
Workgroup: Network Working Group

Published: 7 February 2023

Intended Status: Experimental

Expires: 11 August 2023

Authors: M. Petit-Huguenin

Impedance Mismatch LLC

Computerate Specification

Abstract

This document specifies computerate specifications, which are the

combination of a formal and an informal specification such as parts

of the informal specification are generated from the formal

specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 August 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Terminology

3. AsciiDoc

3.1. Literate Programming

3.2. Code Macros

3.2.1. Inline Code Macro

3.2.2. Block Code Macro

4. Idris2

4.1. "Asciidoc" Module

4.1.1. Content

4.1.2. Block

4.1.3. Implementing Asciidoc

4.2. Xml2rfc Module

4.2.1. Content

4.2.2. Block

4.2.3. Top-level Section

4.2.4. Document

5. Informative References

Appendix A. Installation

Appendix B. Package asciidoc

B.1. Module Asciidoc

B.2. Module Asciidoc.Xml2rfc

Contributors

Author's Address

1. Introduction

An informal specification is any document that is the combination of

text, diagrams, tables, lists, and examples and whose purpose is to

describe an engineering system. An RFC is an example of informal

specification when it describes network elements and the protocols

that help these elements to interoperate.

Informal specifications are nowadays written on a computer, which

makes them easier to write but not easier to reason about their

correctness. Computers can be used to model the engineering system

that a specification is meant to describe, to verify that some

properties hold for that model, and to automatically derive parts of

the text, diagrams, list and examples that compose that

specification. This could be done in an ad-hoc way by copying and

pasting results from external software, but this adds the burden for

the specification authors of having to keep the software model and

the specification synchronized.

A well-known consequence is when an example in a specification does

not match the text, most likely because one of the two was modified

without verifying that the other was updated.

¶

¶

¶

AsciiDoc:

Asciidoc:

Asciidoctor:

To simplify the integration of code in a specification we introduce

the concept of "Computerate Specifying", which is similar in

appearance to literate programming [LitProg], but reversing the

intent. Literate programming is about interspersing code with the

elements of a document, with the intent of producing a piece of code

that can then be executed. On the other hand computerate specifying

is about interspersing a document with code, with the intent of

producing a document that have some of its elements generated from

the result of computations that uses that code.

"Computerate Specifying" is a play on "Literate Computing", itself a

play on "Structured Computing" (see [Knuth92] page 99). Note that

"computerate" is a British English word. To keep on the joke, an

informal specification could be said to be an incomputerate

specification, "incomputerate" being an Australian English word.

2. Terminology

The formal language in which the document part of a

computerate specification is written.

An Idris2 package that is used to generate AsciiDoc

fragments.

An extensible processor for AsciiDoc document.

3. AsciiDoc

There is a large variety of target formats in which a specification

can be written (HTML, PDF, Word, Confluence), so we use [AsciiDoc]

as a common format from which any of the target formats can be

generated.

AsciiDoc is a text format, making it easy to mix with code and to

integrate with the tools that programmers are most familiar with. It

has been chosen because it is derived from DocBook and because its

main implementation, [Asciidoctor], can be easily extended and

already have a large set of backends for various target formats:

The HTML5, DocBook5, and Manpage back-ends are built-in.

The PDF, Epub3, Reveal.js (slides) and many others are

distributed as add-ons.

[Metanorma] distributes a set of back-end add-ons for the

development of standard documents.

A alternate XML2RFC v3 [draft-petithuguenin-xml2rfc-asciidoc]

backend add-on is also available.

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

A Confluence backend add-on is under development.

The AsciiDoc syntax is enriched with several extensions designed to

support computerate specifications:

the support for literate programming, by commenting out any line

that starts with the '>' character in the leftmost column

an inline macro that inserts the result of a computation as

AsciiDoc formatted text

a block macro that inserts the result of a computation as

AsciiDoc blocks

These syntax extensions, which are described in the following

sections, are implemented in the "asciidoctor-idris2" add-on.

3.1. Literate Programming

Idris2 shares with Haskell and other Haskell relatives built-in

support for literate programming. We use the Bird mode which marks

lines of code with a '>' symbol in the leftmost column. The literate

programming rule that states that a block of code must always be

separated from normal text by at least one blank line applies.

The following example contains a block of two lines of Idris2 code:

Note that the '>' symbol is also used by AsciiDoc as an alternate

way of defining a blockquote which is consequently not available in

a computerate specification. The normal syntax for blockquotes must

be used instead.

The code will not appear in the rendered document, but self-

inclusion can be used to copy part of the code into the document,

thus guaranteeing that this code is verified by the type-checker:

* ¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

Some text

> a : Int

> a = 2

More text

¶

¶

¶

> -- tag::currying[]

> total

> currying : ((a, b) -> c) -> (a -> b -> c)

> currying f = \x => \y => f (x, y)

> -- end::currying[]

....

include::myfile.lidr[tag=currying]

....

¶

Because Idris2 does not resolve forward references by default, self-

inclusion can also be used to reorder paragraphs when the flow of

explanations does not coincide with the flow of the code.

Alternating paragraphs of text and code permits to keep both

representations as close as possible and is an effective way to

quickly discover that the code and the text are diverging. The

convention is to insert the code beneath the text it is related to.

To be treated as a literate programming file, the AsciiDoc document

must use the suffix ".lidr". This generally means that a document

will be split in multiple documents, some with the ".adoc" extension

and some with the ".lidr" extension. These files are put back

together by using, directly or indirectly, AsciiDoc "include"

statements in the files.

3.2. Code Macros

Using code macros in lieu of the equivalent constants in a document

ensures that the text stays consistent during the development of the

specification.

The type of the code passed to the macro must implement the Asciidoc

interface so it is converted into properly escaped Asciidoc.

Section 4.1.3 explains how to implement the Asciidoc interface for

user defined types.

A code macro searches first for an Asciidoc implementation that has

the same name than the back-end, then fallback to an unnamed

implementation when a named implementation cannot be found. This

permits to use all the extensions specific to a particular back-end.

3.2.1. Inline Code Macro

The code2:[] inline macro is used when the result is to be inserted

as AsciiDoc inline text.

¶

¶

¶

¶

¶

¶

¶

For instance the following excerpt taken from the computerate

specification of [RFC8489]:

is rendered as

"For example, assuming an RTO of 500ms, requests would be sent at

times 0 ms, 500 ms, 1500 ms, 3500 ms, 7500 ms, 15500 ms, and

31500ms. If the client has not received a response after 39500 ms,

the client will consider the transaction to have timed out."

3.2.2. Block Code Macro

The "code::[]" block macro (notice the double colon) is used to

generate AsciiDoc blocks in a way similar to the inline code macro.

4. Idris2

The code in a computerate specification uses the programming

language [Idris2] in literate programming [Knuth92] mode. Although

most programming languages could have been used, Idris2 has been

chosen for the following features:

purely functional

eager evaluation, with optional laziness

totality checking

dependent and linear type system.

reflection and meta-programming support

REPL.

¶

> retrans' : Nat -> Int -> Maybe (List1 Int)

> retrans' rc = fromList . take rc . scanl (+) 0

> . unfoldr (bimap id (*2) . dup)

> retrans : Nat -> Int -> String

> retrans rc = maybe "Error"

> (foldr1By (\e, a => show e ++ " ms, " ++ a)

> (\x => "and " ++ show x ++ "ms")) . retrans' rc

> timeout : Nat -> Int -> Int -> String

> timeout rc rto rm = maybe "Error"

> (\e => show (last e + rm * rto)) (retrans' rc rto)

> rc : Nat; rc = 7

> rto : Int; rto = 500

> rm : Int; rm = 16

For example, assuming an RTO of code:[rto]ms, requests would be

sent at times code:[retrans rc rto].

If the client has not received a response after code:[timeout] ms,

the client will consider the transaction to have timed out.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

"TextContent":

"BreakContent":

"ItalicContent":

"LinkContent":

"IndexContent":

"BoldContent":

"SubscriptContent":

"SuperscriptContent":

"MonospaceContent":

"CrossrefContent":

"PassContent":

The most important of these features are totality checking and the

dependent type system, which permit to ensure an high level of

correctness to the code. Generating portions of a document from a

programming language that lacks these features would only bring

marginal improvements in the quality of a specification.

The next sections describe an Idris2 package that can be used to

simplify the generation of IdrisDoc. Appendix B lists the API for

that same package.

4.1. "Asciidoc" Module

The Asciidoc module provides a way to programmatically build an

AsciiDoc fragment without having to worry about the particular

formatting details.

The elements of an AsciiDoc document are grouped in 4 categories:

Content

Block

Top-level section

Document

4.1.1. Content

"Content" is the sum type of the possible parts that compose an

AsciiDoc text:

Plain text.

An hard line break.

Italicized text.

An hyperlink.

A word that will be cross-referenced in the index.

Bold text.

Subscripted text.

Superscripted text.

Monospaced text.

A cross reference to another part of the whole

document.

Text that is copied in the output document without

further processing.

"OtherContent" is used to extend the Content sum type with content

that is specific to a backend.

4.1.2. Block

"Block" is the sum type of the possible blocks that compose an

AsciiDoc document:

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

"ParagraphBlock":

"LiteralBlock":

"ImageBlock":

"SourceBlock":

"SidebarBlock":

"QuoteBlock":

"DefinitionListBlock":

"OrderedListBlock":

"UnorderedListBlock":

"TableBlock":

"IndexBlock":

"PassBlock":

A paragraph.

A pretty-printed block of text.

An image.

A pretty-printed block of source code.

Visually separated content.

A prose excerpt, quote, or verse.

An association list.

An ordered list.

An unordered list.

An table.

A word that will be cross-referenced in the index.

Text that is copied in the output document without

further processing.

"OtherBlock" is used to extend the Block sum type with blocks that

are specific to a backend.

4.1.3. Implementing Asciidoc

User-defined Idris2 types can implement the Asciidoc interface to

streamline their conversion into AsciiDoc, in a way that is similar

to the use of the standard Show and Pretty interfaces.

The Asciidoc interface defines two functions, contents and blocks

which, after implementation, generates respectively a non-empty list

of Content instances or a non-empty list of Block instances. The

former is called when using an inline code macro, the latter when

using a block code macro. Both functions are implemented by default

so it is mandatory to implement only one of the two.

For example the following fragment defines how to render the result

of a decision function in a specification:

The "Asciidoc" interface is implemented for the builtin types

"String", "Char", "Integer", "Int", "Int8", "Int16", "Int32",

"Int64", "Bits8", "Bits16", "Bits32", "Bits64", and "Double".

Additional implementations of the "Asciidoc" interface that are

useful when writing an Internet-Draft will be documented in separate

documents.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

> Asciidoc (Dec a) where

> contents (Yes prf) = singleton (TextContent "yes")

> contents (No contra) = singleton (TextContent "no")

Is 1 + 1 = 2? code:[decEq (1 + 1) 2]. +

Is 1 + 1 = 3? code:[decEq (1 + 1) 3].

¶

¶

¶

4.2. Xml2rfc Module

This module supplements the Asciidoc module with types that

implement the AsciiDoc extensions specific to the "xml2rfc"

Asciidoctor backend.

4.2.1. Content

"CrossrefXml2rfc" extends the "Crossref" content with additional

attributes

"LinkXml2rfc" extends the "Link" content with additional attributes

"Bcp14" is an additional content.

"Comment" is an additional content.

"Unicode" is an additional content.

4.2.2. Block

"ParagraphXml2rfc" extends the "Paragraph" block with additional

attributes

"LiteralXml2rfc" extends the "Literal" block with additional

attributes

"ImageXml2rfc" extends the "Image" block with additional attributes

"SourceXml2rfc" extends the "Source" block with additional

attributes

"Alt" is an additional block.

"Figure" is an additional block.

"DefinitionListXml2rfc" extends the "DefinitionList" block with

additional attributes

"OrderedListXml2rfc" extends the "OrderedList" block with additional

attributes

"UnorderedListXml2rfc" extends the "UnorderedList" block with

additional attributes

4.2.3. Top-level Section

"TopSection" is the sum type of the possible top-level sections that

compose an AsciiDoc document:

"Note" is an additional top-level section.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

"AbstracTopSection":

"NormalTopSection":

"BibliographyTopSection":

"AppendixTopSection":

"IndexTopSection":

[AsciiDoc]

[Asciidoctor]

[draft-petithuguenin-xml2rfc-asciidoc]

[Idris2]

[Knuth92]

[LitProg]

[Metanorma]

[RFC8489]

An abstract section.

A section.

A bibliography.

An appendix .

An index.

4.2.4. Document

"Document" represents a complete AsciiDoc document.

5. Informative References

"AsciiDoc", Accessed 23 April 2021, 8 March 2021,

<https://en.wikipedia.org/wiki/AsciiDoc/>.

"Asciidoctor Documentation Home :: Asciidoctor Docs",

Accessed 23 April 2021, <https://docs.asciidoctor.org/

home/>.

Petit-Huguenin, M., "Mappings Between XML2RFC v3 and

AsciiDoc", Work in Progress, Internet-Draft, draft-

petithuguenin-xml2rfc-asciidoc-01, 30 January 2023,

<https://datatracker.ietf.org/doc/draft-petithuguenin-

xml2rfc-asciidoc/01>.

"Documentation for the Idris 2 Language — Idris2 0.0

documentation", Accessed 31 January 2023, <https://

idris2.readthedocs.io/en/latest/>.

Knuth, D. E., "Literate Programming", 1 January 1992.

"Literate programming", Accessed 31 January 2023, 9

January 2023, <https://en.wikipedia.org/wiki/

Literate_programming>.

Inc, R., "Metanorma", Accessed 23 April 2021, <https://

www.metanorma.com/>.

Petit-Huguenin, M., Salgueiro, G., Rosenberg, J., Wing,

D., Mahy, R., and P. Matthews, "Session Traversal

Utilities for NAT (STUN)", RFC 8489, DOI 10.17487/

RFC8489, February 2020, <https://www.rfc-editor.org/info/

rfc8489>.

¶

¶

¶

¶

¶

¶

https://en.wikipedia.org/wiki/AsciiDoc/
https://docs.asciidoctor.org/home/
https://docs.asciidoctor.org/home/
https://datatracker.ietf.org/doc/draft-petithuguenin-xml2rfc-asciidoc/01
https://datatracker.ietf.org/doc/draft-petithuguenin-xml2rfc-asciidoc/01
https://idris2.readthedocs.io/en/latest/
https://idris2.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Literate_programming
https://en.wikipedia.org/wiki/Literate_programming
https://www.metanorma.com/
https://www.metanorma.com/
https://www.rfc-editor.org/info/rfc8489
https://www.rfc-editor.org/info/rfc8489

Appendix A. Installation

A computerate specification can be converted into an informal

specification with the "computerate" command that is distributed as

a Docker image that can be built as follow:

An AsciiDoc file can then be converted with the following command:

Note that only the files in the repository and sub-repositories

where the command is executed are visible to that command. That

means that files or symbolic links to files outside that hierarchy

cannot be used. On the other hand external directories mounted with

the "--bind" option can be used.

The "computerate" command is configured to include the following

Asciidoctor add-ons:

asciidoctor-xml2rfc [draft-petithuguenin-xml2rfc-asciidoc]

asciidoctor-pdf

asciidoctor-revealjs

asciidoctor-epub3

asciidoctor-idris2 [This document]

asciidoctor-diagram

The following diagram generators are available for use by

asciidoctor-diagram:

actdiag

blockdiag

graphviz

nwdiag

packetdiag

plantuml

rackdiag

seqdiag

The following additional Idris2 packages are installed in the Docker

image:

asciidoc [This document]

¶

git clone --recursive git://shalmaneser.org/yathewEngod7 \

 computerate

cd computerate

docker build -t computerate .

¶

¶

docker run --rm -v $(pwd):/workspace computerate <file>¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

Version:

Author(s):

License:

Dependencies:

data Align : Type

Left : Align

Center : Align

Right : Align

interface Asciidoc a

contents : a -> List1 Content

blocks : a -> List1 Block

data Block : Type

ParagraphBlock : Paragraph -> Block

LiteralBlock : Literal -> Block

ImageBlock : Image -> Block

Appendix B. Package asciidoc

An Idris2 package to generate a document, an embeddable document, or

an inline document in AsciiDoc.

0.0

Marc Petit-Huguenin

AGPL-3.0-or-later

contrib

B.1. Module Asciidoc

A module that defines types for the generic AsciiDoc syntax.

Alignment.

Left alignment.

Center alignment.

Right alignment.

Things that have an AsciiDoc representation.

Implemented by String, Char, Integer, Int, Int8, Int16, Int32,

Int64, Bits8, Bits16, Bits32, Bits64, Double.

Converts a value into inline AsciiDoc.

Converts a value into embedded AsciiDoc.

Types of blocks.

A block of text.

A pretty-printed block of text.

An image.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

SourceBlock : Source -> Block

SidebarBlock : Sidebar -> Block

QuoteBlock : Quote -> Block

DefinitionListBlock : DefinitionList -> Block

OrderedListBlock : OrderedList -> Block

UnorderedListBlock : UnorderedList -> Block

TableBlock : Table -> Block

IndexBlock : Index -> Block

PassBlock : Pass -> Block

NullBlock : Block

OtherBlock : Renderer a => a -> Block

data Content : Type

TextContent : String -> Content

BreakContent : Content

ItalicContent : List Content -> Content

LinkContent : Link -> Content

IndexContent : Index -> Content

A pretty-printed block of source code.

Visually separated blocks.

A block of prose excerpt, quote or verse.

An association list.

An ordered list.

An unordered list.

A table.

An entry in the index.

Text that is passed directly to the backend.

Extended block.

Types of inline content.

Plain text content.

An hard line break.

Italicized content.

An hyperlink.

An entry in the index.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

BoldContent : List Content -> Content

SubscriptContent : List Content -> Content

SuperscriptContent : List Content -> Content

MonospaceContent : List Content -> Content

CrossrefContent : Crossref -> Content

PassContent : String -> Content

OtherContent : Renderer a => a -> Content

record Crossref

MkCrossref:

target:

content:

record DefinitionList

MkDefinitionList:

id:

content:

record DefinitionTerm

MkDefinitionTerm:

id:

content:

Bold content.

Subscript content.

Superscript content.

Monospaced content.

A cross-reference to another part of the document.

Text that is passed directly to the backend.

Extended content.

A cross-reference content.

(target : String) -> (content : List Content) -> Crossref

An identifier for the target of the cross-reference.

The text for the cross-reference.

A definitition list.

(id : Maybe String) ->

(content : List1 (DefinitionTerm, Item)) -> DefinitionList

Identifier.

A non-empty list of definition term.

A definition term.

(id : Maybe String) -> (content : List Content) ->

DefinitionTerm

Identifier.

List of content.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

record Image

MkImage:

align:

alt:

id:

src:

record Index

MkIndex:

item:

subitem:

record Item

MkItem:

id:

align:

content:

record Link

MkLink:

target:

content:

record Literal

MkLiteral:

An image.

(align : Maybe Align) -> (alt : Maybe String) ->

(id : Maybe String) -> (src : String) -> Image

Alignment.

Alternate description.

Identifier.

SVG source.

An index term content

(item : String) -> (primary : Maybe ()) ->

(subitem : Maybe String) -> Index

The primary term.

The secondary term.

A list or table cell.

(id : Maybe String) -> (ref : Maybe String) ->

(align : Maybe Align) -> (colspan : Maybe Nat) ->

(rowspan : Maybe Nat) ->

(content : Either (List1 Block) (List Content)) -> Item

Identifier.

Alignment.

Either a non-empty list of blocks or a list of

content.

A link content.

(target : String) -> (content : String) -> Link

A URL.

The text for the link.

Literal.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

id:

style:

content:

data Marker : Type

Circle : Marker

NoBullet : Marker

Unstyled : Marker

data NumberType : Type

Lowercase : NumberType

Uppercase : NumberType

Decimal : NumberType

LowercaseRoman : NumberType

UppercaseRoman : NumberType

record OrderedList

MkOrderedList:

id:

group:

start:

type:

content:

(id : Maybe String) -> (style : Maybe String) ->

(content : Doc ()) -> Literal

Identifier.

Style.

Pretty-printable content.

Unordered list label style.

Symbol.

No symbol, but indented.

No symbol, but not indented.

Ordered list label type.

Lower case alphabetic.

Upper case alphabetic.

Decimal numbers.

Lower case roman numeral.

Upper case roman numeral.

An ordered list.

(id : Maybe String) -> (group : Maybe String) ->

(start : Maybe Nat) -> (type : Maybe NumberType) ->

(content : List1 Item) -> OrderedList

Identifier.

Numbering group.

Numbering start.

Labels type.

A non-empty list of items.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

record Paragraph

MkParagraph:

id:

content:

record Pass

MkPass:

id:

content:

record Quote

MkQuote:

id:

cite:

quotedFrom:

content:

record Row

MkRow:

id:

content:

record Sidebar

MkSidebar:

id:

content:

A paragraph.

(id : Maybe String) -> (content : List Content) -> Paragraph

Identifier.

The list of content.

Passthrough.

(id : Maybe String) -> (content : String) -> Pass

Identifier.

Text passed through.

A quote.

(id : Maybe String) -> (cite : Maybe String) ->

(quotedFrom : Maybe String) ->

(content : Either (List1 Block) (List1 Content)) -> Quote

Identifier.

Source of the citation.

Origin of the quote.

Either a non-empty list of blocks or a non-empty

list of content.

A table row.

(id : Maybe String) -> (content : List1 (Either Item Item)) ->

Row

Identifier.

A non-empty list of items.

A sidebar,

(id : Maybe String) -> (content : List Block) -> Sidebar

Identifier.

List of blocks.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

record Source

MkSource:

record Table

MkTable:

id:

title:

align:

head:

body:

foot:

record UnorderedList

MkUnorderedList:

id:

title:

marker:

content:

renderBlocks : List1 Block -> String

renderContents : List1 Content -> String

record Abstract

MkAbstract:

(id : Maybe String) -> (type : Maybe String) ->

(content : Doc ()) -> Source

A table.

(id : Maybe String) -> (title : Maybe (List Content)) ->

(align : Maybe Align) -> (head : Maybe (List1 Row)) ->

(body : List1 Row) -> (foot : Maybe (List1 Row)) -> Table

Identifier.

Title.

Alignment.

An non-empty list of rows for the header.

An non-empty list of rows.

An non-empty list of rows for the footer.

An unordered list.

(id : Maybe String) -> (title : Maybe (List Content)) ->

(marker : Marker) -> (content : List1 Item) -> UnorderedList

Identifier.

Title.

Type of symbol.

A non-empty list of items.

Converts a non-empty list of Block into an embeddable AsciiDoc

fragment.

Converts a non-empty list of Content into an inline AsciiDoc

fragment.

B.2. Module Asciidoc.Xml2rfc

A Module that defines types for the AsciiDoc extensions of the

"xml2rfc" back-end.

(id : Maybe String) -> (title : Maybe (List Content)) ->

(blocks : List Block) -> Abstract

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

record Alt

MkAlt:

record Appendix

MkAppendix:

record Bcp14

MkBcp14:

record Bibliography

MkBibliography:

data Category : Type

StdCategory : Category

BcpCategory : Category

ExpCategory : Category

InfoCategory : Category

HistoricCategory : Category

record Comment

MkComment:

record CrossrefXml2rfc

MkCrossrefXml2rfc:

(id : Maybe String) -> (content : List1 Block) -> Alt

(id : Maybe String) -> (title : Maybe (List Content)) ->

(notNumbered : Maybe ()) -> (removeInRfc : Maybe ()) ->

(toc : Maybe Bool) -> (blocks : List Block) ->

(sections : List Section) -> Appendix

(content : String) -> Bcp14

(id : Maybe String) -> (title : Maybe (List Content)) ->

(blocks : List Block) -> Bibliography

Intended category.

Standard category.

BCP category.

Experiemntal category.

Informational category.

Historic category.

(id : Maybe String) -> (noDisplay : Maybe ()) ->

(source : Maybe String) -> (content : List Content) -> Comment

(target : String) -> (format : Maybe Format) ->

(relative : Maybe String) -> (section : Maybe String) ->

(sectionFormat : Maybe SectionFormat) ->

(content : List Content) -> CrossrefXml2rfc

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

record DefinitionListXml2rfc

MkDefinitionListXml2rfc:

record Document

MkDocument:

record Figure

MkFigure:

data Format : Type

TitleFormat : Format

CounterFormat : Format

NoneFormat : Format

record ImageXml2rfc

MkImageXml2rfc:

data Ipr : Type

Trust200902Ipr : Ipr

NoModificationTrust200902Ipr : Ipr

(id : Maybe String) -> (indent : Maybe Nat) ->

(newline : Maybe ()) -> (compactSpacing : Maybe ()) ->

(content : List1 (DefinitionTerm, Item)) ->

DefinitionListXml2rfc

(title : String) -> (abbrev : Maybe String) ->

(category : Category) -> (consensus : Maybe ()) ->

(docName : Maybe String) -> (ipr : Maybe Ipr) ->

(obsoletes : Maybe String) -> (sortRefs : Maybe ()) ->

(submissionType : Maybe Submission) ->

(noSymRefs : Maybe ()) -> (tocDepth : Maybe Nat) ->

(noTocInclude : Maybe ()) -> (updates : Maybe String) ->

(sections : List TopSection) -> Document

(id : Maybe String) -> (name : List Content) ->

(content : List1 Block) -> Figure

Crossref format.

Implements Show.

Title format.

Counter format.

No format.

(align : Maybe Align) -> (alt : Maybe String) ->

(id : Maybe String) -> (src : String) ->

(type : Maybe String) -> (top : Maybe ()) ->

(bottom : Maybe ()) -> (content : String) -> ImageXml2rfc

Intellectual Property Rights.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

NoDerivativesTrust200902Ipr : Ipr

Pre5378Trust200902Ipr : Ipr

Trust200811Ipr : Ipr

NoModificationTrust200811Ipr : Ipr

NoDerivativesTrust200811Ipr : Ipr

Full3978Ipr : Ipr

NoModification3978Ipr : Ipr

NoDerivatives3978Ipr : Ipr

Full3667Ipr : Ipr

NoModification3667Ipr : Ipr

NoDerivatives3667Ipr : Ipr

Full2026Ipr : Ipr

NoDerivativeWorks2026Ipr : Ipr

None : Ipr

record LinkXml2rfc

MkLinkXml2rfc:

record LiteralXml2rfc

MkLiteralXml2rfc:

record Note

MkNote:

record OrderedListXml2rfc

MkOrderedListXml2rfc:

(angleBrackets : Maybe ()) -> (target : String) ->

(content : String) -> LinkXml2rfc

(align : Maybe Align) -> (style : Maybe String) ->

(alt : Maybe String) -> (id : Maybe String) ->

(name : Maybe String) -> (type : Maybe String) ->

(top : Maybe String) -> (bottom : Maybe String) ->

(content : Doc ()) -> LiteralXml2rfc

(id : Maybe String) -> (title : Maybe (List Content)) ->

(blocks : List Block) -> Note

(id : Maybe String) -> (group : Maybe String) ->

(indent : Maybe Nat) -> (compactSpacing : Maybe ()) ->

¶

¶

¶

record ParagraphXml2rfc

MkParagraphXml2rfc:

record Section

MkSection:

data SectionFormat : Type

CommaSectionFormat : SectionFormat

ParensSectionFormat : SectionFormat

BareSectionFormat : SectionFormat

record SourceXml2rfc

MkSourceXml2rfc:

data Submission : Type

IetfSubmission : Submission

IabSubmission : Submission

IrtfSubmission : Submission

(start : Maybe Nat) ->

(type : Maybe (NumberType, Maybe (String, String))) ->

(content : List1 Item) -> OrderedListXml2rfc

(id : Maybe String) -> (indent : Maybe Nat) ->

(keepWithNext : Maybe ()) -> (keepWithPrevious : Maybe ()) ->

(content : List Content) -> ParagraphXml2rfc

(id : Maybe String) -> (title : Maybe (List Content)) ->

(notNumbered : Maybe ()) -> (removeInRfc : Maybe ()) ->

(toc : Maybe Bool) -> (blocks : List Block) ->

(sections : List Section) -> Section

External reference format.

Implements Show.

Comma as separator.

Parentheses as separator.

Same link withing parentheses.

(id : Maybe String) -> (markers : Maybe ()) ->

(name : Maybe String) -> (type : Maybe String) ->

(top : Maybe String) -> (bottom : Maybe String) ->

(content : Doc ()) -> SourceXml2rfc

Intended stream.

IETF stream.

IAB stream.

IRTF stream.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

IndependentSubmission : Submission

EditorialSubmission : Submission

data TopSection : Type

AbstractTopSection : Abstract -> TopSection

NormalTopSection : Section -> TopSection

BibliographyTopSection : Bibliography -> TopSection

AppendixTopSection : Appendix -> TopSection

IndexTopSection : TopSection

OtherTopSection : Renderer a => a -> TopSection

record Unicode

MkUnicode:

record UnorderedListXml2rfc

MkUnorderedListXml2rfc:

renderDocument : (d : Document) -> String

d:

renderSection : Nat -> Section -> String

Independent stream.

Editorial stream.

Types of top sections.

The abstract.

A section.

A bibliography.

An appendix.

The index.

Extended top-level section.

(id : Maybe String) -> (ascii : Maybe String) ->

(format : Maybe String) -> (content : String) -> Unicode

(id : Maybe String) -> (title : Maybe (List Content)) ->

(marker : Marker) -> (indent : Maybe Nat) ->

(compactSpacing : Maybe ()) -> (content : List1 Item) ->

UnorderedListXml2rfc

Converts a Document into an Asciidoc document.

the document.

Contributors

Stéphane Bryant

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Email: stephane.ml.bryant@gmail.com

Stephane is a co-founder of the Nephelion project, project that

started back in 2014 during a week-end visiting national parks in

Utah. Computerate Specifying is the successor of this project, and

it could not have been done without the frequent reviews and video

calls with Stephane during these last 9 years.

Author's Address

Marc Petit-Huguenin

Impedance Mismatch LLC

Email: marc@petit-huguenin.org

¶

mailto:stephane.ml.bryant@gmail.com
mailto:marc@petit-huguenin.org

	Computerate Specification
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. AsciiDoc
	3.1. Literate Programming
	3.2. Code Macros
	3.2.1. Inline Code Macro
	3.2.2. Block Code Macro

	4. Idris2
	4.1. "Asciidoc" Module
	4.1.1. Content
	4.1.2. Block
	4.1.3. Implementing Asciidoc

	4.2. Xml2rfc Module
	4.2.1. Content
	4.2.2. Block
	4.2.3. Top-level Section
	4.2.4. Document

	5. Informative References
	Appendix A. Installation
	Appendix B. Package asciidoc
	B.1. Module Asciidoc
	B.2. Module Asciidoc.Xml2rfc

	Contributors
	Author's Address

