
Workgroup: LAMPS

Internet-Draft:

draft-perret-prat-lamps-cms-pq-kem-01

Published: 20 May 2022

Intended Status: Standards Track

Expires: 21 November 2022

Authors: L. Perret

CryptoNext Security

J. Prat

CryptoNext Security

M. Ounsworth

Entrust Limited

Use of Post-Quantum KEM in the Cryptographic Message Syntax (CMS)

Abstract

This document describes the conventions for using a Key

Encapsulation Mechanism algorithm (KEM) within the Cryptographic

Message Syntax (CMS). The CMS specifies the enveloped-data content

type, which consists of an encrypted content and encrypted content-

encryption keys for one or more recipients. The mechanism proposed

here can rely on either post-quantum KEMs, hybrid KEMs or classical

KEMs.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 21 November 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Design Rationales

4. KEM Key Transport Mechanism (KEM-TRANS)

4.1. Underlying Components

4.1.1. KEM

4.1.2. KDF

4.1.3. WRAP

4.2. Recipient's Key Generation and Distribution

4.3. Sender's Operations

4.4. Recipient's Operations

5. Use in CMS

5.1. RecipientInfo Conventions

5.2. Certificate Conventions

5.2.1. Key Usage Extension

5.2.2. Subject Public Key Info

5.3. SMIME Capabilities Attribute Conventions

6. Security Considerations

7. IANA Considerations

8. Acknowledgements

9. Annex A : ASN.1 Syntax

9.1. Annex A1 : KEM-TRANS Key Transport Mechanism

9.2. Annex A2 : Underlying Components

9.2.1. Key Encapsulation Mechanisms

9.2.2. Key Derivation Functions

9.2.3. Key Wrapping Schemes

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

In recent years, there has been a substantial amount of research on

quantum computers -- machines that exploit quantum mechanical

phenomena to solve mathematical problems that are difficult or

intractable for conventional computers. If large-scale quantum

computers are ever built, they will be able to break many of the

public-key cryptosystems currently in use. This would seriously

compromise the confidentiality and integrity of digital

communications on the Internet and elsewhere. Under such a threat

model, the current key encapsulation mechanisms would be vulnerable.

¶

¶

Post-quantum key encapsulation mechanisms (PQ-KEM) are being

developed in order to provide secure key establishment against an

adversary with access to a quantum computer.

As the National Institute of Standards and Technology (NIST) is

still in the process of selecting the new post-quantum cryptographic

algorithms that are secure against both quantum and classical

computers, the purpose of this document is to propose a generic

"algorithm-agnostic" solution to protect in confidentiality the CMS

envelopped-data content against the quantum threat : the KEM-TRANS

mechanism. This mechanism could thus be used with any key

encapsulation mechanism, including post-quantum KEMs or hybrid KEMs.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used in this document:

BER: Basic Encoding Rules (BER) as defined in [X.690].

DER: Distinguished Encoding Rules as defined in [X.690].

3. Design Rationales

The Cryptographic Message Syntax (CMS) [RFC5652] defines two levels

of encryptions in the Envelopped-Data Content section:

the Content-encryption process which protects the data thanks to

a symmetric algorithm used with a content encryption key (CEK);

the Key-encryption process which protects this CEK thanks to a

key transport mechanism.

One of the typical use case of the CMS Envelopped-Data Content is to

randomly generate a CEK, encrypt the data with a symmetric algorithm

using this CEK and individually send the CEK to one or more

recipients protected by asymmetric cryptography in a RecipientInfo

object.

To achieve this scenario with KEM primitives, it is necessary to

define a new key transport mechanism that will fulfil the following

requirements:

the Key Transport Mechanism SHALL be secure againt quantum

computers.

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

*

¶

the Key Transport Mechanism SHALL take the Content-Encryption Key

(CEK) as input.

According to NIST, a KEM encapsulation algorithm generates a random

secret and a ciphertext from which the recipient can extract the

shared secret, meaning that a KEM can not be used straightforwardly

as a key transport mechanism in the CMS "multi-recipients" context.

The KEM-TRANS mechanism defined in this document aims to turn a KEM

into a key transport scheme allowing the sender to distribute a

randomly generated key to several recipients. The KEM-TRANS Key

transport mechanism described in the following section fulfils the

requirements listed above and is an adaptation of the RSA-KEM

algorithm previously specified in [RFC5652].

4. KEM Key Transport Mechanism (KEM-TRANS)

The KEM Key Transport Mechanism (KEM-TRANS) is a one-pass (store-

and-forward) mechanism for transporting keying data to a recipient.

With this type of mechanism, a sender cryptographically encapsulates

the keying data using the recipient's public key to obtain encrypted

keying data. The recipient can then decapsulate the encrypted keying

data using his private key to recover the plaintext keying data.

4.1. Underlying Components

The KEM-TRANS mechanism requires use of the following underlying

components, which are provided to KEM-TRANS as algorithm parameters.

KEM, a Key Encapsulation Mechanism;

KDF, a Key Derivation Function, which derives keying data of a

specified length from a shared secret value;

WRAP, a symmetric key-wrapping scheme, which encrypts keying Data

using a key-encrypting key (KEK).

4.1.1. KEM

A KEM is cryptographic algorithm consisting of three functions :

a key generation function KEM.keygen taking as input a security

level and returning a key pair (private key and the associated

public key) for this security level.

an encapsulation function KEM.encaps taking a public key as input

and returning a random session key and a ciphertext that is an

encapsulation of the session key.

*

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

a decaspulation function KEM.decaps taking as input a private key

and a ciphertext and returning a session key.

4.1.2. KDF

A key derivation function (KDF) is a cryptographic function that

derives one or more secret keys from a secret value using a

pseudorandom function. KDFs can be used to stretch keys into longer

keys or to obtain keys of a required format.

4.1.3. WRAP

A wrapping algorithm is a symmetric algorithm protecting data in

confidentiality and integrity. It is especially designed to

transport key material. the WRAP algorithm consists of two functions

:

a wrapping function Wrap taking a wrapping key and a plaintext

key as input and returning a wrapped key.

a decaspulation function Unwrap taking as input a wrapping key

and a wraped key and returning the plaintext key.

In the following, kekLen denotes the length in bytes of the wrapping

key for the underlying symmetric key-wrapping scheme.

In this scheme, the length of the keying data to be transported MUST

be among the lengths supported by the underlying symmetric key-

wrapping scheme.

Usage and formatting of the keying data is outside the scope of this

document. With some key derivation functions, it is possible to

include other information besides the shared secret value in the

input to the function. Also, with some symmetric key-wrapping

schemes, it is possible to associate a label with the keying data.

Such uses are outside the scope of this document, as they are not

directly supported by CMS.

4.2. Recipient's Key Generation and Distribution

The KEM-TRANS mechanism described in the next sections assumes that

the recipient has previously generated a key pair (recipPrivKey and

recipPubKey) and has distributed this public key to the sender.

The protocols and mechanisms by which the key pair is securely

generated and the public key is securely distributed are out of the

scope of this document.

*

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

4.3. Sender's Operations

This process assumes that the following algorithm parameters have

been selected:

KEM: a key encapsulation mechanism, as defined above.

KDF: a key derivation function, as defined above.

Wrap: a symmetric key-wrapping algorithm, as defined above.

kekLen: the length in bits of the key required for the Wrap

algorithm.

This process assumes that the following input data has been

provided:

recipPubKey: the recipient's public key.

K: the keying data to be transported, assumed to be a length that

is compatible with the chosen Wrap algorithm.

This process outputs:

EK: the encrypted keying data, from which the recipient will be

able to retrieve K.

The sender performs the following operations:

Generate a shared secret SS and the associated ciphertext CT

thanks to the KEM encaspulation function and the recipient's

public key recipPubKey:

(SS, CT) = KEM.encaps(recipPubKey)

Derive a key-encrypting key KEK of length kekLen bytes from the

shared secret SS using the underlying key derivation function:

KEK = KDF(SS, kekLen)

Wrap the keying data K with the key-encrypting key KEK using

the underlying key-wrapping scheme to obtain wrapped keying

data WK of length wrappedKekLen:

WK = Wrap(KEK, K)

Concatenate the wrapped keying data WK of length wrappedKekLen

and the ciphertext CT to obtain the encrypted keying data EK:

EK = (WK || CT)

¶

* ¶

* ¶

* ¶

-

¶

¶

* ¶

*

¶

¶

*

¶

¶

1.

¶

¶

2.

¶

¶

3.

¶

¶

4.

¶

¶

Output the encrypted keying data EK.

4.4. Recipient's Operations

This process assumes that the following algorithm parameters have

been communicated from the sender:

KEM: a key encapsulation mechanism, as defined above.

KDF: a key derivation function, as defined above.

Wrap: a symmetric key-wrapping algorithm, as defined above.

kekLen: the length in bits of the key required for the Wrap

algorithm.

This process assumes that the following input data has been

provided:

recipPrivKey: the recipient's private key.

EK: the encrypted keying data.

This process outputs:

K: the keying data to be transported.

The recipient performs the following operations:

Separate the encrypted keying data EK into wrapped keying data

WK of length wrappedKekLen and a ciphertext CT :

(WK || CT) = EK

Decapsulate the ciphertext CT thanks to the KEM decaspulation

function and the recipient's private key to retrieve the shared

secret SS:

SS = KEM.decaps(recipPrivKey, CT)

If the decapsulation operation outputs an error, output

"decryption error", and stop.

Derive a key-encrypting key KEK of length kekLen bytes from the

shared secret SS using the underlying key derivation function:

KEK = KDF(SS, kekLen)

5. ¶

¶

* ¶

* ¶

* ¶

-

¶

¶

* ¶

* ¶

¶

* ¶

¶

1.

¶

¶

2.

¶

¶

¶

3.

¶

¶

Unwrap the wrapped keying data WK with the key-encrypting key

KEK using the underlying key-wrapping scheme to recover the

keying data K:

K = Unwrap(KEK, WK)

If the unwrapping operation outputs an error, output

"decryption error", and stop.

Output the keying data K.

5. Use in CMS

The KEM Key Transport Mechanism MAY be employed for one or more

recipients in the CMS enveloped-data content type (Section 6 of

[RFC5652]), where the keying data K processed by the mechanism is

the CMS content-encryption key (CEK).

5.1. RecipientInfo Conventions

When the KEM Key Transport Mechanism is employed for a recipient,

the RecipientInfo alternative for that recipient MUST be

KeyTransRecipientInfo.

The mechanism satisfies the KeyTransportRecipientInfo interface

defined in RFC 5652 by taking in a Content Encryption Key (CEK) and

a recipient public key, and encrypting the CEK for that recipient.

The algorithm-specific fields of the KeyTransRecipientInfo value

MUST have the following values:

keyEncryptionAlgorithm.algorithm MUST be id-kem-trans (see

Appendix A);

keyEncryptionAlgorithm.parameters MUST be a value of type

GenericHybridParameters (see Appendix A), identifying:

the key encapsulation mechanism (kem);

the key derivation function (kdf);

the symmetric wrapping mechanism (wrap).

4.

¶

¶

¶

5. ¶

¶

EDITOR'S NOTE' - TO BE DISCUSSED

3 possibilities to communicate info:

-Use KeyTransRecipientInfo (as it is done in RSA-KEM and in here)

-Define in this RFC a KemRecipientInfo as instance of OtherRecipientInfo

-Define in this RFC a new top-level KemRecipientInfo

¶

¶

¶

¶

*

¶

*

¶

- ¶

- ¶

- ¶

encryptedKey MUST be the encrypted keying data (EK) output by the

KEM-TRANS Mechanism, where the keying data is the content-

encryption key (CEK).

5.2. Certificate Conventions

The conventions specified in this section augment [RFC5280].

5.2.1. Key Usage Extension

The intended application for the key MAY be indicated in the key

usage certificate extension (see [RFC5280], Section 4.2.1.3). If the

keyUsage extension is present in a certificate that conveys a public

key with the id-kem object identifier as discussed above, then the

key usage extension MUST contain only the value keyEncipherment

digitalSignature, nonRepudiation, dataEncipherment, keyAgreement,

keyCertSign, cRLSign, encipherOnly and decipherOnly SHOULD NOT be

present.

A key intended to be employed only with the KEM-TRANS Mechanism

SHOULD NOT also be employed for data encryption. Good cryptographic

practice employs a given key pair in only one scheme. This practice

avoids the risk that vulnerability in one scheme may compromise the

security of the other, and may be essential to maintain provable

security.

5.2.2. Subject Public Key Info

If the recipient wishes only to employ the KEM-TRANS Mechanism with

a given public key, the recipient MUST identify the public key in

the certificate using the id-kem object identifier.

5.3. SMIME Capabilities Attribute Conventions

[RFC8551], Section 2.5.2 defines the SMIMECapabilities signed

attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be

used to specify a partial list of algorithms that the software

announcing the SMIMECapabilities can support. When constructing a

signedData object, compliant software MAY include the

SMIMECapabilities signed attribute announcing that it supports the

KEM Key Transport Mechanism.

*

¶

¶

¶

¶

¶

EDITOR'S NOTE' - TODO

Update this section according to the future PQC-PKIX RFCs

¶

¶

EDITOR'S NOTE' - TODO

Clarify that id-kem refers to the KEM algo

while KEM-TRANS refers to the KEM Transport mechanism

¶

¶

The SMIMECapability SEQUENCE representing the KEM Key Transport

Mechanism MUST include the id-kem-trans object identifier in the

capabilityID field and MUST include a GenericHybridParameters value

in the parameters field identifying the components with which the

mechanism is to be employed.

The DER encoding of a SMIMECapability SEQUENCE is the same as the

DER encoding of an AlgorithmIdentifier. Example DER encodings for

typical sets of components are given in Appendix A.

6. Security Considerations

7. IANA Considerations

Within the CMS, algorithms are identified by object identifiers

(OIDs). With one exception, all of the OIDs used in this document

were assigned in other IETF documents, in ISO/IEC standards

documents, by the National Institute of Standards and Technology

(NIST). The two exceptions are the ASN.1 module's identifier and id-

kem-transport that are both assigned in this document.

8. Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

electronic mail and VOIP traffic over the past year in pursuit of

this document:

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

9. Annex A : ASN.1 Syntax

The ASN.1 syntax for identifying the KEM Key Transport Mechanism is

an extension of the syntax for the "generic hybrid cipher" in ANS

X9.44 [X9.44].

¶

¶

EDITOR'S NOTE' - TODO

section to be completed

¶

¶

¶

EDITOR'S NOTE' - TODO

section to be completed

¶

¶

¶

¶

The syntax for the scheme is given in Appendix A.1.

The syntax for selected underlying components including those

mentioned above is given in Appendix A.2.

9.1. Annex A1 : KEM-TRANS Key Transport Mechanism

The object identifier for the KEM Key Transport Mechanism is id-kem-

trans, which is defined in this document as:

When id-kem-trans is used in an AlgorithmIdentifier, the parameters

MUST employ the GenericHybridParameters syntax. The syntax for

GenericHybridParameters is as follows:

The fields of type GenericHybridParameters have the following

meanings:

kem identifies the underlying key encapsulation mechanism (KEM).

This can be any NIST KEM.

kdf identifies the underlying key derivation function (KDF). This

can be any KDF from [SP-800-56C-r2]. kdf can be equal to null if

the key encaspulation mechanism outputs a shared secret SS of

size kekLen.

wrap identifies the underlying key wrapping mechanism (WRAP).

This can be any wrapping mechanism from [RFC5649].

9.2. Annex A2 : Underlying Components

9.2.1. Key Encapsulation Mechanisms

The KEM-TRANS Mechanism can support any NIST KEM, including post-

quantum KEMs.

The object identifier for KEM is (TBD)

¶

¶

¶

id-kem-trans OID ::= { TBD }¶

¶

GenericHybridParameters ::= {

 kem KeyEncapsulationMechanism,

 kdf KeyDerivationFunction,

 wrap KeyWrappingMechanism

}

¶

¶

*

¶

*

¶

*

¶

¶

¶

EDITOR'S NOTE' - TODO :

PQ-KEMs OID have to be defined

¶

[RFC2119]

[RFC5280]

[RFC5652]

[RFC8174]

[RFC8551]

[SP-800-56C-r2]

9.2.2. Key Derivation Functions

The KEM-TRANS Mechanism can support any KDF from [SP-800-56C-r2].

The KDF can be bypassed if the key encaspulation mechanism outputs a

shared secret SS of size kekLen. kdf is then equal to null.

9.2.3. Key Wrapping Schemes

The KEM-TRANS Mechanism can support any wrapping mechanism from

[RFC5649].

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

NIST, "Recommendation for Key-Derivation Methods in

Key-Establishment Schemes", 2020.

¶

¶

EDITOR'S NOTE' - TO BE DISCUSSED :

Is there a RFC defining KDF with SHA3?

Should we limit the compatible KDFs to [SP-800-56C-r2]?

¶

¶

EDITOR'S NOTE' - TO BE DISCUSSED :

Should we limit the compatible wrapping modes to [RFC5649]?

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551

[X.690]

[X9.44]

[RFC2986]

[RFC5649]

[RFC5869]

[RFC5990]

[RFC8411]

[SP-800-108]

ASC, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", 2007.

ASC, "American National Standard X9.44: Public Key

Cryptography for the Financial Services Industry -- Key

Establishment Using Integer Factorization Cryptography",

2007.

10.2. Informative References

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Housley, R. and M. Dworkin, "Advanced Encryption Standard

(AES) Key Wrap with Padding Algorithm", RFC 5649, DOI

10.17487/RFC5649, September 2009, <https://www.rfc-

editor.org/info/rfc5649>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Randall, J., Kaliski, B., Brainard, J., and S. Turner,

"Use of the RSA-KEM Key Transport Algorithm in the

Cryptographic Message Syntax (CMS)", RFC 5990, DOI

10.17487/RFC5990, September 2010, <https://www.rfc-

editor.org/info/rfc5990>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

NIST, "Recommendation for Key Derivation Using

Pseudorandom Functions", 2009.

Authors' Addresses

Ludovic Perret

CryptoNext Security

Email: ludovic.perret@cryptonext-security.com

Julien Prat

https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc5649
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5990
https://www.rfc-editor.org/info/rfc5990
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
mailto:ludovic.perret@cryptonext-security.com

CryptoNext Security

Email: julien.prat@cryptonext-security.com

Mike Ounsworth

Entrust Limited

Email: mike.ounsworth@entrust.com

mailto:julien.prat@cryptonext-security.com
mailto:mike.ounsworth@entrust.com

	Use of Post-Quantum KEM in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Design Rationales
	4. KEM Key Transport Mechanism (KEM-TRANS)
	4.1. Underlying Components
	4.1.1. KEM
	4.1.2. KDF
	4.1.3. WRAP

	4.2. Recipient's Key Generation and Distribution
	4.3. Sender's Operations
	4.4. Recipient's Operations

	5. Use in CMS
	5.1. RecipientInfo Conventions
	5.2. Certificate Conventions
	5.2.1. Key Usage Extension
	5.2.2. Subject Public Key Info

	5.3. SMIME Capabilities Attribute Conventions

	6. Security Considerations
	7. IANA Considerations
	8. Acknowledgements
	9. Annex A : ASN.1 Syntax
	9.1. Annex A1 : KEM-TRANS Key Transport Mechanism
	9.2. Annex A2 : Underlying Components
	9.2.1. Key Encapsulation Mechanisms
	9.2.2. Key Derivation Functions
	9.2.3. Key Wrapping Schemes

	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

