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Abstract

This document describes the conventions for using a Key

Encapsulation Mechanism algorithm (KEM) within the Cryptographic

Message Syntax (CMS). The CMS specifies the enveloped-data content

type, which consists of an encrypted content and encrypted content-

encryption keys for one or more recipients. The mechanism proposed

here can rely on either post-quantum KEMs, hybrid KEMs or classical

KEMs.
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1. Introduction

In recent years, there has been a substantial amount of research on

quantum computers -- machines that exploit quantum mechanical

phenomena to solve mathematical problems that are difficult or

intractable for conventional computers. If large-scale quantum

computers are ever built, they will be able to break many of the

public-key cryptosystems currently in use. This would seriously

compromise the confidentiality and integrity of digital

communications on the Internet and elsewhere. Under such a threat

model, the current key encapsulation mechanisms would be vulnerable.
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Post-quantum key encapsulation mechanisms (PQ-KEM) are being

developed in order to provide secure key establishment against an

adversary with access to a quantum computer.

As the National Institute of Standards and Technology (NIST) is

still in the process of selecting the new post-quantum cryptographic

algorithms that are secure against both quantum and classical

computers, the purpose of this document is to propose a generic

"algorithm-agnostic" solution to protect in confidentiality the CMS

envelopped-data content against the quantum threat : the KEM-TRANS

mechanism. This mechanism could thus be used with any key

encapsulation mechanism, including post-quantum KEMs or hybrid KEMs.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used in this document:

BER: Basic Encoding Rules (BER) as defined in [X.690].

DER: Distinguished Encoding Rules as defined in [X.690].

3. Design Rationales

The Cryptographic Message Syntax (CMS) [RFC5652] defines two levels

of encryptions in the Envelopped-Data Content section:

the Content-encryption process which protects the data thanks to

a symmetric algorithm used with a content encryption key (CEK);

the Key-encryption process which protects this CEK thanks to a

key transport mechanism.

One of the typical use case of the CMS Envelopped-Data Content is to

randomly generate a CEK, encrypt the data with a symmetric algorithm

using this CEK and individually send the CEK to one or more

recipients protected by asymmetric cryptography in a RecipientInfo

object.

To achieve this scenario with KEM primitives, it is necessary to

define a new key transport mechanism that will fulfil the following

requirements:

the Key Transport Mechanism SHALL be secure againt quantum

computers.
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the Key Transport Mechanism SHALL take the Content-Encryption Key

(CEK) as input.

According to NIST, a KEM encapsulation algorithm generates a random

secret and a ciphertext from which the recipient can extract the

shared secret, meaning that a KEM can not be used straightforwardly

as a key transport mechanism in the CMS "multi-recipients" context.

The KEM-TRANS mechanism defined in this document aims to turn a KEM

into a key transport scheme allowing the sender to distribute a

randomly generated key to several recipients. The KEM-TRANS Key

transport mechanism described in the following section fulfils the

requirements listed above and is an adaptation of the RSA-KEM

algorithm previously specified in [RFC5652].

4. KEM Key Transport Mechanism (KEM-TRANS)

The KEM Key Transport Mechanism (KEM-TRANS) is a one-pass (store-

and-forward) mechanism for transporting keying data to a recipient.

With this type of mechanism, a sender cryptographically encapsulates

the keying data using the recipient's public key to obtain encrypted

keying data. The recipient can then decapsulate the encrypted keying

data using his private key to recover the plaintext keying data.

4.1. Underlying Components

The KEM-TRANS mechanism requires use of the following underlying

components, which are provided to KEM-TRANS as algorithm parameters.

KEM, a Key Encapsulation Mechanism;

KDF, a Key Derivation Function, which derives keying data of a

specified length from a shared secret value;

WRAP, a symmetric key-wrapping scheme, which encrypts keying Data

using a key-encrypting key (KEK).

4.1.1. KEM

A KEM is cryptographic algorithm consisting of three functions :

a key generation function KEM.keygen taking as input a security

level and returning a key pair (private key and the associated

public key) for this security level.

an encapsulation function KEM.encaps taking a public key as input

and returning a random session key and a ciphertext that is an

encapsulation of the session key.
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a decaspulation function KEM.decaps taking as input a private key

and a ciphertext and returning a session key.

4.1.2. KDF

A key derivation function (KDF) is a cryptographic function that

derives one or more secret keys from a secret value using a

pseudorandom function. KDFs can be used to stretch keys into longer

keys or to obtain keys of a required format.

4.1.3. WRAP

A wrapping algorithm is a symmetric algorithm protecting data in

confidentiality and integrity. It is especially designed to

transport key material. the WRAP algorithm consists of two functions

:

a wrapping function Wrap taking a wrapping key and a plaintext

key as input and returning a wrapped key.

a decaspulation function Unwrap taking as input a wrapping key

and a wraped key and returning the plaintext key.

In the following, kekLen denotes the length in bytes of the wrapping

key for the underlying symmetric key-wrapping scheme.

In this scheme, the length of the keying data to be transported MUST

be among the lengths supported by the underlying symmetric key-

wrapping scheme.

Usage and formatting of the keying data is outside the scope of this

document. With some key derivation functions, it is possible to

include other information besides the shared secret value in the

input to the function. Also, with some symmetric key-wrapping

schemes, it is possible to associate a label with the keying data.

Such uses are outside the scope of this document, as they are not

directly supported by CMS.

4.2. Recipient's Key Generation and Distribution

The KEM-TRANS mechanism described in the next sections assumes that

the recipient has previously generated a key pair (recipPrivKey and 

recipPubKey) and has distributed this public key to the sender.

The protocols and mechanisms by which the key pair is securely

generated and the public key is securely distributed are out of the

scope of this document.

*

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶



4.3. Sender's Operations

This process assumes that the following algorithm parameters have

been selected:

KEM: a key encapsulation mechanism, as defined above.

KDF: a key derivation function, as defined above.

Wrap: a symmetric key-wrapping algorithm, as defined above.

kekLen: the length in bits of the key required for the Wrap

algorithm.

This process assumes that the following input data has been

provided:

recipPubKey: the recipient's public key.

K: the keying data to be transported, assumed to be a length that

is compatible with the chosen Wrap algorithm.

This process outputs:

EK: the encrypted keying data, from which the recipient will be

able to retrieve K.

The sender performs the following operations:

Generate a shared secret SS and the associated ciphertext CT

thanks to the KEM encaspulation function and the recipient's

public key recipPubKey:

(SS, CT) = KEM.encaps(recipPubKey)

Derive a key-encrypting key KEK of length kekLen bytes from the

shared secret SS using the underlying key derivation function:

KEK = KDF(SS, kekLen)

Wrap the keying data K with the key-encrypting key KEK using

the underlying key-wrapping scheme to obtain wrapped keying

data WK of length wrappedKekLen:

WK = Wrap(KEK, K)

Concatenate the wrapped keying data WK of length wrappedKekLen

and the ciphertext CT to obtain the encrypted keying data EK:

EK = (WK || CT)
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Output the encrypted keying data EK.

4.4. Recipient's Operations

This process assumes that the following algorithm parameters have

been communicated from the sender:

KEM: a key encapsulation mechanism, as defined above.

KDF: a key derivation function, as defined above.

Wrap: a symmetric key-wrapping algorithm, as defined above.

kekLen: the length in bits of the key required for the Wrap

algorithm.

This process assumes that the following input data has been

provided:

recipPrivKey: the recipient's private key.

EK: the encrypted keying data.

This process outputs:

K: the keying data to be transported.

The recipient performs the following operations:

Separate the encrypted keying data EK into wrapped keying data 

WK of length wrappedKekLen and a ciphertext CT :

(WK || CT) = EK

Decapsulate the ciphertext CT thanks to the KEM decaspulation

function and the recipient's private key to retrieve the shared

secret SS:

SS = KEM.decaps(recipPrivKey, CT)

If the decapsulation operation outputs an error, output

"decryption error", and stop.

Derive a key-encrypting key KEK of length kekLen bytes from the

shared secret SS using the underlying key derivation function:

KEK = KDF(SS, kekLen)
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Unwrap the wrapped keying data WK with the key-encrypting key 

KEK using the underlying key-wrapping scheme to recover the

keying data K:

K = Unwrap(KEK, WK)

If the unwrapping operation outputs an error, output

"decryption error", and stop.

Output the keying data K.

5. Use in CMS

The KEM Key Transport Mechanism MAY be employed for one or more

recipients in the CMS enveloped-data content type (Section 6 of 

[RFC5652]), where the keying data K processed by the mechanism is

the CMS content-encryption key (CEK).

5.1. RecipientInfo Conventions

When the KEM Key Transport Mechanism is employed for a recipient,

the RecipientInfo alternative for that recipient MUST be

KeyTransRecipientInfo.

The mechanism satisfies the KeyTransportRecipientInfo interface

defined in RFC 5652 by taking in a Content Encryption Key (CEK) and

a recipient public key, and encrypting the CEK for that recipient.

The algorithm-specific fields of the KeyTransRecipientInfo value

MUST have the following values:

keyEncryptionAlgorithm.algorithm MUST be id-kem-trans (see

Appendix A);

keyEncryptionAlgorithm.parameters MUST be a value of type

GenericHybridParameters (see Appendix A), identifying:

the key encapsulation mechanism (kem);

the key derivation function (kdf);

the symmetric wrapping mechanism (wrap).
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-Use KeyTransRecipientInfo (as it is done in RSA-KEM and in here)
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encryptedKey MUST be the encrypted keying data (EK) output by the

KEM-TRANS Mechanism, where the keying data is the content-

encryption key (CEK).

5.2. Certificate Conventions

The conventions specified in this section augment [RFC5280].

5.2.1. Key Usage Extension

The intended application for the key MAY be indicated in the key

usage certificate extension (see [RFC5280], Section 4.2.1.3). If the

keyUsage extension is present in a certificate that conveys a public

key with the id-kem object identifier as discussed above, then the

key usage extension MUST contain only the value keyEncipherment

digitalSignature, nonRepudiation, dataEncipherment, keyAgreement, 

keyCertSign, cRLSign, encipherOnly and decipherOnly SHOULD NOT be

present.

A key intended to be employed only with the KEM-TRANS Mechanism

SHOULD NOT also be employed for data encryption. Good cryptographic

practice employs a given key pair in only one scheme. This practice

avoids the risk that vulnerability in one scheme may compromise the

security of the other, and may be essential to maintain provable

security.

5.2.2. Subject Public Key Info

If the recipient wishes only to employ the KEM-TRANS Mechanism with

a given public key, the recipient MUST identify the public key in

the certificate using the id-kem object identifier.

5.3. SMIME Capabilities Attribute Conventions

[RFC8551], Section 2.5.2 defines the SMIMECapabilities signed

attribute (defined as a SEQUENCE of SMIMECapability SEQUENCEs) to be

used to specify a partial list of algorithms that the software

announcing the SMIMECapabilities can support. When constructing a

signedData object, compliant software MAY include the

SMIMECapabilities signed attribute announcing that it supports the

KEM Key Transport Mechanism.
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The SMIMECapability SEQUENCE representing the KEM Key Transport

Mechanism MUST include the id-kem-trans object identifier in the

capabilityID field and MUST include a GenericHybridParameters value

in the parameters field identifying the components with which the

mechanism is to be employed.

The DER encoding of a SMIMECapability SEQUENCE is the same as the

DER encoding of an AlgorithmIdentifier. Example DER encodings for

typical sets of components are given in Appendix A.

6. Security Considerations

7. IANA Considerations

Within the CMS, algorithms are identified by object identifiers

(OIDs). With one exception, all of the OIDs used in this document

were assigned in other IETF documents, in ISO/IEC standards

documents, by the National Institute of Standards and Technology

(NIST). The two exceptions are the ASN.1 module's identifier and id-

kem-transport that are both assigned in this document.
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[RFC8411].

9. Annex A : ASN.1 Syntax

The ASN.1 syntax for identifying the KEM Key Transport Mechanism is

an extension of the syntax for the "generic hybrid cipher" in ANS

X9.44 [X9.44].
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The syntax for the scheme is given in Appendix A.1.

The syntax for selected underlying components including those

mentioned above is given in Appendix A.2.

9.1. Annex A1 : KEM-TRANS Key Transport Mechanism

The object identifier for the KEM Key Transport Mechanism is id-kem-

trans, which is defined in this document as:

When id-kem-trans is used in an AlgorithmIdentifier, the parameters

MUST employ the GenericHybridParameters syntax. The syntax for

GenericHybridParameters is as follows:

The fields of type GenericHybridParameters have the following

meanings:

kem identifies the underlying key encapsulation mechanism (KEM).

This can be any NIST KEM.

kdf identifies the underlying key derivation function (KDF). This

can be any KDF from [SP-800-56C-r2]. kdf can be equal to null if

the key encaspulation mechanism outputs a shared secret SS of

size kekLen.

wrap identifies the underlying key wrapping mechanism (WRAP).

This can be any wrapping mechanism from [RFC5649].

9.2. Annex A2 : Underlying Components

9.2.1. Key Encapsulation Mechanisms

The KEM-TRANS Mechanism can support any NIST KEM, including post-

quantum KEMs.

The object identifier for KEM is (TBD)

¶

¶

¶

id-kem-trans OID ::= { TBD }¶

¶

GenericHybridParameters ::= {

    kem  KeyEncapsulationMechanism,

    kdf  KeyDerivationFunction,

    wrap KeyWrappingMechanism

}

¶
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[RFC2119]

[RFC5280]

[RFC5652]

[RFC8174]

[RFC8551]

[SP-800-56C-r2]

9.2.2. Key Derivation Functions

The KEM-TRANS Mechanism can support any KDF from [SP-800-56C-r2].

The KDF can be bypassed if the key encaspulation mechanism outputs a

shared secret SS of size kekLen. kdf is then equal to null.

9.2.3. Key Wrapping Schemes

The KEM-TRANS Mechanism can support any wrapping mechanism from 

[RFC5649].
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