 message, it is equal to the address
 length in bits.

 +---------------------------+------------------------------+
 | Data | Address Block |
 +---------------------------+------------------------------+
 | OrigPrefix/OrigPrefixLen | <address> + <prefix-length> |
 | TargPrefix/TargPrefixLen | <address> + <prefix-length> |
 | SeqNoRtr/PrefixLen | <address> + <prefix-length> |
 +---------------------------+------------------------------+

8.2.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each address.

8.2.4.1. Address Block TLVs for OrigPrefix

 +-------+---------------+-----------------+-------------+
 | Data | TLV Type | Extension Type | Value |
 +-------+---------------+-----------------+-------------+
 | None | ADDRESS_TYPE | 0 | ORIGPREFIX |
 +-------+---------------+-----------------+-------------+

8.2.4.2. Address Block TLVs for TargPrefix

 +--------------+--------------+------------+------------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +--------------+--------------+------------+------------------------+
None	ADDRESS_TYPE	0	TARGPREFIX
TargSeqNum	SEQ_NUM	0	Sequence number of
			RREP_Gen, the router
			which created the
			RREP.
TargMetric	PATH_METRIC	MetricType	Metric value for the
/MetricType			route to TargPrefix,
			using MetricType.
 +--------------+--------------+------------+------------------------+

Perkins, et al. Expires January 4, 2018 [Page 57]

Internet-Draft AODVv2 July 2017

8.3. Route Reply Acknowledgement Message Representation

8.3.1. Message Header

 +-------+---------------+-----------+
 | Data | Header Field | Value |
 +-------+---------------+-----------+
 | None | <msg-type> | RREP_Ack |
 +-------+---------------+-----------+

8.3.2. Message TLV Block

 AODVv2 defines an AckReq Message TLV, included when an
 acknowledgement of this message is required, in order to monitor
 adjacency, as described in Section 6.2.

 +---------+-----------+-----------------+--------+
 | Data | TLV Type | Extension Type | Value |
 +---------+-----------+-----------------+--------+
 | AckReq | ACK_REQ | 0 | None |
 +---------+-----------+-----------------+--------+

8.3.3. Address Block

 AODVv2 does not define an Address Block for an RREP_Ack message.

8.3.4. Address Block TLV Block

 AODVv2 does not define any Address Block TLVs for an RREP_Ack
 message.

8.4. Route Error Message Representation

 Route Error Messages MAY be split into multiple [RFC5444] messages
 when the desired contents would exceed the MTU. However, all of the
 resulting messages MUST have the same message header as described
 below. If PktSource is included in the AODVv2 message, it MUST be
 included in all of the resulting [RFC5444] messages.

8.4.1. Message Header

 +-------+---------------+--------+
 | Data | Header Field | Value |
 +-------+---------------+--------+
 | None | <msg-type> | RERR |
 +-------+---------------+--------+

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 58]

Internet-Draft AODVv2 July 2017

8.4.2. Message TLV Block

 AODVv2 does not define any Message TLVs for an RERR message.

8.4.3. Address Block

 The Address Block in an RERR MAY contain PktSource, the source
 address of the IP packet triggering RERR generation, as detailed in

Section 7.4. The prefix length associated with PktSource is equal to
 the address length in bits.

 Address Block always contains one address per route that is no longer
 valid, and each address has an associated prefix length. If a prefix
 length has not been included for this address, it is equal to the
 address length in bits.

 +------------------------------+------------------------------------+
 | Data | Address Block |
 +------------------------------+------------------------------------+
PktSource	<address> + <prefix-length> for
	PktSource
AddressList/PrefixLengthList	<address> + <prefix-length> for
	each unreachable address in
	AddressList
 +------------------------------+------------------------------------+

8.4.4. Address Block TLV Block

 Address Block TLVs are always associated with one or more addresses
 in the Address Block. The following sections show the TLVs that
 apply to each type of address in the RERR.

8.4.4.1. Address Block TLVs for PktSource

 +------------+---------------+-----------------+------------+
 | Data | TLV Type | Extension Type | Value |
 +------------+---------------+-----------------+------------+
 | PktSource | ADDRESS_TYPE | 0 | PKTSOURCE |
 +------------+---------------+-----------------+------------+

8.4.4.2. Address Block TLVs for Unreachable Addresses

Perkins, et al. Expires January 4, 2018 [Page 59]

Internet-Draft AODVv2 July 2017

 +----------------+--------------+------------+----------------------+
 | Data | TLV Type | Extension | Value |
 | | | Type | |
 +----------------+--------------+------------+----------------------+
None	ADDRESS_TYPE	0	UNREACHABLE
SeqNumList	SEQ_NUM	0	Sequence number
			associated with
			invalid route to the
			unreachable address.
MetricTypeList	PATH_METRIC	MetricType	None. Extension Type
			set to MetricType of
			the route to the
			unreachable address.
 +----------------+--------------+------------+----------------------+

9. Simple External Network Attachment

 Figure 5 shows a stub (i.e., non-transit) network of AODVv2 routers
 which is attached to an external network (i.e., a network not using
 AODVv2) via a single External Network Access Router (ENAR).

 As in any externally-attached network, AODVv2 routers and Router
 Clients that wish to be reachable from the external network MUST have
 IP addresses within the ENAR's routable and topologically correct
 prefix (e.g., 191.0.2.0/24 in Figure 5). This AODVv2 network and
 networks attached to routers within it will be advertised to the
 external network using other routing protocols or procedures which
 are out of scope for this specification.

Perkins, et al. Expires January 4, 2018 [Page 60]

Internet-Draft AODVv2 July 2017

 /-------------------------\
 / +----------------+ \
 / | AODVv2 Router | \
 | | 191.0.2.2/32 | |
 | +----------------+ | Routable
 | +-----+--------+ Prefix
 | | ENAR | /191.0.2.0/24
 | | AODVv2 Router| /
 | | 191.0.2.1 |/ /---------------\
 | | serving net +------+ External \
 | | 191.0.2.0/24 | \ Network /
 | +-----+--------+ \---------------/
 | +----------------+ |
 | | AODVv2 Router | |
 | | 191.0.2.3/32 | |
 \ +----------------+ /
 \ /
 \-------------------------/

 Figure 5: Simple External Network Attachment Example

 When an AODVv2 router within the AODVv2 MANET wants to discover a
 route toward an address on the external network, it uses the normal
 AODVv2 route discovery for that IP Destination Address.

 The ENAR MUST respond to RREQ on behalf of all external network
 destinations, that is, destinations which are not on the configured
 191.0.2.0 /24 network. The ENAR MUST NOT respond with a TargPrefix
 and TargPrefixLen which includes any of the networks configured as
 part of the AODVv2 network. Sending a Route Request for a gateway is
 not currently supported.

 If more than one gateway is configured to serve the same external
 network, each such gateway MUST configure that external network as a
 Router Client with its IP address as the value of SeqNoRtr for the
 RouterClient. AODVv2 messages SHOULD NOT be transmitted to routers
 in the External Network.

 RREQs for addresses inside the AODVv2 network, e.g. destinations on
 the configured 191.0.2.0/24 network, are handled using the standard
 processes described in Section 7. Note that AODVv2 does not
 currently support route discovery for prefixes that do not equal
 address length, but RREPs do advertise the prefix on which TargAddr
 resides.

 When an IP packet from an address on the external network destined
 for an address in the AODVv2 MANET reaches the ENAR, if the ENAR does
 not have a route toward that destination in its Routing Information

Perkins, et al. Expires January 4, 2018 [Page 61]

Internet-Draft AODVv2 July 2017

 Base, it will perform normal AODVv2 route discovery for that
 destination.

 Configuring the ENAR as a default router is outside the scope of this
 specification.

10. Precursor Lists

 This section specifies an interoperable, optional enhancement to
 AODVv2 enabling more economical Route Error notifications.

 There can be several sources of traffic for a certain destination.
 Each source of traffic and each upstream router between the
 forwarding AODVv2 router and the traffic source is known as a
 "precursor" for the destination. For each destination, an AODVv2
 router MAY choose to keep track of precursors that have provided
 traffic for that destination. Route Error messages about that
 destination can then be sent unicast to these precursors instead of
 multicast to all AODVv2 routers.

 Since an RERR will be regenerated if it comes from a next hop on a
 valid LocalRoute, the RERR SHOULD ideally be sent backwards along the
 route that the source of the traffic uses, to ensure it is
 regenerated at each hop and reaches the traffic source. If the
 reverse path is unknown, the RERR SHOULD be sent toward the source
 along any available route. Therefore, the options for saving
 precursor information are as follows:

 o Save the next hop on an existing route to the IP packet's source
 address as the precursor. In this case, it is not guaranteed that
 an RERR that is sent will follow the reverse of the source's
 route. In rare situations, this may prevent the route from being
 invalidated at the source of the data traffic.

 o Save the IP packet's source address as the precursor. In this
 case, the RERR can be sent along any existing route to the source
 of the data traffic, and SHOULD include PktSource to ensure that
 the route will be invalidated at the source of the traffic, in
 case the RERR does not follow the reverse of the source's route.

 o By inspecting the MAC address of each forwarded IP packet,
 determine which router forwarded the packet, and save the router
 address as a precursor. This ensures that when an RERR is sent to
 the precursor router, the route will be invalidated at that
 router, and the RERR will be regenerated toward the source of the
 IP packet.

Perkins, et al. Expires January 4, 2018 [Page 62]

Internet-Draft AODVv2 July 2017

 During normal operation, each AODVv2 router maintaining precursor
 lists for a LocalRoute must update the precursor list whenever it
 uses this route to forward traffic to the destination. Precursors
 are classified as Active if traffic has recently been forwarded by
 the precursor. The precursor is marked with a timestamp to indicate
 the time it last forwarded traffic on this route.

 When an AODVv2 router detects that one or more LocalRoutes are
 broken, it MAY notify each Active precursor using a unicast Route
 Error message instead of creating multicast traffic. Unicast is
 applicable when there are few Active precursors compared to the
 number of neighboring AODVv2 routers. However, the default multicast
 behavior is still preferable when there are many precursors, since
 fewer message transmissions are required.

 When an AODVv2 router supporting precursor lists receives an RERR
 message, it SHOULD identify the list of its own affected Active
 precursors for the routes in the RERR, and choose to send a unicast
 RERR to those, rather than send a multicast RERR.

 When a LocalRoute is expunged, any precursor list associated with it
 MUST also be expunged.

11. Application of RFC 7182 to AODVv2

 Implementations of AODVv2 MUST support ICV TLVs using type-extensions
 1 and 2, hash-function HASH_FUNCTION, and cryptographic function
 CRYPTOGRAPHIC_FUNCTION. An ICV MUST be included with every message.
 The ICV value MAY be truncated as specified in [RFC7182].

 Since the msg-hop-limit and PATH_METRIC values are mutable when
 included in AODVv2 messages, these values are set to zero before
 calculating an ICV. This means that these values are not protected
 end-to-end and are therefore susceptible to manipulation. This form
 of attack is described in Section 14.3.2.

 Implementations of AODVv2 MUST support a TIMESTAMP TLV using type-
 extension 0. The timestamp used is a sequence number, and therefore
 the length of the <TIMESTAMP-value> field matches the AODVv2 sequence
 number defined in Section 4.4. The TIMESTAMP TLV MUST be included in
 RREP_Ack and RERR messages.

 When more than one message is included in an RFC5444 packet, using a
 single ICV Packet TLV or single TIMESTAMP Packet TLV is more
 efficient than including ICV and TIMESTAMP Message TLVs in each
 message created. If the RFC5444 multiplexer is capable of adding the
 Packet TLVs, it SHOULD be instructed to include the Packet TLVs in
 packets containing AODVv2 messages. However, if the multiplexer is

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 63]

Internet-Draft AODVv2 July 2017

 not capable of adding the Packet TLVs, the TLVs MUST be included as
 Message TLVs in each AODVv2 message in the packet.

 After message generation, but before transmission, the ICV and
 TIMESTAMP TLVs MUST be added according to each message type as
 detailed in the following sections. The following steps list the
 procedure to be performed:

 1. If the TIMESTAMP is to be included, depending on AODVv2 message
 type as specified below, add the TIMESTAMP TLV.

 * When a TIMESTAMP Packet TLV is being added, the Packet TLV
 Block size field MUST be updated.

 * When a TIMESTAMP Message TLV is being added, the Message TLV
 Block size field MUST be updated.

 2. The considerations in Section 8 and section 9 of [RFC7182] are
 followed, removing existing ICV TLVs and adjusting the size and
 flags fields as appropriate:

 * When an ICV Packet TLV is being added, existing ICV Packet
 TLVs MUST be removed and the Packet TLV Block size MUST be
 updated. If the Packet TLV Block now contains no TLVs, the
 phastlv bit in the <pkt-flags> field in the Packet Header MUST
 be cleared.

 * When an ICV Message TLV is being added, existing ICV Message
 TLVs are removed and the Message TLV Block Size MUST be
 updated.

 3. Mutable fields in the message must have their mutable values set
 to zero before calculating the ICV.

 * If the msg-hop-limit field is included in the [RFC5444]
 message header, msg-hop-limit MUST be set to zero before
 calculating the ICV.

 * If a PATH_METRIC TLV is included, any values present in the
 TLV MUST be set to zero before calculating the ICV value.

 4. Depending on the message type, the ICV is calculated over the
 appropriate fields (as specified in sections Section 11.1,

Section 11.2, Section 11.3 and Section 11.4) to include the
 fields <hash-function>, <cryptographic-function>, <key-id-
 length>, and, if present, <key-id> (in that order), followed by
 the entire packet or message. This value MAY be truncated (as
 specified in [RFC7182]).

https://datatracker.ietf.org/doc/html/rfc7182#section-9
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires January 4, 2018 [Page 64]

Internet-Draft AODVv2 July 2017

 5. Add the ICV TLV, updating size fields as necessary.

 6. The changes made in Step 2 and Step 3 are reversed to re-add any
 existing ICV TLVs, re-adjust the relevant size and flags fields,
 and set the msg-hop-limit and PATH_METRIC TLV values.

 On message reception, and before message processing, verification of
 the received message MUST take place:

 1. The considerations in Section 8 and Section 9 of [RFC7182] are
 followed, removing existing ICV TLVs and adjusting the size and
 flags fields as appropriate.

 * When verifying the ICV value in an ICV Packet TLV, all ICV
 Packet TLVs present in the Packet TLV Block MUST be removed
 before calculating the ICV, and the Packet TLV Block size MUST
 be updated. If there are no remaining Packet TLVs, the Packet
 TLV Block MUST be removed and the phastlv bit in the <pkt-
 flags> field MUST be cleared.

 * When verifying the ICV value in an ICV Message TLV, all ICV
 Message TLVs present in the Message TLV Block MUST be removed
 before calculating the ICV, and the Message TLV Block size
 MUST be updated.

 2. Mutable fields in the message MUST have their mutable values set
 to zero before calculating the ICV.

 * If the msg-hop-limit field is included in the [RFC5444]
 message header, msg-hop-limit MUST be set to zero before
 calculating the ICV.

 * If a PATH_METRIC TLV is included, any values present in the
 TLV MUST be set to zero before calculating the ICV value.

 3. The ICV is calculated following the considerations in
Section 12.2 of [RFC7182], to include the fields <hash-function>,

 <cryptographic-function>, <key-id-length>, and, if present, <key-
 id> (in that order), followed by the entire packet or message.

 * If the received ICV value is truncated, the calculated ICV
 value MUST also be truncated (as specified in [RFC7182]),
 before comparing.

 * If the ICV value calculated from the received message or
 packet does not match the value of <ICV-data> in the received
 message or packet, the validation fails and the AODVv2 message
 MUST be discarded and NOT processed or forwarded.

https://datatracker.ietf.org/doc/html/rfc7182#section-9
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc7182#section-12.2
https://datatracker.ietf.org/doc/html/rfc7182

Perkins, et al. Expires January 4, 2018 [Page 65]

Internet-Draft AODVv2 July 2017

 * If the ICV values do match, the values set to zero before
 calculating the ICV are reset to the received values, and
 processing continues to Step 4.

 4. Verification of a received TIMESTAMP value MUST be performed.
 The procedure depends on message type as specified in the
 following sub sections.

 * If the TIMESTAMP value in the received message is not valid,
 the AODVv2 message MUST be discarded and NOT processed or
 forwarded.

 * If the TIMESTAMP value is valid, processing continues as
 defined in Section 7.

11.1. RREQ Generation and Reception

 Since OrigPrefix is included in the RREQ, the ICV can be calculated
 and verified using the [RFC5444] contents.The ICV TLV has type
 extension := 1. Inclusion of an ICV TLV message integrity and
 endpoint authentication, because trusted routers MUST hold the shared
 key in order to calculate the ICV value, both to include when
 creating a message, and to validate the message by checking that the
 ICV is correct.

 Since RREQ_Gen's sequence number is incremented for each new RREQ,
 replay protection is already afforded and no extra TIMESTAMP TLV is
 required.

 After message generation and before message transmission:

 1. Add the ICV TLV as described above.

 On message reception and before message processing:

 1. Verify the received ICV value as described above.

 2. Verification of the sequence number is handled according to
Section 7.

11.2. RREP Generation and Reception

 Since TargPrefix is included in the RREP, the ICV can be calculated
 and verified using the [RFC5444] contents. The ICV TLV has type
 extension 1. Inclusion of an ICV provides message integrity and
 endpoint authentication, because trusted routers MUST hold a valid
 key in order to calculate the ICV value, both to include when

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 66]

Internet-Draft AODVv2 July 2017

 creating a message, and to validate the message by checking that the
 ICV is correct.

 Since RREP_Gen's sequence number is incremented for each new RREP,
 replay protection is already afforded and no extra TIMESTAMP TLV is
 required.

 After message generation and before message transmission:

 1. Add the ICV TLV as described above.

 On message reception and before message processing:

 1. Verify the received ICV value as described above.

 2. Verification of the sequence number is handled according to
Section 7.

11.3. RREP_Ack Generation and Reception

 Since no sequence number is included in the RREP_Ack, a TIMESTAMP TLV
 MUST be included to protect against replay attacks. The value in the
 TIMESTAMP TLV is set as follows:

 o For RREP_Ack request, use Neighbor.AckSeqNum.

 o For RREP_Ack response, use the sequence number from the TIMESTAMP
 TLV in the received RREP_Ack request.

 Since no addresses are included in the RREP_Ack, and the receiver of
 the RREP_Ack uses the source IP address of a received RREP_Ack to
 identify the sender, the ICV MUST be calculated using the message
 contents and the IP source address. The ICV TLV has type extension
 := 2 in order to accomplish this. This provides message integrity
 and endpoint authentication, because trusted routers MUST hold the
 correct key in order to calculate the ICV value.

 After message generation and before message transmission:

 1. Add the TIMESTAMP TLV and ICV TLV as described above.

 On message reception and before message processing:

 1. Verify the received ICV value as described above.

 2. Verify the received TIMESTAMP value by comparing the sequence
 number in the value field of the TIMESTAMP TLV as follows:

Perkins, et al. Expires January 4, 2018 [Page 67]

Internet-Draft AODVv2 July 2017

 * For a received RREP_Ack request, there is no need to verify
 the timestamp value. Proceed to message processing as defined
 in Section 7.

 * For a received RREP_Ack response, compare with the
 Neighbor.AckSeqNum of the Neighbor Set entry for sender of the
 RREP_Ack request.

 * If the sequence number does not match, the AODVv2 message MUST
 be discarded. Otherwise, Neighbor.AckSeqNum is incremented by
 1 and processing continues according to Section 7.

11.4. RERR Generation and Reception

 Since the sender's sequence number is not contained in the RERR, a
 TIMESTAMP TLV MUST be included to protect against replay attacks.
 The value in the TIMESTAMP TLV is set by incrementing and using
 RERR_Gen's sequence number.

 Since the receiver of the RERR MUST use the source IP address of the
 RERR to identify the sender, the ICV MUST be calculated using the
 message contents and the IP source address. The ICV TLV has type
 extension := 2 in order to accomplish this. This provides message
 integrity and endpoint authentication, because trusted routers MUST
 hold the shared key in order to calculate the ICV value.

 After message generation and before message transmission:

 1. Add the TIMESTAMP TLV and ICV TLV as described above.

 On message reception and before message processing:

 1. Verify the received ICV value as described above.

 2. Verify the received TIMESTAMP value by comparing the sequence
 number in the value field of the TIMESTAMP TLV with the
 Neighbor.HeardRERRSeqNum. If the sequence number in the message
 is lower than the stored value, the AODVv2 message MUST be
 discarded. Otherwise, the Neighbor.HeardRERRSeqNum MUST be set
 to the received value and processing continues according to

Section 7.

12. Configuration

 AODVv2 uses various parameters which can be grouped into the
 following categories:

 o Timers

Perkins, et al. Expires January 4, 2018 [Page 68]

Internet-Draft AODVv2 July 2017

 o Protocol constants

 o Administrative parameters and controls

 This section show the parameters along with their definitions and
 default values (if any).

 Note that several fields have limited size (bits or bytes). These
 sizes and their encoding may place specific limitations on the values
 that can be set.

12.1. Timers

 AODVv2 requires certain timing information to be associated with
 Local Route Set entries and message replies. The default values are
 as follows:

 +------------------------+----------------+
 | Name | Default Value |
 +------------------------+----------------+
 | ACTIVE_INTERVAL | 5 second |
 | MAX_IDLETIME | 200 seconds |
 | MAX_BLACKLIST_TIME | 200 seconds |
 | MAX_SEQNUM_LIFETIME | 300 seconds |
 | RERR_TIMEOUT | 3 seconds |
 | RteMsg_ENTRY_TIME | 12 seconds |
 | RREQ_WAIT_TIME | 2 seconds |
 | RREP_Ack_SENT_TIMEOUT | 1 second |
 | RREQ_HOLDDOWN_TIME | 10 seconds |
 +------------------------+----------------+

 Table 2: Timing Parameter Values

 The above timing parameter values have worked well for small and
 medium well-connected networks with moderate topology changes. The
 timing parameters SHOULD be administratively configurable. Ideally,
 for networks with frequent topology changes the AODVv2 parameters
 SHOULD be adjusted using experimentally determined values or dynamic
 adaptation. For example, in networks with infrequent topology
 changes MAX_IDLETIME MAY be set to a much larger value. If the
 values were configured differently, the following consequences may be
 observed:

 o If MAX_SEQNUM_LIFETIME was configured differently across the
 network, and any of the routers lost their sequence number or
 rebooted, this could result in their next route messages being
 classified as stale at any AODVv2 router using a greater value for

Perkins, et al. Expires January 4, 2018 [Page 69]

Internet-Draft AODVv2 July 2017

 MAX_SEQNUM_LIFETIME. This would delay route discovery from and to
 the re-initializing router.

 o Routers with lower values for ACTIVE_INTERVAL + MAX_IDLETIME will
 invalidate routes more quickly and free resources used to maintain
 them. This can affect bursty traffic flows which have quiet
 periods longer than ACTIVE_INTERVAL + MAX_IDLETIME. A route which
 has timed out due to perceived inactivity is not reported. When
 the bursty traffic resumes, it would cause a RERR to be generated,
 and the traffic itself would be dropped. This route would be
 removed from all upstream routers, even if those upstream routers
 had larger ACTIVE_INTERVAL or MAX_IDLETIME values. A new route
 discovery would be required to re-establish the route, causing
 extra routing protocol traffic and disturbance to the bursty
 traffic.

 o Routers with lower values for MAX_BLACKLIST_TIME would allow
 neighboring routers to participate in route discovery sooner than
 routers with higher values. This could result in failed route
 discoveries if un-blacklisted links are still uni-directional.
 Since RREQs are retried, this would not affect success of route
 discovery unless this value was so small as to un-blacklist the
 router before the RREQ is retried. This value need not be
 consistent across the network since it is used for maintaining a
 1-hop blacklist. However it MUST be greater than RREQ_WAIT_TIME;
 the default value is much larger.

 o Routers with lower values for RERR_TIMEOUT may create more RERR
 messages than routers with higher values. This value should be
 large enough that a RERR will reach all routers using the route
 reported within it before the timer expires, so that no further
 data traffic will arrive, and no duplicated RERR messages will be
 generated.

 o Routers with lower values for RteMsg_ENTRY_TIME may not consider
 received redundant multicast route messages as redundant, and may
 forward these messages unnecessarily.

 o Routers with lower values for RREQ_WAIT_TIME may send more
 frequent RREQ messages and wrongly determine that a route does not
 exist, if the delay in receiving an RREP is greater than this
 interval.

 o Routers with lower values for RREP_Ack_SENT_TIMEOUT may wrongly
 determine links to neighbors to be unidirectional if an RREP_Ack
 is delayed longer than this timeout.

Perkins, et al. Expires January 4, 2018 [Page 70]

Internet-Draft AODVv2 July 2017

 o Routers with lower values for RREQ_HOLDDOWN_TIME will retry failed
 route discoveries sooner than routers with higher values. This
 may be an advantage if the network topology is frequently
 changing, or may unnecessarily cause more routing protocol
 traffic.

 MAX_SEQNUM_LIFETIME MUST be configured to have the same values for
 all AODVv2 routers in the network.

12.2. Protocol Constants

 AODVv2 protocol constants typically do not require changes. The
 following table lists these constants, along with their values and a
 reference to the section describing their use.

 +------------------------+-------------+----------------------------+
 | Name | Default | Description |
 +------------------------+-------------+----------------------------+
DISCOVERY_ATTEMPTS_MAX	3	Section 6.6
RREP_RETRIES	2	Section 7.2.1
MAX_METRIC[MetricType]	[see below]	Section 5
MAX_METRIC[HopCount]	255	Section 5 and Section 7
MAX_HOPCOUNT	20	Limit to number of hops an
		RREQ or RREP message can
		traverse
INFINITY_TIME	[see below]	Maximum expressible clock
		time (Section 6.7.2)
 +------------------------+-------------+----------------------------+

 Table 3: AODVv2 Constants

 MAX_HOPCOUNT cannot be larger than 255.

 MAX_METRIC[MetricType] MUST always be the maximum expressible metric
 value of type MetricType. Field lengths associated with metric
 values are found in Section 13.4.

 These protocol constants MUST have the same values for all AODVv2
 routers in the ad hoc network. If the values were configured
 differently, the following consequences may be observed:

 o DISCOVERY_ATTEMPTS_MAX: Routers with higher values are likely to
 be more successful at finding routes, at the cost of additional
 control traffic.

 o RREP_RETRIES: Routers with lower values are more likely to
 blacklist neighbors when there is a temporary fluctuation in link
 quality.

Perkins, et al. Expires January 4, 2018 [Page 71]

Internet-Draft AODVv2 July 2017

 o MAX_METRIC[MetricType]: No interoperability problems due to
 variations on different routers, but routers with lower values may
 exhibit overly restrictive behavior during route comparisons.

 o MAX_HOPCOUNT: Routers with a value too small would not be able to
 discover routes to distant addresses.

 o INFINITY_TIME: No interoperability problems due to variations on
 different routers, but if a lower value is used, route state
 management may exhibit overly restrictive behavior.

12.3. Local Settings

 The following table lists AODVv2 parameters which SHOULD be
 administratively configured for each router:

 +------------------------+---------------------------+--------------+
 | Name | Default Value | Description |
 +------------------------+---------------------------+--------------+
Interface Set		Section 4.1
Router Client Set		Section 4.2
BUFFER_SIZE_PACKETS	2	Section 6.6
BUFFER_SIZE_BYTES	MAX_PACKET_SIZE [TBD]	Section 6.6
CONTROL_TRAFFIC_LIMIT	[Adjust for 10% capacity]	Section 7
 +------------------------+---------------------------+--------------+

 Table 4: Configuration for Local Settings

12.4. Network-Wide Settings

 The following administrative controls MAY be used to change the
 operation of the network. The same settings SHOULD be used across
 the network. Inconsistent settings at different routers in the
 network will not result in protocol errors.

 +----------------------+-----------+----------------+
 | Name | Default | Description |
 +----------------------+-----------+----------------+
 | ENABLE_IDLE_IN_RERR | Disabled | Section 7.4.1 |
 +----------------------+-----------+----------------+

 Table 5: Configuration for Network-Wide Settings

13. IANA Considerations

 This section specifies several [RFC5444] message types and address
 tlv-types required for AODVv2.

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 72]

Internet-Draft AODVv2 July 2017

13.1. RFC 5444 Message Type Allocation

 This specification defines four Message Types, to be allocated from
 the 0-223 range of the "Message Types" namespace defined in
 [RFC5444].

 +---+-----------+
 | Name of Message | Type |
 +---+-----------+
 | Route Request (RREQ) | 10 (TBD) |
 | Route Reply (RREP) | 11 (TBD) |
 | Route Error (RERR) | 12 (TBD) |
 | Route Reply Acknowledgement (RREP_Ack) | 13 (TBD) |
 +---+-----------+

13.2. RFC 5444 Message TLV Types

 This specification defines one Message TLV Type, to be allocated from
 the Message-Type-specific "Message TLV Types" namespace defined in
 [RFC5444], as specified in Table 6.

 +------------------------+----------+---------------+---------------+
 | Name of TLV | Type | Length | Reference |
 | | | (octets) | |
 +------------------------+----------+---------------+---------------+
 | ACK_REQ | 128 | 0 | Section 6.2 |
 | | (TBD) | | |
 +------------------------+----------+---------------+---------------+

 Table 6: AODVv2 Message TLV Types

13.3. RFC 5444 Address Block TLV Type Allocation

 This specification defines three Address Block TLV Types, to be
 allocated from the Message-Type-specific "Address Block TLV Types"
 namespace defined in [RFC5444], as specified in Table 7.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 73]

Internet-Draft AODVv2 July 2017

 +------------------------+----------+---------------+---------------+
 | Name of TLV | Type | Length | Reference |
 | | | (octets) | |
 +------------------------+----------+---------------+---------------+
PATH_METRIC	129	depends on	Section 7
	(TBD)	MetricType	
SEQ_NUM	130	2	Section 7
	(TBD)		
ADDRESS_TYPE	131	1	Section 8
	(TBD)		
 +------------------------+----------+---------------+---------------+

 Table 7: AODVv2 Address Block TLV Types

13.4. MetricType Allocation

 The metric types used by AODVv2 are identified according to Table 8.
 All implementations MUST use these values.

 +---------------------+----------+--------------------+
 | Name of MetricType | Type | Metric Value Size |
 +---------------------+----------+--------------------+
 | Unassigned | 0 | Undefined |
 | Hop Count | 1 | 1 octet |
 | Unallocated | 2 - 254 | TBD |
 | Reserved | 255 | Undefined |
 +---------------------+----------+--------------------+

 Table 8: AODVv2 Metric Types

13.5. ADDRESS_TYPE TLV Values

 These values are used in the [RFC5444] Address Type TLV discussed in
Section 8. All implementations MUST use these values.

 +---------------+--------+
 | Address Type | Value |
 +---------------+--------+
 | ORIGPREFIX | 0 |
 | TARGPREFIX | 1 |
 | UNREACHABLE | 2 |
 | PKTSOURCE | 3 |
 | UNSPECIFIED | 255 |
 +---------------+--------+

 Table 9: AODVv2 Address Types

https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 74]

Internet-Draft AODVv2 July 2017

14. Security Considerations

 This section describes various security considerations and potential
 avenues to secure AODVv2 routing. The main objective of the AODVv2
 protocol is for each router to communicate reachability information
 about addresses for which it is responsible, and for routes it has
 discovered from other AODVv2 routers.

 Networks using AODVv2 to maintain connectivity and establish routes
 on demand may be vulnerable to certain well-known types of threats,
 which will be detailed in this section. Some of the threats
 described can be mitigated or eliminated. Tools to do so will be
 described.

 With the exception of metric values, AODVv2 assures the integrity of
 all RteMsg data end-to-end though the use of ICVs (see

Section 14.4.2. AODVv2 implementations support ICV and TIMESTAMP
 TLVs, unless the implementation is intended for an environment in
 which security is unnecessary; otherwise, AODVv2 deployments are
 configured to use these TLVs to secure messages.

 The on-demand nature of AODVv2 route discovery automatically reduces
 the vulnerability to route disruption. Since control traffic for
 updating route tables is diminished, there is less opportunity for
 attack and failure.

14.1. Availability

 Threats to AODVv2 which reduce availability are considered below.

14.1.1. Denial of Service

 Flooding attacks using RREQ amount to a (BLIND) denial of service for
 route discovery: By issuing RREQ messages for targets that don't
 exist, an attacker can flood the network, blocking resources and
 drowning out legitimate traffic. By triggering the generation of
 CONTROL_TRAFFIC_LIMIT amount of messages (for example by sending
 RREQs for many non-existent destinations), an attacker can prevent
 legitimate messages from being generated. The effect of this attack
 is dampened by the fact that duplicate RREQ messages are dropped
 (preventing the network from DDoSing itself). Processing
 requirements for AODVv2 messages are typically quite small, however
 AODVv2 routers receiving RREQs do allocate resources in the form of
 Neighbor Set, Local Route Set and Multicast Route Message Set
 entries. The attacker can maximize their impact on set growth by
 changing OrigPrefix or OrigPrefixLen for each RREQ. If a specific
 node is to be targeted, this attack may be carried out in a
 DISTRIBUTED fashion, either by compromising its direct neighbors or

Perkins, et al. Expires January 4, 2018 [Page 75]

Internet-Draft AODVv2 July 2017

 by specifying the target's address with TargPrefix and TargPrefixLen.
 Note that it might be more economical for the attacker to simply jam
 the medium; an attack which AODVv2 cannot defend itself against.

 Mitigation:

 o If AODVv2 routers always verify that the sender of the RERR
 message is trusted, this threat is reduced. Processing
 requirements would typically be dominated by calculations to
 verify integrity. This has the effect of reducing (but by no
 means eliminating) AODVv2's vulnerability to denial of service
 attacks.

 o Authentication of senders can prevent unauthenticated routers from
 launching a Denial of Service attack on another AODVv2 router.
 However, this does not protect the network if an attacker has
 access to an already authenticated router.

14.1.2. Malicious RERR messages

 RERR messages are designed to cause removal of installed routes. A
 malicious node could send an RERR message with false information to
 attempt to get other routers to remove a route to one or more
 specific destinations, therefore disrupting traffic to the advertised
 destinations.

 Routes will be deleted if an RERR is received, withdrawing a route
 for which the sender is the receiver's next hop, if both of the
 following conditions are met:

 o the RERR includes the MetricType of the installed route,

 o the RERR includes either no sequence number for the route, or
 includes a greater sequence number than the sequence number stored
 with that route in the receiver's Local Route Set.

 Routes will also be deleted if a received RERR contains a PktSource
 address corresponding to a Router Client.

 The information necessary to construct a malicious RERR could be
 discovered by eavesdropping, either by listening to AODVv2 messages
 or by watching data packet flows.

 When the RERR is multicast, it can be received by many routers in the
 ad hoc network, and will be regenerated when processing results in an
 active route being removed. This threat could have serious impact on
 applications communicating by way of the sender of the RERR message.

Perkins, et al. Expires January 4, 2018 [Page 76]

Internet-Draft AODVv2 July 2017

 o The set of routers which use the malicious router as a next hop
 may be targeted with a malicious RERR with no PktSource address
 included, if the RERR contains routes for which the malicious
 router is a next hop from the receiving router. However, since
 the sender of the RERR message is either malicious or broken, it
 is better that it is not used as a next hop for these routes
 anyway.

 o A single router which does not use the malicious router as part of
 its route may be targeted with a malicious RERR with a PktSource
 address included.

 o Replayed RERR messages could be used to disrupt active routes.

 Mitigation:

 o Protection against eavesdropping of AODVv2 messages would mitigate
 this attack to some extent, but eavesdropping of data packets can
 also be used to deduce the information about which routes could be
 targeted.

 o Protection against a malicious router becoming part of a route
 will mitigate the attack where a set of routers are targeted.
 This will not protect against the attack if a PktSource address is
 included.

 o By only regenerating RERR messages where active routes are
 removed, the spread of the malicious RERR is limited.

 o Including sequence numbers in RERR messages offers protection
 against attacks using replays of these RERR messages.

 o If AODVv2 routers always verify that the sender of the RERR
 message is trusted, this threat is reduced.

14.1.3. False Confirmation of Link Bidirectionality

 Links could be erroneously treated as bidirectional if malicious
 unsolicited or spoofed RREP messages were to be accepted. This would
 result in a route being installed which could not in fact be used to
 forward data to the destination, and may divert data packets away
 from the intended destination.

 There is a window of RREQ_WAIT_TIME after an RREQ is sent, in which
 any malicious router could send an RREP in response, in order for the
 link to the malicious router to be deemed as bidirectional.

 Mitigation:

Perkins, et al. Expires January 4, 2018 [Page 77]

Internet-Draft AODVv2 July 2017

 o Ignoring unsolicited RREP and RREP_Ack messages partially
 mitigates against this threat.

 o If AODVv2 routers always verify that the sender of the RREP
 message is trusted, this threat is reduced.

14.1.4. Message Deletion

 A malicious router could decide not to forward an RREQ or RREP or
 RERR message. Not forwarding a RERR or RREP message would disrupt
 route discovery. Not regenerating a RERR message would result in the
 source of data packets continuing to maintain and use the route, and
 further RERR messages being generated by the sender of the non-
 regenerated RERR. A malicious router could intentionally disrupt
 traffic flows by not allowing the source of data traffic to re-
 discover a new route when one breaks.

 Failing to send an RREP_Ack would also disrupt route establishment,
 by not allowing the reverse route to be validated. Return traffic
 which needs that route will prompt a new route discovery, wasting
 resources and incurring a slight delay but not disrupting the ability
 for applications to communicate.

 Mitigation:

 o None. Note that malicious router would have to wait for a route
 to break before it could perform this attack.

14.2. Confidentiality

 Passive inspection (eavesdropping) of AODVv2 control messages could
 enable unauthorized devices to gain information about the network
 topology, since exchanging such information is the main purpose of
 AODVv2.

 Eavesdropping of data traffic could allow a malicious device to
 obtain information about how data traffic is being routed. With
 knowledge of source and destination addresses, malicious messages
 could be constructed to disrupt normal operation.

14.3. Integrity of Routes

 Integrity of route information can be compromised in the following
 types of attack:

Perkins, et al. Expires January 4, 2018 [Page 78]

Internet-Draft AODVv2 July 2017

14.3.1. Message Insertion

 Valid route set entries can be replaced or modified by maliciously
 constructed AODVv2 messages, destroying existing routes and the
 network's integrity. Any router may pose as another router by
 sending RREQ, RREP, RREP_Ack and RERR messages in its name.

 o Sending an RREQ message with false information can disrupt traffic
 to OrigPrefix, if the sequence number attached is not stale
 compared to any existing information about OrigPrefix. Since RREQ
 is multicast and likely to be received by all routers in the ad
 hoc network, this threat could have serious impact on applications
 communicating with OrigPrefix.

 o The actual threat to disrupt routes to OrigPrefix is reduced by
 the AODVv2 mechanism of marking RREQ-derived routes as
 "Unconfirmed" until the route to OrigAddr can be confirmed.

 o Sending an RREP message with false information can disrupt traffic
 to TargPrefix. Since RREP is unicast, and ignored if a
 corresponding RREQ was not recently sent, this threat is
 minimized, and is restricted to receivers along the path from
 OrigAddr to TargAddr.

 o Sending an RREP_Ack response message with false information can
 cause the route to an originator address to be erroneously
 accepted even though the route would contain a unidirectional link
 and thus not be suitable for most traffic. Since the RREP_Ack
 response is unicast, and ignored if an RREP_Ack was not sent
 recently to the sender of this RREP_Ack response, this threat is
 minimized and is strictly local to the RREP transmitter expecting
 the acknowledgement. Unsolicited RREP_Acks are ignored.

 o Sending an RERR message with false information is discussed in
Section 14.1.2.

 Mitigation:

 o If AODVv2 routers always verify that the sender of a message is
 trusted, this threat is reduced.

14.3.2. Message Modification - Man in the Middle

 Any AODVv2 router can forward messages with modified data.

 Mitigation:

Perkins, et al. Expires January 4, 2018 [Page 79]

Internet-Draft AODVv2 July 2017

 o If AODVv2 routers verify the integrity of AODVv2 messages, then
 the threat of disruption is minimized. A man in the middle with
 no knowledge of the key used to calculate an integrity check value
 may modify a message but the message will be rejected when it
 fails an integrity check.

14.3.3. Replay Attacks

 Replaying of RREQ or RREP messages would be of less use to an
 attacker, since they would be dropped immediately due to their stale
 sequence number. RERR messages may or may not include sequence
 numbers and are therefore susceptible to replay attacks. RREP_Ack
 messages do not include sequence numbers and are therefore
 susceptible to replay attacks.

 Mitigation:

 o Use of timestamps or sequence numbers prevents replay attacks.

14.4. Protection Mechanisms

14.4.1. Confidentiality and Authentication

 Encryption MAY be used for AODVv2 messages. If the routers share a
 packet-level security association, the message data can be encrypted
 prior to message transmission. The establishment of such security
 associations is outside the scope of this specification. Encryption
 will not only protect against unauthorized devices obtaining
 information about network topology (eavesdropping) but will ensure
 that only trusted routers participate in routing operations.

14.4.2. Message Integrity using ICVs

 Cryptographic Integrity Check Values (ICVs) can be used to ensure
 integrity of received messages, protecting against man in the middle
 attacks. Further, by using ICVs, only those routers with knowledge
 of a shared secret key are allowed to participate in routing
 information exchanges. [RFC7182] defines ICV TLVs for use with
 [RFC5444].

 The data contained in AODVv2 routing protocol messages MUST be
 verified using Integrity Check Values, to avoid accepting tampered
 messages.

https://datatracker.ietf.org/doc/html/rfc7182
https://datatracker.ietf.org/doc/html/rfc5444

Perkins, et al. Expires January 4, 2018 [Page 80]

Internet-Draft AODVv2 July 2017

14.4.3. Replay Protection using Timestamps

 [RFC7182] defines a TIMESTAMP TLV for use with [RFC5444] which can be
 used to prevent replay attacks when sequence numbers are not already
 included.

 The data contained in AODVv2 routing protocol messages can be
 protected with a TIMESTAMP value to ensure the protection against
 replaying of the message. Sequence numbers can be used in place of
 timestamps, since they are known to be strictly increasing.

14.5. Key Management

 The method of distribution of shared secret keys is out of the scope
 of this protocol. Key management is not specified for the following
 reasons:

 Against [RFC4107], an analysis as to whether automated or manual key
 management should be used shows a compelling case for automated
 management. In particular:

 o a potentially large number of routers may have to be managed,
 belonging to several organisations, for example in vehicular
 applications.

 o a stream cipher is likely to be used, such as an AES variant.

 o long term session keys might be used by more than two parties,
 including multicast operations. AODVv2 makes extensive use of
 multicast.

 o there may be frequent turnover of devices.

 On reviewing the case for manual key management against the same
 document, it can be seen that manual management might be advantageous
 in environments with limited bandwidth or high round trip times.
 AODVv2 lends itself to sparse ad hoc networks where transmission
 conditions may indeed be limited, depending on the bearers selected
 for use.

 However, [RFC4107] assumes that the connectivity between endpoints is
 already available. In AODVv2, no route is available to a given
 destination until a router client requests that user traffic be
 transmitted. It is required to secure the signalling path of the
 routing protocol that will establish the path across which key
 exchange functions might subsequently be applied, which is clearly
 the reverse of the expected functionality. A different strategy is
 therefore required.

https://datatracker.ietf.org/doc/html/rfc5444
https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/rfc4107

Perkins, et al. Expires January 4, 2018 [Page 81]

Internet-Draft AODVv2 July 2017

 There are two possible solutions. In each case, it is assumed that a
 defence in depth security posture is being adopted by the system
 integrator, such that each function in the network as a whole is
 appropriately secured or defended as necessary, and that there is not
 complete reliance on security mechanisms built in to AODVv2. Such
 additional mechanisms could include a suitable wireless device
 security technology, so that wireless devices are authenticated and
 secured by their peers prior to exchanging user data, which in this
 case would include AODVV2 signalling traffic as a payload, and
 mechanisms which verify the authenticity and/or integrity of
 application-layer user data transported once a route has been
 established.

 1. In the case that no AODVv2 routers have any detailed prior
 knowledge of any other AODVv2 router, but does have knowledge of
 the credentials of other organisations in which the router has
 been previously configured to trust, it is possible for an AODVv2
 router to send an initialisation vector as part of an exchange,
 which could be verified against such credentials. Such an
 exchange could make use of Identity-Based Signatures
 ([I-D.ietf-manet-ibs]), based on Elliptic Curve-Based
 Certificateless Signatures for Identity-Based Encryption
 [RFC6507], which eliminate the need for a handshake process to
 establish trust.

 2. If it is impossible to use Identity-Based Signatures, and the
 risk to the AODVv2 signalling traffic is considered to be low due
 to the use of security countermeasures elsewhere in the system, a
 simple pre-placed shared secret could be used between routers,
 which is used as-is or is used to generate some ephemeral secret
 based on another known variable, such as time of day if that is
 universally available at a level of accuracy sufficient to make
 such a system viable.

15. Acknowledgments

 AODVv2 is a descendant of the design of previous MANET on-demand
 protocols, especially AODV [RFC3561] and DSR [RFC4728]. Changes to
 previous MANET on-demand protocols stem from research and
 implementation experiences. Thanks to Elizabeth Belding and Ian
 Chakeres for their long time authorship of AODV. Additional thanks
 to Derek Atkins, Emmanuel Baccelli, Abdussalam Baryun, Ramon Caceres,
 Justin Dean, Christopher Dearlove, Fatemeh Ghassemi, Ulrich Herberg,
 Henner Jakob, Ramtin Khosravi, Luke Klein-Berndt, Lars Kristensen,
 Tronje Krop, Koojana Kuladinithi, Kedar Namjoshi, Keyur Patel,
 Alexandru Petrescu, Henning Rogge, Fransisco Ros, Pedro Ruiz,
 Christoph Sommer, Romain Thouvenin, Richard Trefler, Jiazi Yi, Seung

https://datatracker.ietf.org/doc/html/rfc6507
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/rfc4728

Perkins, et al. Expires January 4, 2018 [Page 82]

Internet-Draft AODVv2 July 2017

 Yi, Behnaz Yousefi, and Cong Yuan, for their reviews of AODVv2 and
 DYMO, as well as numerous specification suggestions.

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3561] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-
 Demand Distance Vector (AODV) Routing", RFC 3561,
 DOI 10.17487/RFC3561, July 2003,
 <http://www.rfc-editor.org/info/rfc3561>.

 [RFC5444] Clausen, T., Dearlove, C., Dean, J., and C. Adjih,
 "Generalized Mobile Ad Hoc Network (MANET) Packet/Message
 Format", RFC 5444, DOI 10.17487/RFC5444, February 2009,
 <http://www.rfc-editor.org/info/rfc5444>.

 [RFC5498] Chakeres, I., "IANA Allocations for Mobile Ad Hoc Network
 (MANET) Protocols", RFC 5498, DOI 10.17487/RFC5498, March
 2009, <http://www.rfc-editor.org/info/rfc5498>.

 [RFC7182] Herberg, U., Clausen, T., and C. Dearlove, "Integrity
 Check Value and Timestamp TLV Definitions for Mobile Ad
 Hoc Networks (MANETs)", RFC 7182, DOI 10.17487/RFC7182,
 April 2014, <http://www.rfc-editor.org/info/rfc7182>.

16.2. Informative References

 [I-D.ietf-manet-ibs]
 Dearlove, C., "Identity-Based Signatures for MANET Routing
 Protocols", draft-ietf-manet-ibs-05 (work in progress),
 March 2016.

 [Koodli01]
 Koodli, R. and C. Perkins, "Fast handovers and context
 transfers in mobile networks", Proceedings of the ACM
 SIGCOMM Computer Communication Review 2001, Volume 31
 Issue 5, 37-47, October 2001.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3561
http://www.rfc-editor.org/info/rfc3561
https://datatracker.ietf.org/doc/html/rfc5444
http://www.rfc-editor.org/info/rfc5444
https://datatracker.ietf.org/doc/html/rfc5498
http://www.rfc-editor.org/info/rfc5498
https://datatracker.ietf.org/doc/html/rfc7182
http://www.rfc-editor.org/info/rfc7182
https://datatracker.ietf.org/doc/html/draft-ietf-manet-ibs-05

Perkins, et al. Expires January 4, 2018 [Page 83]

Internet-Draft AODVv2 July 2017

 [Perkins94]
 Perkins, C. and P. Bhagwat, "Highly Dynamic Destination-
 Sequenced Distance-Vector Routing (DSDV) for Mobile
 Computers", Proceedings of the ACM SIGCOMM '94 Conference
 on Communications Architectures, Protocols and
 Applications, London, UK, pp. 234-244, August 1994.

 [RFC2501] Corson, S. and J. Macker, "Mobile Ad hoc Networking
 (MANET): Routing Protocol Performance Issues and
 Evaluation Considerations", RFC 2501,
 DOI 10.17487/RFC2501, January 1999,
 <http://www.rfc-editor.org/info/rfc2501>.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, DOI 10.17487/RFC4107,
 June 2005, <http://www.rfc-editor.org/info/rfc4107>.

 [RFC4193] Hinden, R. and B. Haberman, "Unique Local IPv6 Unicast
 Addresses", RFC 4193, DOI 10.17487/RFC4193, October 2005,
 <http://www.rfc-editor.org/info/rfc4193>.

 [RFC4728] Johnson, D., Hu, Y., and D. Maltz, "The Dynamic Source
 Routing Protocol (DSR) for Mobile Ad Hoc Networks for
 IPv4", RFC 4728, DOI 10.17487/RFC4728, February 2007,
 <http://www.rfc-editor.org/info/rfc4728>.

 [RFC6130] Clausen, T., Dearlove, C., and J. Dean, "Mobile Ad Hoc
 Network (MANET) Neighborhood Discovery Protocol (NHDP)",

RFC 6130, DOI 10.17487/RFC6130, April 2011,
 <http://www.rfc-editor.org/info/rfc6130>.

 [RFC6507] Groves, M., "Elliptic Curve-Based Certificateless
 Signatures for Identity-Based Encryption (ECCSI)",

RFC 6507, DOI 10.17487/RFC6507, February 2012,
 <http://www.rfc-editor.org/info/rfc6507>.

Appendix A. AODVv2 Draft Updates

 This section lists the changes between AODVv2 revisions ...-16.txt
 and ...-17.txt.

 o Removed wording that suggested RREP_Gen could add multiple
 (unrelated) subnets.

 o Changed wording in accordance with decision to pursue Proposed
 Standard.

https://datatracker.ietf.org/doc/html/rfc2501
http://www.rfc-editor.org/info/rfc2501
https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107
http://www.rfc-editor.org/info/rfc4107
https://datatracker.ietf.org/doc/html/rfc4193
http://www.rfc-editor.org/info/rfc4193
https://datatracker.ietf.org/doc/html/rfc4728
http://www.rfc-editor.org/info/rfc4728
https://datatracker.ietf.org/doc/html/rfc6130
http://www.rfc-editor.org/info/rfc6130
https://datatracker.ietf.org/doc/html/rfc6507
http://www.rfc-editor.org/info/rfc6507

Perkins, et al. Expires January 4, 2018 [Page 84]

Internet-Draft AODVv2 July 2017

 o Resolved an error scenario that was based on confirming routes to
 OrigAddr before the route to OrigAddr was known to be operational.
 But, another AODVv2 router closer to OrigAddr might forward
 packets along a previously confirmed route with an obsolete
 Sequence Number. These two conditions together were found to
 allow for routing loops.

 o Enabled multihoming by creating new address type SeqNoRtr, along
 with rules prohibiting comparison of sequence numbers from
 distinct multihoming routers per advertised prefix.

Authors' Addresses

 Charles E. Perkins
 Futurewei Inc.
 2330 Central Expressway
 Santa Clara, CA 95050
 USA

 Phone: +1-408-330-4586
 Email: charliep@computer.org

 Stan Ratliff
 Idirect
 13861 Sunrise Valley Drive, Suite 300
 Herndon, VA 20171
 USA

 Email: ratliffstan@gmail.com

 John Dowdell
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: john.dowdell@airbus.com

 Lotte Steenbrink
 HAW Hamburg, Dept. Informatik
 Berliner Tor 7
 D-20099 Hamburg
 Germany

 Email: lotte.steenbrink@haw-hamburg.de

Perkins, et al. Expires January 4, 2018 [Page 85]

Internet-Draft AODVv2 July 2017

 Victoria Mercieca
 Airbus Defence and Space
 Celtic Springs
 Newport, Wales NP10 8FZ
 United Kingdom

 Email: victoria.mercieca@airbus.com

Perkins, et al. Expires January 4, 2018 [Page 86]

