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1. Introduction

If, as the unofficial IETF motto states, we believe that "running

code" is an important part of the feedback provided to the

standardization process, then as per the Curry-Howard equivalence 

[Curry-Howard] (that states that code and mathematical proofs are

the same), we ought to also believe that "verified proof" is an

equally important part of that feedback. A verified proof is a

mathematical proof of a logical proposition that was mechanically

verified by a computer, as opposed to just peer-reviewed.

The "Experiences with Protocol Description" paper from Pamela Zave 

[Zave] gives three conclusions about the usage of formal

specifications for a protocol standard. The first conclusion states

that informal methods (i.e. the absence of verified proofs) are

inadequate for widely used protocols. This document is based on the

assumption that this conclusion is correct, so its validity will not

be discussed further.

The second conclusion states that formal specifications are useful

even if they fall short of the "gold standard" of a complete formal

specification. We will show that a formal specification can be

incrementally added to a standard.

The third conclusion from Zave's paper states that the normative

English language should be paraphrasing the formal specification.

The difficulty here is that to be able to keep the formal

specification and the normative language synchronized at all times,

these two should be kept as physically close as possible to each

other.

To do that we introduce the concept of "Computerate Specifying"

(note that Computerate is a British English word). "Computerate

Specifying" is a play on "Literate Computing", itself a play on

"Structured Computing" (see [Knuth92] page 99). In the same way that

Literate Programming enriches code by interspersing it with its own
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documentation, Computerate Specifying enriches a standard

specification by interspersing it with code (or with proofs, as they

are the same thing), making it a computerate specification.

Note that computerate specifying is not specific to the IETF, just

like literate computing is not restricted to the combination of Tex

and Pascal described in Knuth's paper. What this document describes

is a specific instance of computerate specifying that combines 

[AsciiDoc] as formatting language and [Idris] as programming

language with the goal of formally specifying IETF protocols.

2. Overview of Operations

Nowadays specifications at the IETF are written in a format named 

xml2rfc v3 [RFC7991] but unfortunately making that format

"Computerable" is not trivial, mostly because there is no simple

solution to mix code and XML together in the same file. Instead, we

chose the AsciiDoc format as the basis for computerate

specifications as it permits the generation of specifications in the

xmlrfc v3 format (among other formats) and also because it can be

enriched with code in the same file.

 [I-D.ribose-asciirfc] describes a backend for the [Asciidoctor]

tool that converts an AsciiDoc document into an xmlrfc3 document.

The AsciiRFC document states various reasons why AsciiDoc is a

superior format for the purpose of writing standards, so we will not

discuss these further. Note that the same team developed Asciidoctor

backends for other Standards Developing Organizations (SDO) 

[Metanorma], making it easy to develop computerate specifications

targeting the standards developed by these SDOs.

The code in a computerate specification uses the programming

language Idris in literate programming [Literate] mode using the

Bird-style, by having each line of code starting with a ">" mark in

the first column.

That same symbol was also used by AsciiDoc as an alternate way of

defining a blockquote [Blockquotes] way which is no longer available

in a computerate specification. Bird-style code will simply not

appear in the rendered document.

The result of Idris code execution can be inserted inside the

document part by putting that code fragment in the document between

the "{`" string and the "`}" string.

A computerate specification is processed by an Asciidoctor

preprocessor that does the following:

Loads the whole document as an Idris program, including

importing modules.
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For each instance of an inline code fragment, evaluates that

fragment and replace it (including the delimiters) by the

result of that evaluation.

Continues with the normal processing of the modified document.

For instance the following computerate specification fragment taken

from the computerate specification of STUNbis

Figure 1

is rendered as

2. 

¶

3. ¶

¶

<CODE BEGINS>

> rto : Int

> rto = 500

>

> rc : Nat

> rc = 7

>

> rm : Int

> rm = 16

>

> -- A stream of transmission times

> transmissions : Int -> Int -> Stream Int

> transmissions value rto = value :: transmissions (value + rto)

>   (rto * 2)

>

> -- Returns a specific transmission time

> transmission : Int -> Nat -> Int

> transmission timeout i = index i $ transmissions 0 timeout

>

> a1 : String

> a1 = show rto

>

> a2 : String

> a2 = concat (take (rc - 1) (map (\t => show t ++ " ms, ")

>   (transmissions 0 rto))) ++ "and " ++ show (transmission rto

>     (rc - 1)) ++ " ms"

>

> a3 : String

> a3 = show $ transmission rto (rc - 1) + rto * rm

For example, assuming an RTO of {`a1`}ms, requests would be sent at

times {`a2`}.

If the client has not received a response after {`a3`} ms, the

client will consider the transaction to have timed out.

<CODE ENDS>

¶



Figure 2

Appendix A explains how to install the command line tools to process

a computerate specification.

The Idris programming language has been chosen because its type

system supports dependent and linear types, and that type system is

the language in which formal specifications are written.

Following Zave's second conclusion, a computerate specification does

not have to be about just formally specifying a protocol and proving

properties about it. There is a whole spectrum of formalism that can

be introduced in a specification, and we will present it in the

remaining sections by increasing order of complexity. Note that

because the formal language is a programming language, these usages

are not exhaustive, and plenty of other usages can and will be found

after the publication of this document.

2.1. Libraries

A computerate specification does not disappear as soon the standard

it describes is published. Quite the opposite, each specification is

designed to be used as an Idris module that can be imported in

subsequent specifications, reducing over time the amount of code

that needs to be written. At the difference of an RFC that is

immutable after publication, the code in a specification will be

improved over time, especially as new properties are proved or

disproved. The latter will happen when a bug is discovered in a

specification and a proof of negation is added to the specification,

paving the way to a revision of the standard.

This document is itself a computerate specification that contains

data types and functions that can be reused in future

specifications, and as a whole can be considered as the standard

library for computerate specifying.

For convenience, each public computerate specification, including

the one behind this document, will be made available as an

individual git repository. Appendix B explains how to gain access to

these computerate specifications.

"                                            For example, assuming an

 RTO of 500ms, requests would be sent at times 0 ms, 500 ms, 1500 ms,

 3500 ms, 7500 ms, 15500 ms, and 31500 ms.  If the client has not

 received a response after 39500 ms, the client will consider the

 transaction to have timed out."

¶

¶

¶

¶

¶

¶



2.2. Retrofitting Specifications

RFCs, Internet-Drafts and standard documents published by other SDOs

did not start their life as computerate specifications, so to be

able to use them as Idris modules they will need to be progressively

retrofitted. This is done by converting the documents into an

AsciiDoc documents and then enriching them with code, in the same

way that would have been done if the standard was developed directly

as a computerate specification.

Converting the whole document in AsciiDoc and enriching it with

code, instead of just maintaining a library of code, seems a waste

of resources. The reason for doing so is to be able to verify that

the rendered text is equivalent to the original standard, which will

validate the examples and formal languages.

Retrofitted specifications will also be made available as individual

git repositories as they are converted.

Because the IETF Trust does not permit modifying an RFC as a whole

(except for translation purposes), a retrofitted RFC uses

transclusion, a mechanism that includes parts of a separate document

at runtime. This way, a retrofitted RFC is distributed as two

separate files, the original RFC in text form, and a computerate

specification that contains only code and transclusions.

Transclusion is a special form of AsciiDoc include that takes a

range of lines as parameters:

Figure 3

Here the include macro will be replaced by the content of lines 26

to 35 (included) of RFC 5234.

The "sub" parameter permits modifying the copied content according

to a regular expression. For instance the following converts

references into the AsciiDoc format:

Figure 4

In the following example, the text is converted into a note:

Figure 5

¶

¶

¶

¶

¶

include::rfc5234.txt[lines=26..35]
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include::rfc5234.txt[lines=121..131,sub="/\[([^\]])\]/<<\1>>/"]

¶

include::rfc5234.txt[lines=151,sub="/^.*$/NOTE: \0/"]



2.3. Implementation-Oriented Standards

After spending a few years implementing standard communication

protocols, it becomes quite obvious that not all standards are meant

to be directly converted into code. In most case an expert in both

communication protocols and software development has to rearrange a

standard and its set of dependencies into a form that can be

implemented.

One sure sign that a standard has first to be rearranged is that the

information needed to implement one single network element are

spread all over the standard. For instance if for implementing the

client side of a client-server protocol one has to collect

information from most of the normative sections then that standard

is not directly ready for implementation and requires first to put

together all these pieces in a convenient form.

On the other hand some standards have been structured in a way that

matches the workflow of a software implementer. [RFC8489] and 

[RFC8656] are examples of standards that are meant to be easily

implemented.

Assuming that a standard is meant to be implemented, it follows that

it should be a goal to publish it in a form that makes

implementations easier on the software developers. On the other

hand, writing a complete implementation as part of the development

of an standard is a difficult task, especially as a standard will

change over time during its development.

Because of the constraint that in a computerate specification the

specification should be as close as possible to the equivalent

normative text, standards developed using that technique tends to be

naturally ready for implementation. This contrasts with the

difficulties encounters when retrofitting an existing standard as a

computerate specification, where trying to keep the specification

close to the text is especially challenging.

2.4. Revision of Standards

Standards evolve, but because RFCs are immutable, revisions for a

standard are done by publishing new RFCs.

The matching computerate specifications need to reflect that

relationship by extending the data type of syntax and semantics in

the new version, instead of recreating new data types from scratch.

There are two diametrically opposed directions when extending a

type:

The new standard is adding constraints. This is done by indexing

the new type over the old type.
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The new standard is removing constraints. This is done by

defining the new type as a sum type, with one of the alternatives

being the old type.

NOTE: This is correct in theory, but in practice creating new

specifications from old ones as described above is not very

convenient. Maybe an alternate solution is to define the new

specifications from scratch, and use an isomorphism proof to

precisely define the differences between the two. An Idris

elaboration script may permit duplicating a type and modifying it

without having to manually copy it.

2.5. Content of a Computerate Specification

Communication protocol specifications are generally split in two

distinct parts, syntax (the data layout of the messages exchanged)

and semantics (the rules that drive the exchange of messages).

Section 3 will discuss in detail the application of computerate

specifying to syntax descriptions, and Section 4 will be about

specifying semantics.

3. Syntax

The syntax of a communication protocol determines how data is laid

out before it is sent over a communication link. Generally the

syntax is described only in the context of the layer that this

particular protocol is operating at, e.g. an application protocol

syntax only describes the data as sent over UDP or TCP, not over

Ethernet or Wi-Fi.

Syntaxes can generally be split into two broad categories, binary

and text, and generally a protocol syntax falls completely into one

of these two categories.

Syntax descriptions can be formalized for at least three reasons

that will be presented in the following sections.

3.1. Syntax Examples

Examples in protocol documentation are frequently incorrect, which

should not be that much of an issue but for the fact that most

developers do not read the normative text when an example is

available. See Appendix D for statistics about the frequency of

incorrect examples in RFC errata.

Moving the examples into appendices or adding caution notices may

show limited success in preventing that problem.
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So ensuring that examples match the normative text seems like a good

starting point for a computerate specification. This is done by

having the possibility of adding the result of a computation

directly inside the document. If that computation is done from a

type that is (physically and conceptually) close to the normative

text, then we gain some level of assurance that both the normative

text and the derived examples will match. Note that examples can be

inserted in the document as whole blocks of text, or as inline text.

Appendix B.2.1 showcases the conversion of the examples in 

[RFC5234].

3.1.1. Data Type

The first step is to define an Idris type that completely defines

the layout of the messages exchanged. By "completely define" we mean

that the type checker will prevent creating any invalid value of

this type. That ensures that all values are correct by construction.

E.g. here is the definition of a DNS label per [RFC1034]:

Figure 6

3.1.2. Serializer

The second step is writing a serializer from that type into the wire

representation. For a text format, it is done by implementing the

Show interface:

¶

¶

¶

¶

<CODE STARTS>

> data PartialLabel' : List Char -> Type where

>   Empty : PartialLabel' []

>   More : (c : Char) -> (prf1 : isAlphaNum c || c == '-' = True) ->

>     PartialLabel' s -> (prf2 : length s < 61 = True) ->

>     PartialLabel' (c :: s)

>

> data Label' : List Char -> Type where

>   One : (c : Char) -> (prf1 : isAlpha c = True) -> Label' [c]

>   Many : (begin : Char) -> (prf1 : isAlpha begin = True) ->

>     (middle : PartialLabel' xs) ->

>     (end : Char) -> (prf2 : isAlphaNum end = True) ->

>     Label' ([begin] ++ xs ++ [end])

>

> data Label : {a : Type} -> a -> Type where

>   MkLabel : {xs : String} -> Label' (unpack xs) -> Label xs

<CODE ENDS>

¶



Figure 7

NOTE: Define binary serializer.

3.1.3. Presentation Format

Instead of directly generating character strings, the serializer

will use as target a dependent type that formalizes the AsciiDoc

language. This will permit to know the context in which a character

string will be subsequently generated and to correctly escape

special characters in that string.

Using an intermediary type will also permit to correctly generate

AsciiDoc that can generate an xmlrfc 3 file that supports both text

and graphical versions of a figure. This will be done by having

AsciiDoc blocks converted into <artwork> elements that contains both

the 72 column formatted text and an equivalent SVG file, even for

code source (instead of using the <sourcecode> element).

3.2. Designing a Data Type

Builtin data types in Idris are convenient but as a general rule

should not be used in the design of data types meant to be used in

the context of computerate specifications. Builtin types are

abstract data types so most basic proofs about them have to be

axioms, making it difficult to reason about them, which does not

constitute a solid ground on which to build a verifiable system.

The builtin types in Idris are Int, Integer, Double, Char and 

String.

On the other hand user-defined data types like Nat, Fin, Dec (a

proof carrying variant of Bool), Maybe, Either, List, Vect, etc.

have already plenty of proofs that can be reused, so should be used

in designing data types for computerate specifications.

Designing a user-defined data type is done by combining five basic

types:

Product type: This is a type built from concatenation of types,

similar to Java's class or C's struct.

Sum type: This is a type built from alternative types. It can be

simulated with inheritance in Java, or a combination of struct

and union in C. A Java enum is a very limited form of Sum type.

<CODE STARTS>

> Show (Label xs) where

>   show _ = xs

<CODE ENDS>

¶
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Exponential type: This is the type of a total function (which

implies free of side-effect and use of external variables).

Pi type: This is a product type (or a exponential type) where the

type depends on a value. This is equivalent to the universal

quantifier.

Sigma type: This is a sum type where the type depends on a value.

This is equivalent to the existential quantifier.

In addition the underlying computerate specification of this

document defines a set of data types that are suited for computerate

specifications:

The Bitvector type describes a fixed number of bits that can be

manipulated together. The library contains functions to

manipulate bitvectors that are inspired by the language in 

[Brinkmann02].

The Unsigned type describes an unsigned integer data type that is

built on top on the Bitvector library. The library contains

ordering and arithmetic operators for unsigned numbers.

The Signed type describes a signed integer data type that is

built on top on the Bitvector library. The library contains

ordering and arithmetic operators for signed numbers.

NOTE: Other RFCs are in the process of been retrofitted to implement

data types built on top of the Bitvector type. This is the case for

IPv4 and IPv6 address, MAC address, UUID, Unicode and many more. A

future version of this document will add the IdrisDoc rendering of

these libraries as appendices.

3.3. Formal Syntax Language

Some specifications use a formal language to describe the data

layout. One shared property of these languages is that they cannot

always formalize all the constraints of a specific data layout, so

they have to be enriched with comments. One consequence of this is

that they cannot be used as a replacement for the Idris data type

described in Section 3.1.1, data type that is purposely complete.

The following sections describe how these formal languages have been

or will be themselves formalized with the goal of using them in

computerate specifications.

3.3.1. Augmented BNF (ABNF)

Augmented Backus-Naur Form [RFC5234] (ABNF) is a formal language

used to describe a text based data layout.
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The [RFC5234] document has been retrofitted as a computerate

specification to provide an internal Domain Specific Language (DSL)

that permits specifying an ABNF for a specification. The encoding of

an example from Section 2.3 of [RFC5234] looks like this:

Figure 8

A serializer, also defined in the same specification, permits

converting that description into proper ABNF text that can be

inserted into the document such as in the following fragment:

Figure 9

is rendered as

Figure 10

See Appendix B.2.1 for access to the source of the retrofitted

specification for [RFC5234].

3.3.2. Augmented Packet Header Diagrams (APHD)

Augmented Packet Header Diagram [I-D.mcquistin-augmented-ascii-

diagrams] (APHD) is a formal language used to describe a binary data

layout in a machine-readable format.

The [I-D.mcquistin-augmented-ascii-diagrams] document will be

retrofitted as a computerate specification to provide an internal

Domain Specific Language (DSL) that permits specifying an APHD for a

specification. The partial encoding of an example from section 4.1

looks like this:

¶

<CODE BEGINS>

> rulename : Rule

> rulename = "rulename" `Eq` (Concat (TermDec 97 []) (TermDec 98 [])

>   [TermDec 99 []])

<CODE ENDS>

¶

<CODE BEGINS>

[source,abnf]

----

{`show rulename`}

----

<CODE ENDS>

¶

rulename = %d97 %d98 %d99

¶

¶

¶



Figure 11

A serializer, also defined in the same specification, permits

converting that description into proper ABNF text that can be

inserted into the document such as in the following fragment:

Figure 12

is rendered as

<CODE BEGINS>

> ipv4 : Aphd

> ipv4 = MkAphd "IPv4 Header" [

>   MkField "Version" (Just "V") (Number 4) Bits "This is a" ++

>     " fixed-width field, whose full label is shown in the" ++

>     " diagram.  The field's width -- 4 bits -- is given in" ++

>     " the label of the description list, separated from the" ++

>     " field's label by a colon.",

> ...

>   MkField "Options" Nothing (Mult (Sub (Name "IHL") (Number 5))

>     (Number 32)) Bits "This is a variable-length field, whose" ++

>     " length is defined by the value of the field with short" ++

>     " label IHL (Internet Header Length).  Constraint" ++

>     " expressions can be used in place of constant values: the" ++

>     " grammar for the expression language is defined in" ++

>     " Appendix A.1.  Constraints can include a previously" ++

>     " defined field's short or full label, where one has been" ++

>     " defined.  Short variable-length fields are indicated by" ++

>     " \"...\" instead of a pipe at the end of the row."

> ...

> ]

<CODE ENDS>

¶

<CODE BEGINS>

 ....

 {`show ipv4`}

 ....

<CODE ENDS>

¶



Figure 13

Here the serializer generates an instance of the intermediary

AsciiDoc type that describes the header line (which can be

concatenated to previous lines), the block containing the diagram

itself, and then a list of all the field definitions.

An IPv4 Header is formatted as follows:

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Version|   IHL |    DSCP   |ECN|         Total Length          |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|         Identification        |Flags|     Fragment Offset     |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Time to Live  |    Protocol   |        Header Checksum        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                         Source Address                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                      Destination Address                      |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                            Options                          ...

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               :

:                            Payload                            :

:                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Version (V): 4 bits.  This is a fixed-width field, whose full label

  is shown in the diagram.  The field's width -- 4 bits -- is given

  in the label of the description list, separated from the field's

  label by a colon.

...

Options: (IHL-5)*32 bits.  This is a variable-length field, whose

  length is defined by the value of the field with short label IHL

  (Internet Header Length).  Constraint expressions can be used in

  place of constant values: the grammar for the expression language

  is defined in Appendix A.1.  Constraints can include a previously

  defined field's short or full label, where one has been defined.

  Short variable-length fields are indicated by "..." instead of a

  pipe at the end of the row.

 ...

¶



3.3.3. Mathematical Formulas

AsciiDoc supports writing equations using either asciimath or

latexmath. The rendering for RFCs will generate an artwork element

that contains both the text version of the equation and a graphical

version in an SVG file.

NOTE: Not sure what to do with inline formulas, as we cannot

generate an artwork element in that case.

An Idris type will be used to described equations at the type level.

An interpreter will be used to calculate and insert examples in the

document.

A serializer will be used to generate the asciimath code that is

inserted inside a stem block.

3.3.4. RELAX NG Format

TBD

3.3.5. ASN.1

TBD

3.3.6. TLS Description Language

TBD

3.4. Proofs for Syntax

The kind of proofs that one would want in a specification are

related to isomorphism, i.e. a guarantee that two or more

descriptions of a data layout contain exactly the same information.

3.4.1. Isomorphism Between Type and Formal Language

We saw above that when a data layout is described with a formal

language, we end up with two descriptions of that data layout, one

using the Idris dependent type (and used to generate examples) and

one using the formal language.

Proving isomorphism requires generating an Idris type from the

formal language instance, which is done using an Idris elaborator

script.

In Idris, Elaborator Reflection [Elab] is a metaprogramming facility

that permits writing code generating type declarations and code

(including proofs) automatically.
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For instance the ABNF language is itself defined using ABNF, so

after converting that ABNF into an instance of the Syntax type

(which is an holder for a list of instances of the Rule type), it is

possible to generate a suite of types that represents the same

language:

Figure 14

The result of the elaboration can then be used to construct a value

of type Iso, which requires four total functions, two for the

conversion between types, and another two to prove that sequencing

the conversions results in the same original value.

The following example generates an Idris type "SessionDescription"

from the SDP ABNF. It then proves that this type and the Sdp type

contain exactly the same information (the proofs themselves have

been removed, leaving only the propositions):

¶

<CODE BEGINS>

> abnf : Syntax

> abnf = MkSyntax [

>   "rulelist" `Eq` (Repeat (Just 1) Nothing (Group (Altern

>     (TermName "rule") (Group (Concat (Repeat Nothing Nothing

>     (TermName "c-wsp")) (TermName "c-nl") [])) []))),

>     ...

>   ]

>

> %runElab (generateType "Abnf" abnf)

<CODE ENDS>

¶

¶



Figure 15

As stated in Section 3.3, the Idris type and the type generated from

the formal language are not always isomorphic, because some

constraints cannot be expressed in that formal language. In that

case isomorphism can be used to precisely define what is missing

information in the formal language type. To do so, the generated

type is augmented with a delta type, like so:

<CODE BEGINS>

> import Data.Control.Isomorphism

>

> sdp : Syntax

> sdp = MkSyntax [

>   "session-description" `Eq` (Concat (TermName "version-field")

>     (TermName "origin-field") [

>       TermName "session-name-field",

>       Optional (TermName "information-field"),

>       Optional (TermName "uri-field"),

>       Repeat Nothing Nothing (TermName "email-field"),

>       Repeat Nothing Nothing (TermName "phone-field"),

>       Optional (TermName "connection-field"),

>       Repeat Nothing Nothing (TermName "bandwidth-field"),

>       Repeat (Just 1) Nothing (TermName "time-description"),

>       Optional (TermName "key-field"),

>       Repeat Nothing Nothing (TermName "attribute-field"),

>       Repeat Nothing Nothing (TermName "media-description")

>       ]),

>   ...

>   ]

>

> %runElab (generateType "Sdp" sdp)

>

> same : Iso Sdp SessionDescription

> same = MkIso to from toFrom fromTo

>   where

>     to : Sdp -> SessionDescription

>

>     from : SessionDescription -> Abnf

>

>     toFrom : (x : SessionDescription ) -> to (from x) = x

>

>     fromTo : (x : Sdp) -> from (to x) = x

>

<CODE ENDS>

¶



Figure 16

Then the DeltaSessionDescription type can be modified to include the

missing information until the same function type checks. After this

we have a guarantee that we know all about the constraints that

cannot be encoded in that formal language, and can check manually

that each of them is described as comment.

Idris elaborator scripts will be developped for each formal

languages.

3.4.2. Data Format Conversion

For specifications that describe a conversion between different data

layouts, having a proof that guarantees that no information is lost

in the process can be beneficial. For instance, we observe that

syntax encoding tends to be replaced each ten years or so by

something "better". Here again isomorphism can tell us exactly what

kind of information we lost and gained during that replacement.

Here, for example, the definition of a function that would verify an

isomorphism between an XML format and a JSON format:

Figure 17

Here DeltaXML expresses what is gained by switching from XML to

JSON, and DeltaJson expresses what is lost.

3.4.3. Interoperability with Previous Versions

The syntax of the data layout may be modified as part of the

evolution of a standard. In most case a version number prevents old

format to be used with the new format, but in cases where that it is

not possible, the new specification can ensure that both formats can

co-exist by using the same techniques as above.

<CODE BEGINS>

> data DeltaSessionDescription : Type where

>   ...

>

> same : Iso Sdp (SessionDescription, DeltaSessionDescription)

>   ...

<CODE ENDS>

¶

¶

¶

¶

<CODE BEGINS>

> isXmlAndJsonSame: Iso (XML, DeltaXML) (JSON, DeltaJson)

>   ...

<CODE ENDS>

¶

¶



Conversely these techniques can be used during the design phase of a

new version of a format, to check if a new version number is

warranted.

3.4.4. Postel's Law

Be conservative in what you do, be liberal in what you accept from

others.

— Jon Postel

One of the downsides of formal specifications is that there is no

wiggle room possible when implementing it. An implementation either

conforms to the specification or does not.

One analogy would be specifying a pair of gears. If one decides to

have both of them made with tolerances that are too small, then it

is very likely that they will not be able to move when put together.

A bit of slack is needed to get the gear smoothly working together

but more importantly the cost of making these gears is directly

proportional to their tolerance. There is an inflexion point where

the cost of an high precision gear outweighs its purpose.

We have a similar issue when implementing a formal specification,

where having an absolutely conformant implementation may cost more

money than it is worth spending. On the other hand a specification

exists for the purpose of interoperability, so we need some

guidelines on what to ignore in a formal specification to make it

cost effective.

Postel's law proposes an informal way of defining that wiggle room

by actually having two different specifications, one that defines a

data layout for the purpose of sending it, and another one that

defines a data layout for the purpose of receiving that data layout.

Existing specifications express that dichotomy in the form of the

usage of SHOULD/SHOULD NOT/RECOMMENDED/NOT RECOMMENDED [RFC2119]

keywords. For example the SDP spec says that "[t]he sequence CRLF

(0x0d0a) is used to end a line, although parsers SHOULD be tolerant

and also accept lines terminated with a single newline character."

This directly infers two specifications, one used to define an SDP

when sending it, that enforces using only CRLF, and a second

specification, used to define an SDP when receiving it (or parsing

it), that accepts both CRLF and LF.

Note that the converse is not necessarily true, i.e. not all usages

of these keywords are related to Postel's Law.

To ensure that the differences between the sending specification and

the receiving specification do not create interoperability problems,
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we can use a variant of isomorphism, as shown in the following

example (data constructors and code elided):

Figure 18

Here we define two data types, one that describes the data layout

that is permitted to be sent (Sending) and one that describes the

data layout that is permitted to be received (Receiving). For each

data layout that is possible to send, there is one or more matching

receiving data layouts. This is expressed by the function to that

takes as input one Sending value and returns a list of Receiving

values.

Conversely, the from function maps a Receiving data layout onto a

Sending data layout. Note the asymmetry there, which prevents to use

a standard proof of isomorphism.

Then the toFrom and fromTo proofs verify that there is no

interoperability issue by guaranteeing that each Receiving value

maps to one and only one Sending instance and that this mapping is

isomorphic.

All of this will provide a clear guidance of when and where to use a

SHOULD keyword or its variants, without loss of interoperability.

As an trivial example, the following proves that accepting LF

characters in addition to CRLF characters as end of line markers

does not break interoperability:

¶

<CODE BEGINS>

> data Sending : Type where

>

> data Receiving : Type where

>

> to : Sending -> List Receiving

>

> from : Receiving -> Sending

>

> toFrom : (y : Receiving) -> Elem y (to (from y))

>

> fromTo : (y : Sending) -> True = all (== y) [from x | x <- to y]

>

<CODE ENDS>

¶

¶

¶

¶

¶



Figure 19

3.5. Extended Registries

Often parts of a data layout are left unspecified, so they can be

defined in separate specifications. This is mainly used for

extensibility purpose.

In most cases, an external registry is maintained with the list of

specifications that can be used to make sense of these unspecified

parts.

To make sense of an unspecified part in a data layout, 3 pieces of

information are needed:

The specification that defined the registry.

The content of the registry itself.

Each specification that defined one element of that registry.

Defining a data layout for a protocol means also bringing together

these pieces of information so a Sum type of all the specified parts

can be put together. Unfortunately the information available in

<CODE BEGINS>

> data Sending : Type where

>   S_CRLF : Sending

>

> Eq Sending where

>   (==) S_CRLF S_CRLF = True

>

> data Receiving : Type where

>   R_CRLF : Receiving

>   R_LF : Receiving

>

> to : Sending -> List Receiving

> to S_CRLF = [R_CRLF, R_LF]

>

> from : Receiving -> Sending

> from R_CRLF = S_CRLF

> from R_LF = S_CRLF

>

> toFrom : (y : Receiving) -> Elem y (to (from y))

> toFrom R_CRLF = Here

> toFrom R_LF = There Here

>

> fromTo : (y : Sending) -> True = all (== y) [from x | x <- to y]

> fromTo S_CRLF = Refl

<CODE ENDS>

¶

¶

¶

* ¶

* ¶

* ¶



these registry is not sufficient to to bring the exact data layout

from the specification of a single element in that Sum type. One

reason if that multiple data layouts can be defined in the

computerate specification of a standard, but there is no indication

in the registry to pin point the exact data type.

For instance IANA is the organization that is maintaining the

registries for the IETF. The Assigned Internet Protocol Number

(https://www.iana.org/assignments/protocol-numbers/protocol-

numbers.xml) is an example of a registry that contains the list of

all protocols that can be carried by the Internet Protocol, and was

most recently defined by RFC 5237. The first entry in that registry

was defined by RFC 8200, the next on by RFC 791, and so on for each

entry of that registry. RFC 8200 contains the description for

multiple entries in the registry, and so an additional mechanism is

needed to differentiate them.

That additional mechanism is abstracted as an extended registry that

complements the existing registry, but for the sole purpose of

generating that Sum type. This abstract registry is filled by

information coming from the type-checking of the data layout types

in the respective computerate specifications. It links a specific

entry in the registry with the type pf the data layout in the

specification.

When the specification for a registry is type-checked, it

automatically download the external registry, and access the

abstract extended registry. For each extended entry, the type-

checker can automatically generate a data constructor that reference

the data layout defining in the entry specification. For entries

that does not have an extension (i.e. no computerate specifications

exist at this time), a placeholder data constructor is generated.

Appendix C describes an implementation of the extended registry

mechanism.

4. Semantics

The semantics of a communication protocol determine what messages

are exchanged over a communication link and the relationship between

them. The semantics are generally described only in the context of

the layer that this particular protocol is operating at.

4.1. Typed Petri Nets

The semantics of a specification require to define an Idris type

that strictly enforces these semantics. This can be done in an ad

hoc way [Type-Driven], particularly by using linear types that

express resources' consumption.
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But a better solution is to design these graphically, particularly

by using Petri Nets. This specification defines a DSL that permits

describing a Typed Petri Net (TPN) which is heavily influenced by 

Coloured Petri Nets [CPN] (CPN). A CPN adds some restriction on the

types that can be used in a Petri Net because of limitations in the

underlying programming language, SML. The underlying programming

used in TPN, Idris, does not have these limitations, so any well-

formed Idris type (including polymorphic, linear and dependent

types) can be directly used in TPN.

NOTE 1: A graphical editor for TPN is planned as part of the

integration tooling. The graphical tool will use the document

directly as storage.

Here's an example of TPN (from figure 2.10 in [CPN]):
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Figure 20

NOTE: The DSL is being currently designed, so the example shows the

generated value.

From there it is easy to generate (using the non-deterministic monad

in Idris) an interpreter for debugging and simulation purposes:

<CODE BEGINS>

> NO : Type

> NO = Int

>

> DATA : Type

> DATA = String

>

> NOxDATA : Type

> NOxDATA = (NO, DATA)

>

> PTS : Place

> PTS = MkPlace "Packets To Send" NOxDATA (\() => [(1, "COL"),

>   (2, "OUR"), (3, "ED "), (4, "PET"), (5, "RI "), (6, "NET")])

>

> NS : Place

> NS = MkPlace "NextSend" NO (\() => [1])

>

> A : Place

> A = MkPlace "A" NOxDATA (\() => [])

>

> input1 : Input

> input1 = MkInput PTS (NO, DATA) pure

>

> input2 : Input

> input2 = MkInput NS NO pure

>

> output1 : Output

> output1 = MkOutput PTS (NO, DATA) pure

>

> output2 : Output

> output2 = MkOutput NS NO pure

>

> output3 : Output

> output3 = MkOutput A (NO, DATA) pure

>

> sendPacket : Transition

> sendPacket = MkTransition [input1, input2] [output1, output2,

>   output3] (\((n, d), n') => if n == n'

>                              then pure ((n, d), n, (n, d))

>                              else empty)

<CODE ENDS>

¶

¶



Figure 21

NOTE: Replace by the generic variant of the interpreter.

A Petri Net has the advantage that the same graph can be reused to

derive other Petri Nets, e.g., Timed Petri Nets (that can be used to

collect performance metrics) or Stochastic Petri Nets.

NOTE 2: The traditional way of verifying a Petri Net is by using

model checking. There is nothing in the design that prevents doing

that, but because that takes quite some time to run and so cannot be

part of the document processing, how do we store in the document a

proof that the model checking was successful?

A TPN that covers a whole protocol (i.e. client, network, and

server) is useful to prove the properties listed in the previous

sections. But the TPN is also designed in a way that each of these

parts can be defined separately from the others (making it a

Hierarchical TPN).

4.2. Semantics Examples

Semantics examples can be wrong, so it is useful to be sure that

they match the specification.

4.2.1. Data Type

As explained above, semantics can be described in an ad hoc manner,

or using the TPN DSL.

4.2.2. Serializer

At the difference of syntax, where there are more or less as many

ways to display them than there are syntaxes, semantics examples

generally use sequence diagrams, eventually augmented with the

<CODE BEGINS>

> interpret : MS NOxDATA -> MS NO -> MS NOxDATA ->

>   ND (MS NOxDATA, MS NO, MS NOxDATA)

> interpret pts ns a = do

>   (pts1, pts2) <- sel pts

>   (ns1, ns2) <- sel ns

>   i1 <- input' input1 pts1

>   i2 <- input' input2 ns1

>   (pts3, ns3, a3) <- transition' sendPacket (i1, i2)

>   let o1 = output' output1 pts3

>   let o2 = output' output2 ns3

>   let o3 = output' output3 a3

>   pure (o1 ++ pts2, o2 ++ ns2, o3 ++ a)

<CODE ENDS>

¶

¶
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content of the packets exchanged (and so using the techniques

described in Section 3.1).

Similarly to what is done in Section 3.3.2, an Asciidoctor block

processor similar to the "msc" type of diagram used by the

asciidoctor-diagram extension will be designed.

NOTE 1: We unfortunately cannot reuse the asciidoctor-diagram

extension because it cannot generate both text and SVG versions of a

sequence diagram.

The serializer for an example derived from a TPN generates the

content of the msc AsciiDoc block, by selecting one particular path

and its associated bindings through the Petri Net.

NOTE 2: We probably want to use AsciiDoc callouts for these,

although that would require a modification in AsciiRfc. In fact

callout would be a far better technique for other diagrams, like

AAD, as it will let the renderer take care of the best way to place

elements depending on the output format.

4.2.3. Presentation Format

TBD.

4.3. Formal Semantics Language

Some specifications use a formal language to describe the state

machines. One shared property of these languages is that they cannot

always formalize all the constraints of specific semantics, so they

have to be enriched with comments. One consequence of this is that

they cannot be used as a replacement for the Idris data type

described in Section 4.1, a data type that is purposely complete.

4.3.1. Cosmogol

Cosmogol [I-D.bortzmeyer-language-state-machines] is a formal

language designed to define states machines. The Internet-Draft will

be retrofitted as a computerate specification to provide an internal

Domain Specific Language (DSL) that permits specifying an instance

of that language. A serializer and elaborator script will also be

defined.

Finally, an Asciidoctor block processor would be used to convert the

language into both a text and a graphical view of the state machine.

NOTE: Add examples there.
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4.4. Proofs for Semantics

Like for syntax formal languages, an elaborator script permits

generating a type from a TPN instance. That type can then be used to

write proofs of the properties that we expect from the semantics.

4.4.1. Isomorphism

An isomorphism proof can be used between two types derived from the

semantics of a specification, for example to prove that no

information is lost in the converting between the underlying

processes, or when upgrading a process.

An example of that would be to prove (or more likely disprove) that

the SIP state machines are isomorphic to the WebRTC state machines.

4.4.2. Postel's Law

Like for the syntax, semantics can introduce wiggle room between the

state machines on the sending side and the state machines on the

receiving side. A similar isomorphism proof can be used to ensure

that this is done without loss of interoperability.

4.4.3. Termination

The TPN type can be used to verify that the protocol actually

terminates, or that it always returns to its initial state. This is

equivalent to proving that a program terminates.

4.4.4. Liveness

The TPN type can be used to verify that the protocol is productive,

i.e. that it does not loop without making progress.

5. Verified Code

When applied, the techniques described in Section 3 and Section 4

result in a formal specification, in the form of a set of types.

Types are logical propositions so proofs and disproofs can be

written about them. Interpreted as code, these eventual proofs

happen to be proofs that a specification is implementable.

To make these pieces of code composable, a specification is split in

multiple modules, each one represented as a unique function. The

type of each of these functions is derived from the hierarchical

TPNs described in Section 4, by bundling together all the inputs of

the TPN module as the input for that function, and bundling all the

outputs of the TPN module as the output of this function.
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[RFC0761]

[RFC7991]

[RFC5234]

For instance the IPv4 layer is really 4 different functions:

A function that converts between a byte array and a tree

representation (parsing).

A function that takes a tree representation and a maximum MTU and

returns a list of tree representations, each one fitting inside

the MTU.

A function that accumulates tree representations of an IP

fragment until a tree representation of a full IP packet can be

returned.

A function that convert a tree representation into a byte array.

The description of each function is incomplete, as in addition to

the input and the output listed, these functions needs some

ancillary data, in the form of:

state, which is basically values stored between evaluations of a

function,

an optional signal, that can be used as an API request or

response. As timers are a fundamental building block for

communication protocols, one common uses for that signal are to

request the arming of a timer, and to receive the indication of

the expiration of that timer.

To unclutter the signature of these function, these ancillary data

are passed to the function using an ad-hoc monad named the Impl

Monad (Impl is short for Implementation or Implementable). To

unclutter even further the signature of these functions, that same

Impl monad can be used to store the various proofs consumed and

produced by these functions, making these function more easily

composable.
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Appendix A. Command Line Tools

A.1. Installation

The computerate command line tools are run inside a Docker image, so

the first step is to install the Docker software or verify that it

is up to date (https://docs.docker.com/install/).

Note that for the usage described in this document there is no need

for Docker EE or for having a Docker account.

The following instructions assume a Unix based OS, i.e. Linux or

MacOS. Lines separated by a "\" character are meant to be executed

as one single line, with the "\" character removed.

A.1.1. Download the Docker Image

To install the computerate tools, the fastest way is to download and

install the Docker image using a temporary image containing the dat

tool:

¶

¶

¶

¶

docker pull veggiemonk/dat-docker

mkdir computerate

cd computerate

docker run --rm -u $(id -u):$(id -g) -v \

 $(pwd):/tools veggiemonk/dat-docker dat clone \

 dat://6a33cb289d5818e3709f62e95df41be537edba5f4dc26593e2cb870c7982345b \

 tools

https://www.metanorma.com/
https://www.idris-lang.org/
https://www.idris-lang.org/
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#literate-programming
http://docs.idris-lang.org/en/latest/tutorial/miscellany.html#literate-programming
https://asciidoctor.org/docs/user-manual/#markdown-style-blockquotes
https://asciidoctor.org/docs/user-manual/#markdown-style-blockquotes
https://asciidoctor.org/docs/user-manual/#markdown-style-blockquotes
https://docs.docker.com/install/


Figure 22

After this, the image can be loaded in Docker. The newly installed

Docker image also contains the dat command, so there is no need to

keep the veggiemonk/dat-docker image after this:

Figure 23

A new version of the tools is released at the same time a new

version of this document is released. After this, running the

following command in the computerate directory will pull any new

version of the tool tar file:

Figure 24

The docker image can then be loaded as above.

A.2. Using the computerate Command

The Docker image main command is computerate, which takes the same

parameters as the metanorma command from the Metanorma tooling:

Figure 25

The differences with the metanorma command are:

The computerate command can process Literate Idris files (files

with a "lidr" extension, aka lidr files), in addition to AsciiDoc

files (files with an "adoc" extension, aka adoc files). When a

lidr file is processed, all embedded code fragments (text between

prefix "{`" and suffix "`}") are evaluated in the context of the

Idris code contained in this file. Each code fragment (including

the prefix and suffix) are then substituted by the result of that

evaluation.

The computerate command can process included lidr files in the

same way. The embedded code fragments in the imported file are

processed in the context of the included lidr file, not in the

context of the including file. Idris modules (either from an idr

or lidr file) can be imported the usual way.

¶

docker load -i tools.tar.xz

docker image rm --force veggiemonk/dat-docker

¶

docker run --rm -u $(id -u):$(id -g) \

 -v $(pwd):/computerate computerate/tools dat pull --exit

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools computerate -t ietf -x txt <file>

¶

*

¶

*

¶



The literate code (which is all the text that is starting by a

">" symbol in column 1) in a lidr file will not be part of the

rendered document.

The computerate command can process transclusions, as explained

in Section 2.2.

Lookup of external references is disabled. Use either raw XML

references or an external directory.

Instead of generating a file based on the name of the input file,

the computerate command generates a file based on the :name:

attribute in the header of the document.

The computerate command can also be used to generate an xmlrfc v3

file, ready for submission to the IETF:

Figure 26

A.3. Using the Idris REPL

idr and lidr files can be loaded directly in the Idris REPL for

debugging:

Figure 27

It is possible to directly modify the source code in the REPL by

entering the :e command, which will load the file in an instance of

VIM preconfigured to interact with the REPL.

Alternatively the Idris REPL can be started as a server:

Figure 28

Then if a source file is loaded in a separate console with the VIM

instance inside the Docker image, it can interact with the REPL

server:

*

¶

*

¶

*

¶

*

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools computerate -t ietf -x rfc <file>

¶

docker run --rm -it -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools idris <lidr-file>

¶

¶

docker run --rm -it -u $(id -u):$(id -g) -p 127.0.0.1:4294:4294 \

  -v $(pwd):/computerate computerate/tools idris

¶

docker run --rm -u $(id -u):$(id -g) --net=host \

  -v $(pwd):/computerate computerate/tools vim <file>



Figure 29

Note that both commands must be run from the same directory.

A.4. Using Other Commands

For convenience, the docker image provides the latest version of the

xml2rfc, aspell, and idnits tools.

Figure 30

The Docker image also contains a extended version of git that will

be used to retrieve the computerate specifications in Appendix B.

A.5. Bugs and Workarounds

Errors in embedded code do not stop the process but replace the

text by the error message, which can be easily overlooked.

backticks are not escaped in code fragments.

The current version of Docker in Ubuntu fails, but this can be

fixed with the following commands:

Figure 31

The Asciidoctor processor does not correctly format the output in

all cases (e.g. "++"). The escaping can be done in Idris until

this is fixed.

Sometimes the Idris processing fails with an error "Module needs

reloading". Deleting all the files with the ibc extension will

solve that problem.

Trying to fetch nonexistent new commits on a git repository will

block for 12 seconds.

A.6. TODO List

Embedded blocks.

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools xml2rfc

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools idnits --help

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools aspell

¶

*

¶

* ¶

*

¶

sudo apt-get install containerd.io=1.2.6-3

sudo systemctl restart docker.service

*

¶

*

¶

*

¶

* ¶



Test on Windows.

Using recursive modules with Idris.

Appendix B. Computerate Specifications Library

B.1. Installation

The git repositories that compose the Computerate Specification

Library are distributed over a peer-to-peer protocol based on dat.

This requires an extension to git, extension that is already

installed in the Docker image described in Appendix A. The following

command can be used to retrieve a computerate specification:

Figure 32

Here <public-key> is the dat public key for a specific computerate

specification and <name> is the recommended name. Do not use the dat

URIs given in Appendix A, as only the dat public keys listed in 

Appendix B.2 can be used with a git clone.

Updating the repository also requires using the Docker image:

Figure 33

All the git commands that do not require access to the remote can be

run natively or from the Docker image.

Note that for the computerate specification library the computerate

command must be run from the directory that is one level above the

git repository. The name of the root document is always Main.adoc,

or rarely Main.lidr:

Figure 34

* ¶

* ¶

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools git clone --recursive dat://<public-key> <name>

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools git pull

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools git submodule update

¶

¶

docker run --rm -u $(id -u):$(id -g) -v $(pwd):/computerate \

  computerate/tools computerate -t ietf -x txt \

  <git-repository>/Main.lidr



B.2. Catalog

For the time being this document will serve as a catalog of

available computerate specifications.

B.2.1. RFC 5234

Figure 35

Appendix C. Extended Registry

When a data layout is typechecked, a Type Provider is used to write

the data layout in the extended registry.

Figure 36

The extendRegistry function takes 3 parameters:

The URL or identifier for the registry to extend.

A unique identifier for the entry to extend. The entry must

exist.

The data layout Type to bind with that entry.

In the computerate specification that defines a registry, the

following code will automatically generates the corresponding Sum

type:

Figure 37

That code will download the current content of the registry

identified by the URL passed as parameter, will locate the extended

registry, if any, and will generate the Sum type of type MyType.

The implementations of the extendRegistry and registry functions

currently only recognize IANA registries.

¶

Name: RFC5234

Public key:

  994e52b29a7bf4f7590b0f0369a7d55d29fb22befd065e462b2185a8207e21f1

¶

%provide (T : Type) with extendRegistry

 "https://www.iana.org/assignments/cose/cose.xhtml#algorithms"

 "1" Icmp

¶

* ¶

*

¶

* ¶

¶

%provide (MyType : Type) with registry

 "https://www.iana.org/assignments/cose/cose.xhtml#algorithms"

¶

¶



Appendix D. Errata Statistics

In an effort to quantify the potential benefits of using formal

methods at the IETF, an effort to relabel the Errata database is

under way.

The relabeling uses the following labels:

Label Description

AAD Error in an ASCII bit diagram

ABNF Error in an ABNF

Absent The errata was probably removed

ASN.1 Error in ASN.1

C Error in C code

Diagram Error in a generic diagram

Example An example does not match the normative text

Formula Error preventable by using Idris code

Ladder Error in a ladder diagram

Rejected The erratum was rejected

Text Error in the text itself, no remedy

TLS Error in the TLS language

Table 1

At the time of publication the first 700 errata, which represents

11.88% of the total, have been relabeled. On these, 34 were rejected

and 27 were deleted, leaving 639 valid errata.

Label Count Percentage

Text 396 61.97%

Formula 66 10.32%

Example 64 10.0%

ABNF 38 5.94%

AAD 32 5.00%

ASN.1 27 4.22%

C 9 1.40%

Diagram 4 0.62%

TLS 2 0.31%

Ladder 1 0.15%

Table 2

Note that as the relabeling is done in in order of erratum number,

at this point it covers mostly older RFCs. A change in tooling (e.g.

ABNF verifiers) means that these numbers may drastically change as

more errata are relabeled. But at this point it seems that 38.02% of

errata could have been prevented with a more pervasive use of formal

methods.

¶

¶

¶

¶
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Document

Notes are now correctly displayed.

Add "Implementations Oriented Standards" section.

Add "Extended Registries" section and appendix.

Add paragraph about hierarchical petri nets.

Convert "Verified Code" section into a top level section,

and expand it.

Add "Implementation-Oriented Standards" section.

Tooling
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Document

Switch to rfcxml3.

Status is now experimental.

Many nits.

Fix incorrect errata stats.

Move acknowledgment section at the end.

Rewrite the APHD section (formerly known as AAD) to match

draft-mcquistin-augmented-diagrams-01.

Fix non-ascii characters in the references.

Intermediate AsciiDoc representation for serializers.

Tooling

xmlrfc3 is now the default extension.

"docName" and "category" attributes are now generated, and

the "prepTime" is removed.

Update xml2rfc to 2.35.0.

Remove LanguageTool.

Update Metanorma to version 0.3.17.

Update Asciidoctor to 2.0.10.

Update list of Working Groups.

Library

No update.
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New changelog appendix.

Fix incorrect reference, formatting in Idris code.
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Add explanations to use the Idris REPL and VIM inside the

Docker image.

Add placeholders for ASN.1 and RELAX NG languages.

New Errata appendix.

Nits.

Improve Syntax Examples section.

Tooling

Update Metanorma to version 0.3.16

Update MetaNorma-cli to version 1.2.7.1

Switch to patched version of Idris 1.3.2 that supports

remote REPL in Docker.

Add VIM and idris-vim extension.

Remove some debug statements.
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