
Network Working Group M. Petit-Huguenin
Internet-Draft Impedance Mismatch LLC
Intended status: Informational October 28, 2019
Expires: April 30, 2020

The Computerate Specifying Paradigm
draft-petithuguenin-computerate-specifying-00

Abstract

 This document specifies a paradigm named Computerate Specifying,
 designed to simultaneously document and formally specify
 communication protocols. This paradigm can be applied to any
 document produced by any Standard Developing Organization (SDO), but
 this document targets specifically documents produced by the IETF.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Petit-Huguenin Expires April 30, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Computerate Specifying October 2019

Table of Contents

1. Introduction . 3
2. Overview of Operations 4
2.1. Libraries . 6
2.2. Retrofitting Specifications 6
2.3. Revision of Standards 7
2.4. Content of a Computerate Specification 8

3. Syntax . 8
3.1. Syntax Examples . 8
3.1.1. Data Type . 9
3.1.2. Serializer . 9
3.1.3. Presentation Format 10

3.2. Formal Syntax Language 10
3.2.1. Augmented BNF (ABNF) 10
3.2.2. Augmented ASCII Diagrams (AAD) 11
3.2.3. Mathematical Formulas 12
3.2.4. TLS Description Language 13

3.3. Proofs for Syntax . 13
3.3.1. Isomorphism Between Type and Formal Language 13
3.3.2. Data Format Conversion 15
3.3.3. Interoperability with Previous Versions 15
3.3.4. Postel's Law . 16

4. Semantics . 18
4.1. Typed Petri Nets . 18
4.2. Semantics Examples 20
4.2.1. Data Type . 20
4.2.2. Serializer . 21
4.2.3. Presentation Format 21

4.3. Formal Semantics Language 21
4.3.1. Cosmogol . 21

4.4. Proofs for Semantics 22
4.4.1. Isomorphism . 22
4.4.2. Postel's Law . 22
4.4.3. Termination . 22
4.4.4. Liveness . 22
4.4.5. Verified Code . 23

5. Acknowledgements . 23
6. Informative References 23
Appendix A. Command Line Tools 25
A.1. Installation . 25
A.1.1. Download the Docker Image 25

A.2. Using the computerate Command 26
A.3. Using Other Commands 27
A.4. Bugs and Workarounds 27
A.5. TODO List . 28

Appendix B. Computerate Specifications Library 28
B.1. Installation . 28

Petit-Huguenin Expires April 30, 2020 [Page 2]

Internet-Draft Computerate Specifying October 2019

B.2. Catalog . 29
B.2.1. RFC5234 . 29

 Author's Address . 29

1. Introduction

 If, as the unofficial IETF motto states, we believe that "running
 code" is an important part of the feedback provided to the
 standardization process, then as per the Curry-Howard equivalence
 [Curry-Howard] (that states that code and mathematical proofs are the
 same), we ought to also believe that "verified proof" is an equally
 important part of that feedback. A verified proof is a mathematical
 proof of a logical proposition that was mechanically verified by a
 computer, as opposed to just peer-reviewed.

 The "Experiences with Protocol Description" paper from Pamela Zave
 [Zave] gives three conclusions about the usage of formal
 specifications for a protocol standard. The first conclusion states
 that informal methods (i.e. the absence of verified proofs) are
 inadequate for widely used protocols. This document is based on the
 assumption that this conclusion is correct, so its validity will not
 be discussed further.

 The second conclusion states that formal specifications are useful
 even if they fall short of the "gold standard" of a complete formal
 specification. We will show that a formal specification can be
 incrementally added to a standard.

 The third conclusion from Zave's paper states that the normative
 English language should be paraphrasing the formal specification.
 The difficulty here is that to be able to keep the formal
 specification and the normative language synchronized at all time,
 these two should be kept as physically close as possible to each
 other.

 To do that we introduce the concept of "Computerate Specifying" (note
 that Computerate is a British English word). "Computerate
 Specifying" is a play on "Literate Computing", itself a play on
 "Structured Computing" (see [Knuth92] page 99). In the same way that
 Literate Programming enriches code by interspersing it with its own
 documentation, Computerate Specifying enriches a standard
 specification by interspersing it with code (or with proofs, as they
 are the same thing), making it a computerate specification.

 Note that computerate specifying is not specific to the IETF, just
 like literate computing is not restricted to the combination of Tex
 and Pascal described in Knuth's paper. What this document describes
 is a specific instance of computerate specifying that combines

https://datatracker.ietf.org/doc/html/rfc5234

Petit-Huguenin Expires April 30, 2020 [Page 3]

Internet-Draft Computerate Specifying October 2019

 [AsciiDoc] as formatting language and [Idris] as programming language
 with the goal of formally specify IETF protocols.

2. Overview of Operations

 Nowadays specifications at the IETF are written in a format named
 xml2rfc v3 [RFC7991] but unfortunately making that format
 "Computerable" is not trivial, mostly because there is no simple
 solution to mix code and XML together in the same file. Instead, we
 chose the AsciiDoc format as the basis for computerate specifications
 as it permits to generate specifications in the xml2rfc v3 format
 (among other formats) and also because it can be enriched with code
 in the same file.

 [I-D.ribose-asciirfc] describes a backend for the [Asciidoctor] tool
 that converts an AsciiDoc document into an xmlrfc3 document. The
 AsciiRFC document states various reasons why AsciiDoc is a superior
 format for the purpose of writing standards, so we will not discuss
 these further. Note that the same team developed Asciidoctor
 backends for other Standard Developing Organizations (SDO)
 [Metanorma], making it easy to develop computerate specifications
 targeting the standards developed by these SDOs.

 The code in a computerate specification uses the programming language
 Idris in literate programming [Literate] mode using the Bird-style,
 by having each line of code starting with a ">" mark in the first
 column.

 That same symbol was also used by AsciiDoc as an alternate way of
 defining a blockquote [Blockquotes], way which is no longer available
 in a computerate specification. Bird-style code will simply not
 appear in the rendered document.

 The result of Idris code execution can be inserted inside the
 document part by putting that code fragment in the document between
 the "{`" string and the "`}" string.

 A computerate specification is processed by an Asciidoctor
 preprocessor that do the following:

 1. Load the whole document as an Idris program, including importing
 modules.

 2. For each instance of an inline code fragment, evaluate that
 fragment and replace it (including the delimiters) by the result
 of that evaluation.

 3. Continue with the normal processing of the modified document.

https://datatracker.ietf.org/doc/html/rfc7991

Petit-Huguenin Expires April 30, 2020 [Page 4]

Internet-Draft Computerate Specifying October 2019

 For instance the following computerate specification fragment taken
 from the computerate specification of STUNbis:

 <CODE BEGINS>
 > rto : Int
 > rto = 500
 >
 > rc : Nat
 > rc = 7
 >
 > rm : Int
 > rm = 16
 >
 > -- A stream of transmission times
 > transmissions : Int -> Int -> Stream Int
 > transmissions value rto = value :: transmissions (value + rto)
 > (rto * 2)
 >
 > -- Returns a specific transmission time
 > transmission : Int -> Nat -> Int
 > transmission timeout i = index i $ transmissions 0 timeout
 >
 > a1 : String
 > a1 = show rto
 >
 > a2 : String
 > a2 = concat (take (rc - 1) (map (\t => show t ++ " ms, ")
 > (transmissions 0 rto))) ++ "and " ++ show (transmission rto
 > (rc - 1)) ++ " ms"
 >
 > a3 : String
 > a3 = show $ transmission rto (rc - 1) + rto * rm

 For example, assuming an RTO of {`a1`}ms, requests would be sent at
 times {`a2`}.
 If the client has not received a response after {`a3`} ms, the
 client will consider the transaction to have timed out.
 <CODE ENDS>

 is rendered as:

 " For example, assuming an
 RTO of 500ms, requests would be sent at times 0 ms, 500 ms, 1500 ms,
 3500 ms, 7500 ms, 15500 ms, and 31500 ms. If the client has not
 received a response after 39500 ms, the client will consider the
 transaction to have timed out."

Petit-Huguenin Expires April 30, 2020 [Page 5]

Internet-Draft Computerate Specifying October 2019

Appendix A explains how to install the command line tools to process
 a computerate specification.

 The Idris programming language has been chosen because its type
 system supports dependent and linear types, and that type system is
 the language in which formal specifications are written.

 Following Zave's second conclusion, a computerate specification does
 not have to be about just formally specifying a protocol and proving
 properties about it. There is a whole spectrum of formalism that can
 be introduced in a specification, and we will present them in the
 remaining sections by increasing order of complexity. Note that
 because the formal language is a programming language, these usages
 are not exhaustive, and plenty of other usages can and will be found
 after the publication of this document.

2.1. Libraries

 A computerate specification does not disappear as soon the standard
 it describes is published. Quite the opposite, each specification is
 designed to be used as an Idris module that can be imported in
 subsequent specifications, reducing over time the amount of code that
 needs to be written. At the difference of an RFC that is immutable
 after publication, the code in a specification will be improved over
 time, especially as new properties are proved or disproved. The
 latter will happen when a bug is discovered in a specification and a
 proof of negation is added to the specification, paving the way to a
 revision of the standard.

 This document is itself a computerate specification that contains
 data types and functions that can be reused in future specifications,
 and as a whole can be considered as the standard library for
 computerate specifying.

 For convenience each public computerate specification, including the
 one behind this document, will be made available as an individual git
 repository. Appendix B explains how to gain access to these
 computerate specifications.

2.2. Retrofitting Specifications

 RFCs, Internet-Drafts and standard documents published by other SDOs
 did not start their life as computerate specifications, so to be able
 to use them as Idris modules they will need to be progressively
 retrofitted. This is done by converting the document into an
 AsciiDoc document and then enriching it with code, in the same way
 that would have been done if the standard was developed directly as a
 computerate specification.

Petit-Huguenin Expires April 30, 2020 [Page 6]

Internet-Draft Computerate Specifying October 2019

 Converting the whole document in AsciiDoc and enriching it with code,
 instead of just maintaining a library of code, seems a waste of
 resources. The reason for doing so is to be able to verify that the
 rendered text is equivalent to the original standard, which will
 validate the examples and formal languages.

 Retrofitted specification will also be made available as individual
 git repositories as they are converted.

 Because the IETF Trust does not permit to modify an RFC as a whole
 (excepted for translation purpose), a retrofitted RFC uses
 transclusion, which is a mechanism that include parts of a separate
 document at runtime. This way a retrofitted RFC is distributed as
 two separate files, the original RFC in text form, and a computerate
 specification that contain only code and transclusions.

 Transclusion is a special form of AsciiDoc include that takes a range
 of lines as parameters:

 [abstract]
 include::rfc5234.txt[lines=26..35]

 Here the "include" macro will be replaced by the content of lines 26
 to 35 (included) of RFC 5234.

 The "sub" parameter permits to modify the copied content according to
 a regular expression. For instance the following converts references
 into the AsciiDoc format:

 include::rfc5234.txt[lines=121..131,sub="/\[([^\]])\]/<<\1>>/"]

 In the following example, the text is converted into a note:

 include::rfc5234.txt[lines=151,sub="/^.*$/NOTE: \0/"]

2.3. Revision of Standards

 Standards evolve but because RFCs are immutable, revisions for a
 standard are done by publishing new RFCs.

 The matching computerate specifications need to reflect that
 relationship by extending the data type of syntax and semantics in
 the new version, instead of recreating new data types from scratch.
 There is two diametrically opposed directions when extending a type:

 o The new standard is adding constraints. This is done by indexing
 the new type over the old type.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Petit-Huguenin Expires April 30, 2020 [Page 7]

Internet-Draft Computerate Specifying October 2019

 o The new standard is removing constraints. This is done by
 defining the new type as a sum type, with one of the alternative
 being the old type.

 NOTE

 This is correct in theory, but in practice creating new
 specifications from old ones as described above is not very
 convenient. Maybe an alternate solution is to define the new
 specifications from scratch, and use an isomorphism proof to
 precisely define the differences between the two. An Idris
 elaboration script may permit to duplicate a type and modify it
 without having to manually copy it.

2.4. Content of a Computerate Specification

 Communication protocols specifications are generally split in two
 distinct parts, syntax (the data layout of the messages exchanged)
 and semantics (the rules that drive the exchange of messages).

Section 3 will discuss in details the application of computerate
 specifying to syntax descriptions, and Section 4 will be about
 specifying semantics.

3. Syntax

 The syntax of a communication protocol determines how data is laid
 out before be sent over a communication link. Generally the syntax
 is described only in the context of the layer that this particular
 protocol is operating at, e.g. an application protocol syntax only
 describes the data as sent over UDP or TCP, not over Ethernet or Wi-
 Fi.

 Syntaxes can generally be split into two broad categories, binary and
 text, and generally a protocol syntax falls completely into one of
 these two categories.

 Syntax descriptions can be formalized for at least three reasons,
 reasons that will be presented in the following sections.

3.1. Syntax Examples

 Examples in protocols documentation are frequently incorrect, which
 should not be that much of an issue but for the fact that most
 developers do not read the normative text when an example is
 available. Moving the examples into appendices or adding caution
 notices have shown limited success in preventing that problem.

Petit-Huguenin Expires April 30, 2020 [Page 8]

Internet-Draft Computerate Specifying October 2019

 [NOTE: citation needed]

 So ensuring that examples match the normative text seems like a good
 starting point for a computerate specification. This is done by
 having the possibility of adding the result of a computation directly
 inside the document. If that computation is done from a type that is
 (physically and conceptually) close to the normative text, then we
 gain some level of assurance that both the normative text and the
 derived examples will match. Note that examples can be inserted in
 the document as whole block of text, or as inline text.

3.1.1. Data Type

 The first step is to define an Idris type that completely defines the
 layout of the messages exchanged. By "completely define" we mean
 that the type checker will prevent creating any invalid value of this
 type. That ensures that all values are correct by construction.

 E.g. here is the definition of a DNS label per [RFC1034]:

 <CODE STARTS>
 > data PartialLabel' : List Char -> Type where
 > Empty : PartialLabel' []
 > More : (c : Char) -> (prf1 : isAlphaNum c || c == '-' = True) ->
 > PartialLabel' s -> (prf2 : length s < 61 = True) ->
 > PartialLabel' (c :: s)
 >
 > data Label' : List Char -> Type where
 > One : (c : Char) -> (prf1 : isAlpha c = True) -> Label' [c]
 > Many : (begin : Char) -> (prf1 : isAlpha begin = True) ->
 > (middle : PartialLabel' xs) ->
 > (end : Char) -> (prf2 : isAlphaNum end = True) ->
 > Label' ([begin] ++ xs ++ [end])
 >
 > data Label : {a : Type} -> a -> Type where
 > MkLabel : {xs : String} -> Label' (unpack xs) -> Label xs
 <CODE ENDS>

 NOTE

 Find an example that cannot be completely expressed in ABNF.

3.1.2. Serializer

 The second step is to write a serializer from that type into the wire
 representation. For a text format, it is done by implementing the
 Show interface:

https://datatracker.ietf.org/doc/html/rfc1034

Petit-Huguenin Expires April 30, 2020 [Page 9]

Internet-Draft Computerate Specifying October 2019

 <CODE STARTS>
 > Show (Label xs) where
 > show _ = xs
 <CODE ENDS>

 NOTE

 Define binary serializer.

3.1.3. Presentation Format

 The IETF canonical format can be converted into a text format or a
 graphical format (HTML, PDF, Epub). The main issue here is that the
 text format limits a line length to 72 columns, so some additional
 formatting rules needs to be applied in that case. To support both
 formats at the same time, all AsciiDoc blocks will be converted into
 an <artwork> element that contains both the 72 columns formatted text
 and an equivalent SVG file, even for code source (instead of using
 the <sourcecode> element).

 NOTE

 Under development.

3.2. Formal Syntax Language

 Some specifications use a formal language to describe the data
 layout. One shared property of these languages is that they cannot
 always formalize all the constraints of a specific data layout, so
 they have to be enriched with comments. One consequence of this is
 that they cannot be used as a replacement for the Idris data type
 described in Section 3.1.1, data type that is purposely complete.

 The following sections describe how these formal languages have been
 or will be themselves formalized with the goal of using them in
 computerate specifications.

3.2.1. Augmented BNF (ABNF)

 Augmented Backus-Naur Form [RFC5234] (ABNF) is a formal language used
 to describe a text based data layout.

 The [RFC5234] document has been retrofitted as a computerate
 specification to provide an internal Domain Specific Language (DSL)
 that permits to specify an ABNF for a specification. The encoding of
 an example from Section 2.3 of [RFC5234] looks like this:

 <CODE BEGINS>

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#section-2.3

Petit-Huguenin Expires April 30, 2020 [Page 10]

Internet-Draft Computerate Specifying October 2019

 > rulename : Rule
 > rulename = "rulename" "Eq" (Concat (TermDec 97 []) (TermDec 98 [])
 > [TermDec 99 []])
 <CODE ENDS>

 A serializer, also defined in the same specification, permits to
 convert that description into a proper ABNF text that can be inserted
 into the document such as in the following fragment:

 <CODE BEGINS>
 [source,abnf]

 { `show rulename`}

 <CODE ENDS>

 is rendered as

 rulename = %d97 %d98 %d99

 See Appendix B.2.1 for access to the source of the retrofitted
 specification for [RFC5234].

3.2.2. Augmented ASCII Diagrams (AAD)

 Augmented ASCII Diagram [I-D.mcquistin-augmented-ascii-diagrams]
 (AAD) is a formal language to describe binary data layouts and
 represent them as ASCII diagrams.

 The conversion of the AAD language into an actual ASCII diagram will
 be done by an Asciidoctor block processor, so both a text
 representation and an SVG representation can be generated in the
 xmlrfc3 file.

 Here's a fragment of a specification using AAD:

 <CODE BEGINS>
 [aad]

 AAD code goes there

 <CODE ENDS>

 is rendered as

https://datatracker.ietf.org/doc/html/rfc5234

Petit-Huguenin Expires April 30, 2020 [Page 11]

Internet-Draft Computerate Specifying October 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Field8 |
 +-+
 | OptionalField |
 +-+

 Like for ABNF, the computerate specification for
 [I-D.mcquistin-augmented-ascii-diagrams] will define a DSL for the
 AAD language, a serializer that generates the AAD code, and an
 elaborator script that generates a type. The serializer will be used
 to generate the content of the AsciiDoc block so the code above can
 be replaced by the following and still be rendered identically:

 <CODE BEGINS>
 > myOptionalTest : Rule
 > myOptionalTest = something something

 [aad]

 { "show myOptionalTest"}

 <CODE ENDS>

 NOTE

 Update the examples when the AAD language is available.

3.2.3. Mathematical Formulas

 AsciiDoc supports writing equations using either asciimath or
 latexmath. The rendered for RFCs will generate an artwork element
 that contains both the text version of the equation and a graphical
 version in an SVG file.

 NOTE

 Not sure what to do with inline formulas, as we cannot generate an
 artwork element in that case.

 An Idris type will be used to described equations at the type level.
 An interpreter will be used to calculate and insert examples in the
 document.

 A serializer will be used to generate the asciimath code that is
 inserted inside a stem block.

Petit-Huguenin Expires April 30, 2020 [Page 12]

Internet-Draft Computerate Specifying October 2019

3.2.4. TLS Description Language

 TBD

3.3. Proofs for Syntax

 The kind of proofs that one would want in a specification are related
 to isomorphism, i.e. a guarantee that two or more descriptions of a
 data layout contains exactly the same information.

3.3.1. Isomorphism Between Type and Formal Language

 We saw above that when a data layout is described with a formal
 language, we end up with two descriptions of that data layout, one
 using the Idris dependent type (and used to generate examples) and
 one using the formal language.

 Proving isomorphism requires to generate an Idris type from the
 formal language instance, which is done using an Idris elaborator
 script.

 In Idris, Elaborator Reflection [Elab] is a metaprogramming facility
 that permits to write code that generates type declarations and code
 (including proofs) automatically.

 For instance the ABNF language is itself defined using ABNF, so after
 converting that ABNF into an instance of the Syntax type (which is an
 holder for a list of instances of the Rule type), it is possible to
 generates a suite of types that represents the same language:

 <CODE BEGINS>
 > abnf : Syntax
 > abnf = MkSyntax [
 > "rulelist" "Eq" (Repeat (Just 1) Nothing (Group (Altern
 > (TermName "rule") (Group (Concat (Repeat Nothing Nothing
 > (TermName "c-wsp")) (TermName "c-nl") [])) []))),
 > ...
 >]
 >
 > %runElab (generateType "Abnf" abnf)
 <CODE ENDS>

 The result of the elaboration can then be used to construct a value
 of type Iso, which requires four total functions, two for the
 conversion between types, and another two to prove that sequencing
 the conversions results in the same original value.

Petit-Huguenin Expires April 30, 2020 [Page 13]

Internet-Draft Computerate Specifying October 2019

 The following example generates an Idris type "SessionDescription"
 from the SDP ABNF. It then proves that this type and the Sdp type
 contains exactly the same information (the proofs themselves have
 been removed, leaving only the propositions):

 <CODE BEGINS>
 > import Data.Control.Isomorphism
 >
 > sdp : Syntax
 > sdp = MkSyntax [
 > "session-description" "Eq" (Concat (TermName "version-field")
 > (TermName "origin-field") [
 > TermName "session-name-field",
 > Optional (TermName "information-field"),
 > Optional (TermName "uri-field"),
 > Repeat Nothing Nothing (TermName "email-field"),
 > Repeat Nothing Nothing (TermName "phone-field"),
 > Optional (TermName "connection-field"),
 > Repeat Nothing Nothing (TermName "bandwidth-field"),
 > Repeat (Just 1) Nothing (TermName "time-description"),
 > Optional (TermName "key-field"),
 > Repeat Nothing Nothing (TermName "attribute-field"),
 > Repeat Nothing Nothing (TermName "media-description")
 >]),
 > ...
 >]
 >
 > %runElab (generateType "Sdp" sdp)
 >
 > same : Iso Sdp SessionDescription
 > same = MkIso to from toFrom fromTo
 > where
 > to : Sdp -> SessionDescription
 >
 > from : SessionDescription -> Abnf
 >
 > toFrom : (x : SessionDescription) -> to (from x) = x
 >
 > fromTo : (x : Sdp) -> from (to x) = x
 >
 <CODE ENDS>

 As stated in Section 3.2, the Idris type and the type generated from
 the formal language are not always isomorphic, because some
 constraints cannot be expressed in that formal language. In that
 case isomorphism can be used to precisely define what are the
 information that are missing in the formal language type. To do so,
 the generated type is augmented with a delta type, like so:

Petit-Huguenin Expires April 30, 2020 [Page 14]

Internet-Draft Computerate Specifying October 2019

 <CODE BEGINS>
 > data DeltaSessionDescription : Type where
 > ...
 >
 > same : Iso Sdp (SessionDescription, DeltaSessionDescription)
 > ...
 <CODE ENDS>

 Then the DeltaSessionDescription type can be modified to include the
 missing information until the same function type checks. After this
 we have a guarantee that we know all about the constraints that
 cannot be encoded in that formal language, and can check manually
 that each of them is described as comment.

3.3.2. Data Format Conversion

 For specifications that describe a conversion between different data
 layouts, having a proof that guarantee that no information is lost in
 the process can be beneficial. For instance, we observe that syntax
 encoding tends to be replaced each ten years or so by something
 "better". Here again isomorphism can tell us exactly what kind of
 information we lost and gained during that replacement.

 Here is for example the definition of a function that would verify an
 isomorphism between an XML format and a JSON format:

 <CODE BEGINS>
 > isXmlAndJsonSame: Iso (XML, DeltaXML) (JSON, DeltaJson)
 > ...
 <CODE ENDS>

 Here DeltaXML expresses what is gained by switching from XML to JSON,
 and DeltaJson expresses what is lost.

3.3.3. Interoperability with Previous Versions

 The syntax of the data layout may be modified as part of the
 evolution of a standard. In most case a version number prevents the
 old format to be used with the new format, but in cases where that it
 is not possible, the new specification can ensure that both formats
 can co-exist by using the same techniques as above.

 Conversely these techniques can be used during the design phase of a
 new version of a format, to check if a new version number is
 warranted.

Petit-Huguenin Expires April 30, 2020 [Page 15]

Internet-Draft Computerate Specifying October 2019

3.3.4. Postel's Law

 Be conservative in what you do, be liberal in what you accept from
 others.

 -- Jon Postel, RFC 761

 One of the downside of formal specifications is that there is no
 wiggle room possible when implementing it. An implementation is
 either conform to the specification or is not.

 One analogy would be specifying a pair of gears. If one decides to
 have both of them made with too small tolerances, then it is very
 likely that they will not be able to move when put together. A bit
 of slack is needed to get the gear smoothly working together but more
 importantly the cost of making these gears is directly proportional
 to their tolerance. There is an inflexion point where the cost of an
 high precision gear outweighs its purpose.

 We have a similar issue when implementing a formal specification,
 where having an absolutely conform implementation may cost more money
 than it is worth spending. On the other hand a specification exists
 for the purpose of interoperability, so we need some guidelines on
 what to ignore in a formal specification to make it cost effective.

 Postel's law proposes an informal way of defining that wiggle room by
 actually having two different specifications, one that defines data
 layout for the purpose of sending it, and another one that defines a
 data layout for the purpose of receiving that data layout.

 Existing specifications express that dichotomy in the form of the
 usage of SHOULD/SHOULD NOT/RECOMMENDED/NOT RECOMMENDED [RFC2119]
 keywords. For example the SDP spec says that "[t]he sequence CRLF
 (0x0d0a) is used to end a line, although parsers SHOULD be tolerant
 and also accept lines terminated with a single newline character."
 This directly infers two specifications, one used to define an SDP
 when sending it, that enforces using only CRLF, and a second
 specification, used to define an SDP when receiving it (or parsing
 it), that accepts both CRLF and LF.

 Note that the converse is not necessarily true, i.e. not all usages
 of these keywords are related to Postel's Law.

 To ensure that the differences between the sending specification and
 the receiving specification do not create interoperability problems,
 we can use a variant of isomorphism, as shown in the following
 example (data constructors and code elided):

https://datatracker.ietf.org/doc/html/rfc761
https://datatracker.ietf.org/doc/html/rfc2119

Petit-Huguenin Expires April 30, 2020 [Page 16]

Internet-Draft Computerate Specifying October 2019

 <CODE BEGINS>
 > data Sending : Type where
 >
 > data Receiving : Type where
 >
 > to : Sending -> List Receiving
 >
 > from : Receiving -> Sending
 >
 > toFrom : (y : Receiving) -> Elem y (to (from y))
 >
 > fromTo : (y : Sending) --> True = all (== y) [from x | x <-- to y]
 <CODE ENDS>

 Here we define two data types, one that describes the data layout
 that is permitted to the sent (Sending) and one that describes the
 data layout that is permitted to be received (Receiving). For each
 data layout that is possible to sent, there is one or more matching
 receiving data layouts. This is expressed by the function "to" that
 takes as input one Sending value and returns a list of Receiving
 values.

 Conversely, the "from" function maps a Receiving data layout unto a
 Sending data layout. Note the asymmetry there, which prevents to use
 a standard proof of isomorphism.

 Then the "toFrom" and "fromTo" proofs verify that there is no
 interoperability issue by guaranteeing that each Receiving value maps
 to one and only one Sending instance and that this mapping is
 isomorphic.

 All of this will provide a clear guidance of when and where to use a
 SHOULD keyword or its variants, without loss of interoperability.

 As an trivial example, the following proves that accepting LF
 character in addition to CRLF characters as end of line markers does
 not break interoperability:

 <CODE BEGINS>
 > data Sending : Type where
 > S_CRLF : Sending
 >
 > Eq Sending where
 > (==) S_CRLF S_CRLF = True
 >
 > data Receiving : Type where
 > R_CRLF : Receiving
 > R_LF : Receiving

Petit-Huguenin Expires April 30, 2020 [Page 17]

Internet-Draft Computerate Specifying October 2019

 >
 >to : Sending --> List Receiving
 >to S_CRLF = [R_CRLF, R_LF]
 >
 >from : Receiving --> Sending
 >from R_CRLF = S_CRLF
 >from R_LF = S_CRLF
 >
 >toFrom : (y : Receiving) --> Elem y (to (from y))
 >toFrom R_CRLF = Here
 >toFrom R_LF = There Here
 >
 >fromTo : (y : Sending) --> True = all (== y) [from x | x <-- to y]
 >fromTo S_CRLF = Refl
 <CODE ENDS>

4. Semantics

 The semantics of a communication protocol determines what messages
 are exchanged over a communication link and the relationship between
 them. The semantics are generally described only in the context of
 the layer that this particular protocol is operating at.

4.1. Typed Petri Nets

 The semantics of a specification requires to define an Idris type
 that strictly enforces these semantics. This can be done in an ad
 hoc way [Type-Driven], particularly by using linear types that
 express resources' consumption.

 But a better solution is to design these graphically, particularly by
 using Petri Nets. This specification defines a DSL that permits to
 describe a Typed Petri Net (TPN) which is heavily influenced by
 Coloured Petri Nets [CPN] (CPN). A CPN adds some restriction on the
 types that can be used in a Petri Net because of limitation is the
 underlying programming language, SML. The underlying programming
 used in TPN, Idris, does not have these limitations, so any well-
 formed Idris type (including polymorphic, linear and dependent types)
 can be directly used in TPN.

 NOTE

 A graphical editor for TPN is planned as part of the integration
 tooling. The graphical tool will use the document directly as
 storage.

 Here's an example of TPN (from figure 2.10 in [CPN]):

Petit-Huguenin Expires April 30, 2020 [Page 18]

Internet-Draft Computerate Specifying October 2019

 <CODE BEGINS>
 > NO : Type
 > NO = Int
 >
 > DATA : Type
 > DATA = String
 >
 > NOxDATA : Type
 > NOxDATA = (NO, DATA)
 >
 > PTS : Place
 > PTS = MkPlace "Packets To Send" NOxDATA (\() => [(1, "COL"),
 > (2, "OUR"), (3, "ED "), (4, "PET"), (5, "RI "), (6, "NET")])
 >
 > NS : Place
 > NS = MkPlace "NextSend" NO (\() => [1])
 >
 > A : Place
 > A = MkPlace "A" NOxDATA (\() => [])
 >
 > input1 : Input
 > input1 = MkInput PTS (NO, DATA) pure
 >
 > input2 : Input
 > input2 = MkInput NS NO pure
 >
 > output1 : Output
 > output1 = MkOutput PTS (NO, DATA) pure
 >
 > output2 : Output
 > output2 = MkOutput NS NO pure
 >
 > output3 : Output
 > output3 = MkOutput A (NO, DATA) pure
 >
 > sendPacket : Transition
 > sendPacket = MkTransition [input1, input2] [output1, output2,
 > output3] (\((n, d), n') => if n == n'
 > then pure ((n, d), n, (n, d))
 > else empty)
 <CODE ENDS>

 NOTE

 The DSL is being currently designed, so the example shows the
 generated value.

Petit-Huguenin Expires April 30, 2020 [Page 19]

Internet-Draft Computerate Specifying October 2019

 From there it is easy to generate (using the non-deterministic monad
 in Idris) an interpreter for debugging and simulation purpose:

 <CODE BEGINS>
 > interpret : MS NOxDATA -> MS NO -> MS NOxDATA ->
 > ND (MS NOxDATA, MS NO, MS NOxDATA)
 > interpret pts ns a = do
 > (pts1, pts2) <- sel pts
 > (ns1, ns2) <- sel ns
 > i1 <- input' input1 pts1
 > i2 <- input' input2 ns1
 > (pts3, ns3, a3) <- transition' sendPacket (i1, i2)
 > let o1 = output' output1 pts3
 > let o2 = output' output2 ns3
 > let o3 = output' output3 a3
 > pure (o1 ++ pts2, o2 ++ ns2, o3 ++ a)
 <CODE ENDS>

 NOTE

 Replace by the generic variant of the interpreter.

 A Petri Net has the advantage that the same graph can be reused to
 derive other Petri Nets, e.g., Timed Petri Nets (that can be used to
 collect performance metrics) or Stochastic Petri Nets.

 NOTE

 The traditional way of verifying a Petri Net is by using model
 checking. There is nothing in the design that prevents doing that,
 but because that takes quite some time to run and so cannot be part
 of the document processing, how do we store in the document a proof
 that the model checking was successful?

4.2. Semantics Examples

 Semantics examples can be wrong, so it is useful to be sure that they
 match the specification.

4.2.1. Data Type

 As explained above, semantics can be described in an ad hoc manner,
 or using the TPN DSL.

Petit-Huguenin Expires April 30, 2020 [Page 20]

Internet-Draft Computerate Specifying October 2019

4.2.2. Serializer

 At the difference of syntax, where there is more or less as many ways
 to display them than there are syntaxes, semantics examples generally
 use sequence diagram, eventually augmented with the content of the
 packets exchanged (and so using the techniques described in

Section 3.1).

 Similarly to what is done in Section 3.2.2, an Asciidoctor block
 processor similar to the "msc" type of diagram used by the
 asciidoctor-diagram extension will be designed.

 NOTE

 We unfortunately cannot reuse the asciidoctor-diagram extension
 because it cannot generate both text and SVG versions of a sequence
 diagram.

 The serializer for an example derived from a TPN generates the
 content of the msc AsciiDoc block, by selecting one particular path
 and its associated bindings through the Petri Net.

 NOTE

 We probably want to use AsciiDoc callouts for these, although that
 would require a modification in AsciiRfc. In fact callout would be a
 far better technique for other diagrams, like AAD, as it will let the
 renderer take care of the best way to place elements depending on the
 output format.

4.2.3. Presentation Format

 TBD.

4.3. Formal Semantics Language

 Some specifications use a formal language to describe the state
 machines. One shared property of these languages is that they cannot
 always formalize all the constraints of specific semantics, so they
 have to be enriched with comments. One consequence of this is that
 they cannot be used as a replacement for the Idris data type
 described in Section 4.1, data type that is purposely complete.

4.3.1. Cosmogol

 Cosmogol [I-D.bortzmeyer-language-state-machines] is a formal
 language designed to define states machines. The Internet-Draft will
 be retrofitted as a computerate specification to provide an internal

Petit-Huguenin Expires April 30, 2020 [Page 21]

Internet-Draft Computerate Specifying October 2019

 Domain Specific Language (DSL) that permits to specify an instance of
 that language. A serializer and elaborator script will also be
 defined.

 Finally, an Asciidoctor block processor would be used to convert the
 language into both a text and a graphical view of the state machine.

 NOTE

 Add examples there.

4.4. Proofs for Semantics

 Like for syntax formal languages, an elaborator script permits to
 generate a type from a TPN instance. That type can then be used to
 write proofs of the properties that we expect from the semantics.

4.4.1. Isomorphism

 An isomorphism proof can be used between two types derived from the
 semantics of a specification, for example to prove that no
 information is lost in the converting between the underlying
 processes, or when upgrading a process.

 An example of that would be to prove (or more likely disprove) that
 the SIP state machines are isomorphic to the WebRTC state machines.

4.4.2. Postel's Law

 Like for the syntax, semantics can introduce wiggle room between the
 state machines on the sending side and the state machines on the
 receiving side. A similar isomorphism proof can be used to ensure
 that this is done without loss of interoperability.

4.4.3. Termination

 The TPN type can be used to verify that the protocol actually
 terminates, or that it always returns to its initial state. This is
 equivalent to proving that a program terminates.

4.4.4. Liveness

 The TPN type can be used to verify that the protocol is productive,
 i.e. that it does not loop without making progress.

Petit-Huguenin Expires April 30, 2020 [Page 22]

Internet-Draft Computerate Specifying October 2019

4.4.5. Verified Code

 A TPN that covers a whole protocol (i.e. client, network, and server)
 is useful to prove the properties listed in the previous sections.
 But the TPN is also designed in a way that each of these parts can be
 defined separately from the others (making it a Hierarchical TPN).
 This permits to use the type generated from these (through an
 elaborator script) as a type for real code, and thus verifying that
 this code is conform to both the syntax and the semantics
 specification.

5. Acknowledgements

 Thanks to Jim Kleck, Stephane Bryant, Eric Petit-Huguenin, Nicolas
 Gironi, and Stephen McQuistin for the comments, suggestions,
 questions, and testing that helped improve this document.

6. Informative References

 [AsciiDoc]
 "Curry-Howard correspondence",
 <https://en.wikipedia.org/wiki/AsciiDoc>.

 [Asciidoctor]
 "Asciidoctor",
 <https://asciidoctor.org/docs/user-manual/>.

 [Blockquotes]
 "Markdown-style blockquotes",
 <https://asciidoctor.org/docs/user-manual/#markdown-style-

blockquotes>.

 [CPN] Jensen, K. and L. Kristensen, "Coloured Petri Nets:
 Modelling and Validation of Concurrent
 Systems", Springer, 2009.

 [Curry-Howard]
 "Curry-Howard correspondence",
 <https://en.wikipedia.org/wiki/

Curry%E2%80%93Howard_correspondence>.

 [Elab] Christiansen, D. and E. Brady, "Elaborator reflection:
 extending Idris in Idris", In Proceedings of the 21st ACM
 SIGPLAN International Conference on Functional
 Programming. ACM Press-Association for Computing
 Machinery, 2016.

https://en.wikipedia.org/wiki/AsciiDoc
https://asciidoctor.org/docs/user-manual/
https://asciidoctor.org/docs/user-manual/#markdown-style-blockquotes
https://asciidoctor.org/docs/user-manual/#markdown-style-blockquotes
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

Petit-Huguenin Expires April 30, 2020 [Page 23]

Internet-Draft Computerate Specifying October 2019

 [I-D.bortzmeyer-language-state-machines]
 Bortzmeyer, S., "Cosmogol: a language to describe finite
 state machines", draft-bortzmeyer-language-state-

machines-01 (work in progress), November 2006.

 [I-D.mcquistin-augmented-ascii-diagrams]
 McQuistin, S., Band, V., and C. Perkins, "Fully Specifying
 Protocol Parsing with Augmented ASCII Diagrams", draft-

mcquistin-augmented-ascii-diagrams-00 (work in progress),
 July 2019.

 [I-D.ribose-asciirfc]
 Tse, R., Nicholas, N., and P. Brasolin, "AsciiRFC:
 Authoring Internet-Drafts And RFCs Using AsciiDoc", draft-

ribose-asciirfc-08 (work in progress), April 2018.

 [Idris] "Idris: A Language with Dependent Types",
 <https://www.idris-lang.org/>.

 [Knuth92] Knuth, D., "Literate Programming", Center for the Study
 of Language and Information, 1992.

 [Literate]
 "Literate programming", <http://docs.idris-

lang.org/en/latest/tutorial/miscellany.html#literate-
programming>.

 [Metanorma]
 "Metanorma", <https://www.metanorma.com/>.

 [Postel] "Robustness principle",
 <https://en.wikipedia.org/wiki/Robustness_principle>.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

https://datatracker.ietf.org/doc/html/draft-bortzmeyer-language-state-machines-01
https://datatracker.ietf.org/doc/html/draft-bortzmeyer-language-state-machines-01
https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-00
https://datatracker.ietf.org/doc/html/draft-mcquistin-augmented-ascii-diagrams-00
https://datatracker.ietf.org/doc/html/draft-ribose-asciirfc-08
https://datatracker.ietf.org/doc/html/draft-ribose-asciirfc-08
https://www.idris-lang.org/
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#literate-programming
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#literate-programming
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#literate-programming
https://www.metanorma.com/
https://en.wikipedia.org/wiki/Robustness_principle
https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234

Petit-Huguenin Expires April 30, 2020 [Page 24]

Internet-Draft Computerate Specifying October 2019

 [RFC7991] Hoffman, P., "The "xml2rfc" Version 3 Vocabulary",
RFC 7991, DOI 10.17487/RFC7991, December 2016,

 <https://www.rfc-editor.org/info/rfc7991>.

 [Type-Driven]
 Brady, E., "Type-Driven Development with Idris", Manning,
 2017.

 [Zave] Zave, P., "Experiences with Protocol
 Description", Rigorous Protocol Engineering (WRiPE'11),
 October 2011, <http://www.pamelazave.com/wripe.pdf>.

Appendix A. Command Line Tools

A.1. Installation

 The computerate command line tools are running inside a Docker image,
 so the first step is to install the Docker software or verify that it
 is up to date (<https://docs.docker.com/install/>).

 Note that for the usage described in this document there is no need
 for Docker EE or for having a Docker account.

 The following instructions assume a Unix based OS, i.e. Linux or
 MacOS. Lines ending with a "\" are meant to be executed as one
 single line, with the "\" character removed.

A.1.1. Download the Docker Image

 To install the computerate tools, the fastest is to download and
 install the Docker image using a temporary image containing the dat
 tool:

docker pull veggiemonk/dat-docker
mkdir computerate
cd computerate
docker run -u $(id -u):$(id -g) -v \
 $(pwd):/tools veggiemonk/dat-docker dat clone \
 dat://78f80c850af509e0cd3fd7bd6f5d0dd527a861d783e05574bbd040f0502da3c6 \
 tools

 After this, the image can be loaded in Docker. The newly installed
 Docker image also contains the dat command, so there is no need to
 keep the veggiemonk/dat-docker image after this:

 docker load -i tools.tar.xz
 docker image rm --force veggiemonk/dat-docker

https://datatracker.ietf.org/doc/html/rfc7991
https://www.rfc-editor.org/info/rfc7991
http://www.pamelazave.com/wripe.pdf
https://docs.docker.com/install/

Petit-Huguenin Expires April 30, 2020 [Page 25]

Internet-Draft Computerate Specifying October 2019

 After this, running the following command in the computerate
 directory will pull any new version of the tool tar file.

 docker run -u $(id -u):$(id -g) \
 -v $(pwd):/computerate computerate/tools dat pull --exit

 The docker image can then be loaded as above.

A.2. Using the computerate Command

 The Docker image main command is "computerate", which takes the same
 parameters as the "metanorma" command from the Metanorma tooling:

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools computerate -t ietf -x txt <file>

 The differences with the "metanorma" command are:

 o The "computerate" command can process Literate Idris files (files
 with a "lidr" extension, aka lidr files), in addition to AsciiDoc
 files (files with an "adoc" extension, aka adoc files). When a
 lidr file is processed, all embedded code fragments (text between
 prefix "{`" and suffix "`}") are evaluated in the context of the
 Idris code contained in this file. Each code fragment (including
 the prefix and suffix) are then substituted by the result of that
 evaluation.

 o The "computerate" command can process included lidr files in the
 same way. The embedded code fragments in the imported file are
 processed in the context of the included lidr file, not in the
 context of the including file. Idris modules (either from an idr
 or lidr file) can be imported the usual way.

 o The literate code (which is all the text that is starting by a ">"
 symbol in column 1) in a lidr file will not be part of the
 rendered document.

 o The computerate command can process transclusions, as explained in
Section 2.2.

 o Lookup of external references is disabled. Use either raw XML
 references or an external directory.

 o Instead of generating a file based on the name of the input file,
 the "computerate" command generates a file based on the ":name:"
 attribute in the header of the document.

Petit-Huguenin Expires April 30, 2020 [Page 26]

Internet-Draft Computerate Specifying October 2019

 The "computerate" command can also be used to generate an xmlrfc v3
 file, ready for submission to the IETF:

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools computerate -t ietf -x xmlrfc3 <file>

A.3. Using Other Commands

 For convenience, the docker image provides the latest version of the
 xml2rfc, idnits, aspell, and languagetool tools.

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools xml2rfc
 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools idnits --help
 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools aspell
 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools languagetool

 lidr files can be loaded directly in the Idris REPL for debugging:

 docker run -it -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools idris <lidr-file>

 The Docker image also contains a extended version of git that will be
 used to retrieve the computerate specifications in Appendix B.

A.4. Bugs and Workarounds

 o Errors in embedded code do not stop the process but replace the
 text by the error message, which can be easily overlooked.

 o backticks are not escaped in code fragments.

 o The current version of Docker in Ubuntu fails, but this can be
 fixed with the following commands:

 sudo apt-get install containerd.io=1.2.6-3
 sudo systemctl restart docker.service

 o The Asciidoctor processor does not correctly format the output in
 all cases (e.g. ++). The escaping can be done in Idris until this
 is fixed.

 o Sometimes the Idris processing fails with an error "Module needs
 reloading". Deleting all the files with the ibc extension will
 solve that problem.

Petit-Huguenin Expires April 30, 2020 [Page 27]

Internet-Draft Computerate Specifying October 2019

 o Trying to fetch inexistant new commits on a git repository will
 block for 12 seconds.

 o xml2rfc does not support PDF output.

A.5. TODO List

 o Embedded blocks.

 o Test on Windows.

 o Using recursive modules with Idris.

Appendix B. Computerate Specifications Library

B.1. Installation

 As an hopeless tentative of restoring the end-to-end, fully
 distributed nature of the Internet, the git repositories that compose
 the Computerate Specification Library are distributed over a peer-to-
 peer protocol based on dat.

 This requires an extension to git, extension that is already
 installed in the Docker image described in Appendix A. The following
 command can be used to retrieve a computerate specification:

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools git clone --recursive dat://<public-key> <name>

 Here <public-key> is the dat public key for a specific computerate
 specification and <name> is it recommended name. Do not use the dat
 URIs given in Appendix A, as only the dat public keys listed in

Appendix B.2 can be used with a git clone.

 Updating the repository also requires using the Docker image:

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools git pull --recurse-submodules

 All the git commands that do not require access to the remote can be
 run natively or from the Docker image.

 Note that for the computerate specification library the "computerate"
 command must be run from the directory that is one level above the
 git repository. The name of the root document is always "Main.lidr"
 or "Main.adoc":

Petit-Huguenin Expires April 30, 2020 [Page 28]

Internet-Draft Computerate Specifying October 2019

 docker run -u $(id -u):$(id -g) -v $(pwd):/computerate \
 computerate/tools computerate -t ietf -x txt \
 <git-repository>/Main.lidr

B.2. Catalog

 For the time being this document will serve as a catalog of available
 computerate specifications.

B.2.1. RFC5234

 Name: RFC5234
 Public key:
 994e52b29a7bf4f7590b0f0369a7d55d29fb22befd065e462b2185a8207e21f1

Author's Address

 Marc Petit-Huguenin
 Impedance Mismatch LLC

 Email: marc@petit-huguenin.org

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Petit-Huguenin Expires April 30, 2020 [Page 29]

