
TLS Working Group M. Marlinspike
Internet-Draft T. Perrin, Ed.
Intended status: Standards Track September 26, 2012
Expires: March 30, 2013

Trust Assertions for Certificate Keys
draft-perrin-tls-tack-01.txt

Abstract

 This document defines TACK, a TLS Extension that enables a TLS server
 to assert the authenticity of its public key. A "tack" contains a
 "TACK key" which is used to sign the public key from the TLS server's
 certificate. Hostnames can be "pinned" to a TACK key. TLS
 connections to a pinned hostname require the server to present a tack
 containing the pinned key and a corresponding signature over the TLS
 server's public key.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 30, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Marlinspike & Perrin Expires March 30, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Trust Assertions for Certificate Keys September 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements notation . 4
3. Overview . 5
3.1. Tack life cycle . 5
3.2. Pin life cycle . 6

4. TACK Extension . 7
4.1. Definition of TackExtension 7
4.2. Explanation of TackExtension fields 8
4.2.1. Tack fields . 8
4.2.2. TackExtension fields 8

5. Client processing . 9
5.1. TACK pins . 9
5.2. High-level client processing 9
5.3. Client processing details 10
5.3.1. Check whether the TLS handshake is well-formed 10
5.3.2. Check tack generations and update min_generations . . 10
5.3.3. Determine the store's status 11
5.3.4. Pin activation (optional) 11

6. Application protocols and TACK 13
6.1. Pin scope . 13
6.2. TLS negotiation . 13
6.3. Certificate verification 13

7. Fingerprints . 14
8. Advice . 15
8.1. For server operators 15
8.2. For client implementers 16

9. Security considerations 17
9.1. For server operators 17
9.2. For client implementers 17
9.3. Note on algorithm agility 18

10. IANA considerations . 19
10.1. New entry for the TLS ExtensionType Registry 19

11. Acknowledgements . 20
12. Normative references . 21

 Authors' Addresses . 22

Marlinspike & Perrin Expires March 30, 2013 [Page 2]

Internet-Draft Trust Assertions for Certificate Keys September 2012

1. Introduction

 Traditionally, a TLS client verifies a TLS server's public key using
 a certificate chain issued by some public CA. "Pinning" is a way for
 clients to obtain increased certainty in server public keys. Clients
 that employ pinning check for some constant "pinned" element of the
 TLS connection when contacting a particular TLS host.

 Unfortunately, a number of problems arise when attempting to pin
 certificate chains: the TLS servers at a given hostname may have
 different certificate chains simultaneously deployed and may change
 their chains at any time, the "more constant" elements of a chain
 (the CAs) may not be trustworthy, and the client may be oblivious to
 key compromise events which render the pinned data untrustworthy.

 TACK addresses these problems by having the site sign its TLS server
 public keys with a "TACK key". This enables clients to "pin" a
 hostname to the TACK key without requiring sites to modify their
 existing certificate chains, and without limiting a site's
 flexibility to deploy different certificate chains on different
 servers or change certificate chains at any time. Since TACK pins
 are based on TACK keys (instead of CA keys), trust in CAs is not
 required. Additionally, the TACK key may be used to revoke
 compromised TLS private keys, and TACK key rollovers may be performed
 to recover from suspect or compromised TACK keys.

 If requested, a compliant server will send a TLS Extension containing
 its "tack". Inside the tack is a public key and signature. Once a
 client has seen the same (hostname, TACK public key) pair multiple
 times, the client will "activate" a pin between the hostname and TACK
 key for a period equal to the length of time the pair has been
 observed for. This "pin activation" algorithm limits the impact of
 bad pins resulting from transient network attacks or operator error.

 TACK pins are easily shared between clients. For example, a TACK
 client may scan the internet to discover TACK pins, then publish
 these pins through some 3rd-party trust infrastructure for other
 clients to rely upon.

Marlinspike & Perrin Expires March 30, 2013 [Page 3]

Internet-Draft Trust Assertions for Certificate Keys September 2012

2. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Marlinspike & Perrin Expires March 30, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Trust Assertions for Certificate Keys September 2012

3. Overview

3.1. Tack life cycle

 A server operator using TACK may perform several processes:

 Selection of a TACK key: The server operator first chooses the ECDSA
 signing key to use for a set of hostnames. It is safest to use a
 different signing key for each hostname, though a signing key may
 be reused for closely-related hostnames (such as aliases for the
 same host, or hosts sharing the same TLS key).

 Creating initial tacks under a TACK key: The TACK private key is
 then used to sign the TLS public keys for all servers associated
 with those hostnames. The TACK public key and signature are
 combined with some metadata into each server's "tack".

 Deploying initial tacks: For each hostname, tacks are deployed to
 TLS servers in a two-stage process. First, each TLS server
 associated with the hostname is given a tack. Once this is
 completed, the tacks are activated by setting the "activation
 flag" on each server.

 Creating new tacks under a TACK key: A tack needs to be replaced
 whenever a server changes its TLS public key, or when the tack
 expires. Tacks may also need to be replaced with later-generation
 tacks if the TACK key's "min_generation" is updated (see next).

 Revoking old tacks: If a TLS private key is compromised, the tacks
 signing this key can be revoked by publishing a new tack
 containing a higher "min_generation".

 Deactivating tacks: If a server operator wishes to stop deploying
 tacks, all tacks for a hostname can be deactivated via the
 activation flag, allowing the server to remove the tacks within 30
 days (at most).

 Rollover: If a server operator wishes to change the TACK key a
 hostname is pinned to, the server can publish a new tack alongside
 the old one. This lets clients activate pins for the new TACK key
 prior to the server deactivating the older pins.

Marlinspike & Perrin Expires March 30, 2013 [Page 5]

Internet-Draft Trust Assertions for Certificate Keys September 2012

3.2. Pin life cycle

 A TACK pin associates a hostname and a TACK key. Pins are grouped
 into "pin stores". A client may populate its pin stores by either
 performing "pin activation" directly, or by querying some other
 party. For example, a client application may have a store for pin
 activation as well as a store whose contents are periodically fetched
 from a server.

 Whenever a client performing "pin activation" sees a hostname and
 TACK key combination not represented in the "pin activation" pin
 store, an inactive pin is created. Every subsequent time the client
 sees the same pin, the pin is "activated" for a period equal to the
 timespan between the first time the pin was seen and the most recent
 time, up to a maximum period of 30 days.

 A pin store may contain up to two pins per hostname. This allows for
 "pin rollover", where a server securely transitions from one pin to
 another. If both pins are simultaneously active, then the server
 must satisfy both of them by presenting a pair of tacks.

 In addition to creating and activating pins, a TLS connection can
 alter client pin stores by publishing new "min_generation" values in
 a tack. Each pin stores the highest "min_generation" value it has
 seen from the pinned TACK key, and rejects tacks from earlier
 generations.

Marlinspike & Perrin Expires March 30, 2013 [Page 6]

Internet-Draft Trust Assertions for Certificate Keys September 2012

4. TACK Extension

4.1. Definition of TackExtension

 A new TLS ExtensionType ("tack") is defined and MAY be included by a
 TLS client in the ClientHello message defined in [RFC5246].

 enum {tack(TBD), (65535)} ExtensionType;

 The "extension_data" field of this ClientHello extension SHALL be
 empty. A TLS server which is not resuming a TLS session MAY respond
 with an extension of type "tack" in the ServerHello. The
 "extension_data" field of this ServerHello extension SHALL contain a
 "TackExtension", as defined below using the TLS presentation language
 from [RFC5246].

 struct {
 opaque public_key[64];
 uint8 min_generation;
 uint8 generation;
 uint32 expiration;
 opaque target_hash[32];
 opaque signature[64];
 } Tack; /* 166 bytes */

 struct {
 Tack tacks<166...332> /* 1 or 2 Tacks */
 uint8 activation_flags; /* 0...3 */
 } TackExtension;

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Marlinspike & Perrin Expires March 30, 2013 [Page 7]

Internet-Draft Trust Assertions for Certificate Keys September 2012

4.2. Explanation of TackExtension fields

4.2.1. Tack fields

 public_key: This field specifies the tack's public key. The field
 contains a pair of integers (x, y) representing a point on the
 elliptic curve P-256 defined in [FIPS186-3]. Each integer is
 encoded as a 32-byte octet string using the Integer-to-Octet-
 String algorithm from [RFC6090], and these strings are
 concatenated with the x value first. (NOTE: This is equivalent to
 an uncompressed subjectPublicKey from [RFC5480], except that the
 initial 0x04 byte is omitted).

 min_generation: This field publishes a min_generation value.

 generation: This field assigns each tack a generation. Generations
 less than a published min_generation are considered revoked.

 expiration: This field specifies a time after which the tack is
 considered expired. The time is encoded as the number of minutes,
 excluding leap seconds, after midnight UTC, January 1 1970.

 target_hash: This field is a hash of the TLS server's
 SubjectPublicKeyInfo [RFC5280] using the SHA256 algorithm from
 [FIPS180-2]. The SubjectPublicKeyInfo is typically conveyed as
 part of the server's X.509 certificate.

 signature: This field is an ECDSA signature by the tack's public key
 over the 8 byte ASCII string "tack_sig" followed by the contents
 of the tack prior to the "signature" field (i.e. the preceding 102
 bytes). The field contains a pair of integers (r, s) representing
 an ECDSA signature as defined in [FIPS186-3], using curve P-256
 and SHA256. Each integer is encoded as a 32-byte octet string
 using the Integer-to-Octet-String algorithm from [RFC6090], and
 these strings are concatenated with the r value first.

4.2.2. TackExtension fields

 tacks: This field provides the server's tack(s). It SHALL contain 1
 or 2 tacks.

 activation_flags: This field contains "activation flags" for the
 extension's tacks. If the low order bit is set, the first tack is
 considered active. If the next lowest bit is set, the second tack
 is considered active. An active tack MAY be used by the pin
 activation algorithm in Section 5.3.4 to create, activate, and
 extend the activation of TACK pins.

https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc6090

Marlinspike & Perrin Expires March 30, 2013 [Page 8]

Internet-Draft Trust Assertions for Certificate Keys September 2012

5. Client processing

5.1. TACK pins

 A client SHALL have a local store of pins, and MAY have multiple
 stores. Each pin store consists of a map associating fully qualified
 DNS hostnames with either one or two sets of the following values:

 Initial time: A timestamp noting when this pin was created.

 End time: A timestamp determining the pin's "active period". If set
 to zero or a time in the past, the pin is "inactive". If set to a
 future time, the pin is "active" until that time.

 TACK public key (or hash): A public key or a cryptographically-
 secure, second preimage-resistant hash of a public key.

 Min_generation: A single byte used to detect revoked tacks. All
 pins within a pin store sharing the same TACK public key SHALL
 have the same min_generation.

 A hostname along with the above values comprises a "TACK pin". Thus,
 each store can hold up to two pins for a hostname (however, those two
 pins MUST reference different public keys). A pin "matches" a tack
 if they reference the same public key. A pin is "relevant" if its
 hostname equals the TLS server's hostname.

5.2. High-level client processing

 A TACK client SHALL send the "tack" extension defined previously, and
 SHALL send the "server_name" extension from [RFC6066]. If not
 resuming a session, the server MAY respond with a TackExtension.
 Regardless of whether a TackExtension is returned, the client SHALL
 perform the following steps prior to using the connection:

 1. Check whether the TLS handshake is "well-formed".

 2. For each pin store, do:

 A. Check tack generations and update min_generations.

 B. Determine the store's status.

 C. Perform pin activation (optional).

https://datatracker.ietf.org/doc/html/rfc6066

Marlinspike & Perrin Expires March 30, 2013 [Page 9]

Internet-Draft Trust Assertions for Certificate Keys September 2012

 These steps SHALL be performed in order. If there is any error, the
 client SHALL send a fatal error alert and close the connection,
 skipping the remaining steps (see Section 5.3 for details).

 Based on step 2B, each store will report one of three statuses for
 the connection: "accepted", "rejected", or "unpinned". A rejected
 connection might indicate a network attack. If the connection is
 rejected the client SHOULD send a fatal "access_denied" error alert
 and close the connection.

 A client MAY perform additional verification steps before using an
 accepted or unpinned connection. See Section 6.3 for an example.

5.3. Client processing details

5.3.1. Check whether the TLS handshake is well-formed

 A TLS handshake is "well-formed" if the following are true. Unless
 otherwise specified, if any of the following are false a
 "bad_certificate" fatal error alert SHALL be sent.

 1. The handshake protocol negotiates a cryptographically secure
 ciphersuite and finishes succesfully.

 2. If a TackExtension is present then all length fields are correct,
 "activation_flags" is <= 3, and the tacks are "well-formed" (see
 below).

 3. If there are two tacks, they have different "public_key" fields.

 A tack is "well-formed" if:

 1. "generation" is >= "min_generation".

 2. "expiration" specifies a time in the future, otherwise the client
 SHALL send a fatal "certificate_expired" error alert.

 3. "target_hash" is a correct hash of the SubjectPublicKeyInfo.

 4. "signature" is a correct ECDSA signature.

5.3.2. Check tack generations and update min_generations

 If a tack has matching pins in the pin store and a generation less
 than the stored min_generation, then that tack is revoked and the
 client SHALL send a fatal "certificate_revoked" error alert. If a
 tack has matching pins and a min_generation greater than the stored
 min_generation, the stored value SHALL be set to the tack's value.

Marlinspike & Perrin Expires March 30, 2013 [Page 10]

Internet-Draft Trust Assertions for Certificate Keys September 2012

5.3.3. Determine the store's status

 If there is a relevant active pin without a matching tack, then the
 connection is "rejected". If the connection is not rejected and
 there is a relevant active pin with a matching tack, then the
 connection is "accepted". Otherwise, the connection is "unpinned".

5.3.4. Pin activation (optional)

 The TLS connection MAY be used to create, delete, and activate pins.
 This "pin activation algorithm" is optional; a client MAY rely on an
 external source of pins. If the connection was "rejected" by the
 previous processing step, then pin activation is skipped.

 The first step in pin activation is to evaluate each relevant pin
 (there may be one or two):

 1. If a pin has no matching tack, its handling will depend on
 whether the pin is active. If active, the connection will have
 been rejected, skipping pin activation. If inactive, the pin
 SHALL be deleted, since it is contradicted by the connection.

 2. If a pin has a matching tack, its handling will depend on whether
 the tack is active. If inactive, the pin is left unchanged. If
 active, the pin SHALL have its "end time" set based on the
 current, initial, and end times:

 end = current + MIN(30 days, current - initial)

 In sum: (1) deletes unmatched pins, provided they are inactive; and
 (2) activates matched pins, provided the matching tack is active.

 The remaining step in pin activation is to add new inactive pins for
 any unmatched active tacks. Each new pin uses the server's hostname,
 the tack's public key and min_generation (unless the store has a
 higher min_generation for the public key), an "initial time" set to
 the current time, and an "end time" of zero.

 (Note that there are always sufficient empty "slots" in the pin store
 for adding new pins without exceeding two pins per hostname. This is
 because the number of matching pins equals the number of matching
 tacks, so the number of empty pin slots equals the number of
 unmatched tacks.)

 The following tables summarize this behavior from the perspective of
 a pin. You can follow the lifecycle of a single pin from "New
 inactive pin" to "Delete pin".

Marlinspike & Perrin Expires March 30, 2013 [Page 11]

Internet-Draft Trust Assertions for Certificate Keys September 2012

 Relevant pin is active:

 +--------------------+----------------+--------------------------+
 | Pin matches a tack | Tack is active | Result |
 +--------------------+----------------+--------------------------+
 | Yes | Yes | Extend activation period |
 | | | |
 | Yes | No | - |
 | | | |
 | No | - | (Connection rejected) |
 +--------------------+----------------+--------------------------+

 Relevant pin is inactive:

 +--------------------+----------------+--------------+
 | Pin matches a tack | Tack is active | Result |
 +--------------------+----------------+--------------+
 | Yes | Yes | Activate pin |
 | | | |
 | Yes | No | - |
 | | | |
 | No | - | Delete pin |
 +--------------------+----------------+--------------+

 Tack doesn't match any relevant pin:

 +--------------------------+------------------+
 | Unmatched tack is active | Result |
 +--------------------------+------------------+
 | Yes | New inactive pin |
 | | |
 | No | - |
 +--------------------------+------------------+

Marlinspike & Perrin Expires March 30, 2013 [Page 12]

Internet-Draft Trust Assertions for Certificate Keys September 2012

6. Application protocols and TACK

6.1. Pin scope

 TACK pins are specific to a particular application protocol. In
 other words, a pin for HTTPS at "example.com" implies nothing about
 POP3 or SMTP at "example.com".

6.2. TLS negotiation

 Some application protocols negotiate TLS as an optional feature (e.g.
 SMTP using STARTTLS [RFC3207]). If such a server fails to negotiate
 TLS and there are relevant active pins, then the connection is
 rejected by the pin. If the server fails to negotiate TLS, then any
 relevant, inactive pins SHALL be deleted. Note that these steps are
 taken despite the absence of a TLS connection.

6.3. Certificate verification

 A TACK client MAY choose to perform some form of certificate
 verification in addition to TACK processing. When combining
 certificate verification and TACK processing, the TACK processing
 described in Section 5 SHALL be followed, with the exception that
 TACK processing MAY be terminated early (or skipped) if some fatal
 certificate error is discovered.

 If TACK processing and certificate verification both complete without
 a fatal error, the client SHALL apply some policy to decide whether
 to accept the connection. The policy is up to the client. An
 example policy would be to accept the connection only if it passes
 certificate verification and is not rejected by a pin.

https://datatracker.ietf.org/doc/html/rfc3207

Marlinspike & Perrin Expires March 30, 2013 [Page 13]

Internet-Draft Trust Assertions for Certificate Keys September 2012

7. Fingerprints

 A "key fingerprint" may be used to represent a TACK public key to
 users in a form that is easy to compare and transcribe. A key
 fingerprint consists of the first 25 characters from the base32
 encoding of SHA256(public_key), split into 5 groups of 5 characters
 separated by periods. Base32 encoding is as specified in [RFC4648],
 except lowercase is used. Examples:

 g5p5x.ov4vi.dgsjv.wxctt.c5iul

 quxiz.kpldu.uuedc.j5znm.7mqst

 e25zs.cth7k.tscmp.5hxdp.wf47j

https://datatracker.ietf.org/doc/html/rfc4648

Marlinspike & Perrin Expires March 30, 2013 [Page 14]

Internet-Draft Trust Assertions for Certificate Keys September 2012

8. Advice

8.1. For server operators

 Key reuse: All servers that are pinned to a single TACK key are able
 to impersonate each other, since clients will perceive their tacks
 as equivalent. Thus, TACK keys SHOULD NOT be reused with
 different hostnames unless these hostnames are closely related.
 Examples where it would be safe to reuse a TACK key are hostnames
 aliased to the same host, hosts sharing the same TLS key, or
 hostnames for a group of near-identical servers.

 Aliases: A TLS server may be referenced by multiple hostnames.
 Clients may pin any of these hostnames. Server operators should
 be careful when using DNS aliases that hostnames are not pinned
 inadvertently.

 Generations: To revoke older generations of tacks, the server
 operator SHOULD first provide all servers with a new generation of
 tacks, and only then provide servers with new tacks containing the
 new min_generation. Otherwise, a client may receive a
 min_generation update from one server but then try to contact an
 older-generation server which has not yet been updated.

 Tack expiration: When TACK is used in conjunction with certificates
 it is recommended to set the tack expiration equal to the end-
 entity certificate expiration plus 30 days, allowing the tack and
 certificate to both be replaced at the same time. The extra 30
 days ensures there is enough time to employ "pin deactivation"
 (see below) if the TACK private key is lost. Alternatively,
 short-lived tacks may be used so that a compromised TLS private
 key has limited value to an attacker.

 Tack/pin activation: Tacks should only be activated once all TLS
 servers sharing the same hostname have a tack. Otherwise, a
 client may activate a pin by contacting one server, then contact a
 different server at the same hostname that does not yet have a
 tack.

 Tack/pin deactivation: If all servers at a hostname deactivate their
 tacks (by clearing the activation flags), all existing pins for
 the hostname will eventually become inactive. The tacks can be
 removed after a time interval equal to the maximum active period
 of any affected pins (30 days at most).

Marlinspike & Perrin Expires March 30, 2013 [Page 15]

Internet-Draft Trust Assertions for Certificate Keys September 2012

 Pin rollover: When performing a rollover, the old and new tacks
 SHOULD be published simultaneously for at least 60 days. This
 ensures that a pin activation client who is contacting the server
 at least once every 30 days will not have the length of its
 activation periods affected by the transition. Example rollover
 process: Add new tacks; activate new tacks; wait 30+ days;
 deactivate old tacks; wait 30+ days; remove old tacks.

8.2. For client implementers

 Sharing pin information: It is possible for a client to maintain a
 pin store based entirely on its own TLS connections. However,
 such a client runs the risk of creating incorrect pins, failing to
 keep its pins active, or failing to receive min_generation
 updates. Clients are advised to make use of 3rd-party trust
 infrastructure so that pin data can be aggregated and shared.
 This will require additional protocols outside the scope of this
 document.

 Clock synchronization: A client SHOULD take measures to prevent
 tacks from being erroneously rejected as expired due to an
 inaccurate client clock. Such methods MAY include using time
 synchronization protocols such as NTP [RFC5905], or accepting
 seemingly-expired tacks as "well-formed" if they expired less than
 T minutes ago, where T is a "tolerance bound" set to the client's
 maximum expected clock error.

https://datatracker.ietf.org/doc/html/rfc5905

Marlinspike & Perrin Expires March 30, 2013 [Page 16]

Internet-Draft Trust Assertions for Certificate Keys September 2012

9. Security considerations

9.1. For server operators

 All servers pinned to the same TACK key can impersonate each other
 (see Section 8.1). Think carefully about this risk if using the same
 TACK key for multiple hostnames.

 Make backup copies of the TACK private key and keep all copies in
 secure locations where they can't be compromised.

 A TACK private key MUST NOT be used to perform any non-TACK
 cryptographic operations. For example, using a TACK key for email
 encryption, code-signing, or any other purpose MUST NOT be done.

 HTTP cookies [RFC6265] set by a pinned host can be stolen by a
 network attacker who can forge web and DNS responses so as to cause a
 client to send the cookies to a phony subdomain of the pinned host.
 To prevent this, TACK HTTPS Servers SHOULD set the "secure" attribute
 and omit the "domain" attribute on all security-sensitive cookies,
 such as session cookies. These settings tell the browser that the
 cookie should only be presented back to the originating host (not its
 subdomains), and should only be sent over HTTPS (not HTTP) [RFC6265].

9.2. For client implementers

 A TACK pin store may contain private details of the client's
 connection history. An attacker may be able to access this
 information by hacking or stealing the client. Some information
 about the client's connection history could also be gleaned by
 observing whether the client accepts or rejects connections to phony
 TLS servers without correct tacks. To mitigate these risks, a TACK
 client SHOULD allow the user to edit or clear the pin store.

 Aside from rejecting TLS connections, clients SHOULD NOT take any
 actions which would reveal to a network observer the state of the
 client's pin store, as this would allow an attacker to know in
 advance whether a "man-in-the-middle" attack on a particular TLS
 connection will succeed or be detected.

 An attacker may attempt to flood a client with spurious tacks for
 different hostnames, causing the client to delete old pins to make
 space for new ones. To defend against this, clients SHOULD NOT
 delete active pins to make space for new pins. Clients instead
 SHOULD delete inactive pins. If there are no inactive pins to
 delete, then the pin store is full and there is no space for new
 pins. To select an inactive pin for deletion, the client SHOULD
 delete the pin with the oldest "end time".

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc6265

Marlinspike & Perrin Expires March 30, 2013 [Page 17]

Internet-Draft Trust Assertions for Certificate Keys September 2012

9.3. Note on algorithm agility

 If the need arises for tacks using different cryptographic algorithms
 (e.g., if SHA256 or ECDSA are shown to be weak), a "v2" version of
 tacks could be defined, requiring assignment of a new TLS Extension
 number. Tacks as defined in this document would then be known as
 "v1" tacks.

Marlinspike & Perrin Expires March 30, 2013 [Page 18]

Internet-Draft Trust Assertions for Certificate Keys September 2012

10. IANA considerations

10.1. New entry for the TLS ExtensionType Registry

 IANA is requested to add an entry to the existing TLS ExtensionType
 registry, defined in [RFC5246], for "tack"(TBD) as defined in this
 document.

Marlinspike & Perrin Expires March 30, 2013 [Page 19]

https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft Trust Assertions for Certificate Keys September 2012

11. Acknowledgements

 Valuable feedback has been provided by Adam Langley, Chris Palmer,
 Nate Lawson, and Joseph Bonneau.

Marlinspike & Perrin Expires March 30, 2013 [Page 20]

Internet-Draft Trust Assertions for Certificate Keys September 2012

12. Normative references

 [FIPS180-2]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002, <http://

csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>.

 [FIPS186-3]
 National Institute of Standards and Technology, "Digital
 Signature Standard", FIPS PUB 186-3, June 2009, <http://

csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3207] Hoffman, P., "SMTP Service Extension for Secure SMTP over
 Transport Layer Security", RFC 3207, February 2002.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5480] Turner, S., Brown, D., Yiu, K., Housley, R., and T. Polk,
 "Elliptic Curve Cryptography Subject Public Key
 Information", RFC 5480, March 2009.

 [RFC5905] Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
 Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, June 2010.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3207
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5480
https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc6066
https://datatracker.ietf.org/doc/html/rfc6090
https://datatracker.ietf.org/doc/html/rfc6265

Marlinspike & Perrin Expires March 30, 2013 [Page 21]

Internet-Draft Trust Assertions for Certificate Keys September 2012

Authors' Addresses

 Moxie Marlinspike

 Trevor Perrin (editor)

 Email: tack@trevp.net

Marlinspike & Perrin Expires March 30, 2013 [Page 22]

