
Network Working Group M.P.H. Petit-Huguenin

Internet-Draft Stonyfish, Inc.

Intended status: Standards Track March 06, 2011

Expires: September 07, 2011

Configuration of Access Control Policy in REsource LOcation And

Discovery (RELOAD) Base Protocol

draft-petithuguenin-p2psip-access-control-00

Abstract

This document describes an extension to the REsource LOcation And

Discovery (RELOAD) base protocol to distribute the code of new Access

Control Policies without having to upgrade the RELOAD implementations

in an overlay.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 07, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may not be modified, and derivative works of it may not

be created, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction*

2. Terminology

3. Processing an extended Kind

4. Security Considerations

5. IANA Considerations

6. Acknowledgements

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Examples

Appendix A.1. Standard Access Control Policies

Appendix A.1.1. USER-MATCH

Appendix A.1.2. NODE-MATCH

Appendix A.1.3. USER-NODE-MATCH

Appendix A.1.4. NODE-MULTIPLE

Appendix A.2. Service Discovery Usage

Appendix B. Release notes

Appendix B.1. TODO List

Author's Address

1. Introduction

The RELOAD base protocol defines an Access Control Policy as

"defin[ing] whether a request from a given node to operate on a given

value should succeed or fail." The paragraph continues saying that

"[i]t is anticipated that only a small number of generic access control

policies are required", but there is indications that this assumption

will not hold. On all the RELOAD Usages defined in other documents than

the RELOAD base protocol, roughly 50% defines a new Access Control

Policy.

The problem with a new Access Control Policy is that, because they are

executed when a Store request is processed, they need to be implemented

by all the peers, and so require an upgrade of the software. This is

something that is probably not possible in large overlays or on

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

overlays using different implementations. For this reason, this

document proposes an extension to the RELOAD configuration document

that permits to transport the code of a new Access Control Policy to

each peer.

This extension defines a set of new elements that can be optionally

added to a <kind> element in the configuration document. The most

important of this elements is the <access-control-code> element that

contains JavaScript code that will be called for each StoredData object

in a StoreReq processed by a peer. The code receives four parameters,

corresponding to the Resource-ID, Signature, Kind and StoredDataValue

of the value to store. The code returns true or false to signal to the

implementation if the request should succeed or fail.

For example the USER-MATCH Access Control Policy defined in the base

protocol could be redefined by inserting the following code in an

<access-control-code> element:

return resource.equals(signature.user_name);

The <kind> parameters are also passed to the code, so the NODE-MULTIPLE

Access Control Policy could be implemented like this:

for (int i = 0; i < kind.params['max-node-multiple']; i++) {

 if (resource.equals(signature.node_id, i)) return true;

}

return false;

Some Access Control Policies requires access to the content of the

value to be stored. To permit this a <data-stored> element can be added

to describe the content of the value. This description uses the same

syntax that is used in the RELOAD base protocol to describe the various

messages and is automatically converted to a JavaScript object

accessible from the Access Control Policy code. For example ReDiR [I-

D.ietf-p2psip-service-discovery] requires such mechanism so if the

structure described in section 4.1. is copied in the <data-stored>

element then the following code can be used to define the NODE-ID-MATCH

Access Control Policy:

return entry.key === signature.node_id

 && (!entry.exists

 || resource.equals(entry.value.data.namespace,

 entry.value.data.level, entry.value.data.node);

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

resource:

resource.equals(Object...):

signature.user_name:

signature.node_id:

kind.id:

kind.name:

kind.data_model:

kind.access_control:

kind.params:

max-count:

max-size:

max-node-multiple:

3. Processing an extended Kind

A peer receiving a <kind>, either by retrieving it from the

configuration server or in a ConfigUpdateReq message, MUST verify the

signature in the kind-signature element before executing the code.

If the <access-control-code> element is present in the namespace

allocated to this specification, and the Access Control Policy is not

natively implemented, then the code inside the element MUST be called

for each DataValue found in a received StoreReq for this Kind. For each

call to the code, the following JavaScript objects, properties and

functions MUST be available:

An opaque object representing the Resource-ID.

Returns true if hashing the concatenation

of the arguments according to the mapping function of the overlay

algorithm is equal to the Resource-ID.

The rfc822Name stored in the certificate that was

used to sign the request.

The Node-ID stored in the certificate that was used

to sign the request.

The id of the Kind associated with the entry.

The name of the Kind associated with the entry.

The name of the Data Model associated with the entry.

The name of the Access Control Policy associated

with the entry.

An associative array containing the parameters of the

Access Control Policy as specified in the configuration file.

The value of the max-count element in the configuration

file.

The value of the max-size element in the configuration

file.

If the Access Control is MULTIPLE-NODE, contains

the value of the max-node-multiple element in the configuration

file. If not, this property is undefined.

entry.index:

entry.key:

entry.storage_time:

entry.lifetime:

entry.exist:

entry.value:

Vectors:

Numbers:

Enumerateds:

Structures:

Variants:

If the Data Model is ARRAY, contains the index of the

entry. If not, this property is undefined.

If the Data Model is DICTIONARY, contains the key of the

entry. If not, this property is undefined.

A Date object containing the time for the storage.

A number that contain the validity for the data in

seconds.

A boolean that indicates if the entry value exists.

If a <description> extension element is present in the

<kind> element, then the content of this property is automatically

generated from the definition. If not, this property contains an

opaque object that represent the whole data.

If addition to the "max-count", "max-size" and eventually "max-node-

multiple" properties in the kind.params associative array, any

extension element in any namespace found in the <kind> element MUST be

added to this array, using the element name as key and the content as

value.

The value returned by the code is evaluated to true or false, according

to the JavaScript rules. If the return value of one of the call to the

code is evaluated to false, then the StoreReq fails, the state MUST be

rolled back and an Error_Forbidden MUST be returned.

If the <data-stored> element is present in the namespace allocated to

this specification, then its content MUST be parsed and converted in a

way that will permit to parse the value in the DataValue structure and

generate a JavaScript object with properties corresponding to each

label. The "value" attribute MUST be filled with the label of the

statement inside the element that must be used as the root of the

parsing. Each statement in the content MUST be converted as follow:

Variable-length vectors are converted to arrays.

uint8, uint16, uint24, uint32, uint64, and uint128 are

converted to a JavaScript number.

TBD

Structures are converted to an object, which each fields

being converted to a property of same name.

TBD

If the <data-stored> element is not present, the value in the DataValue

structure will still be passed as an opaque object to the code.

4. Security Considerations

TBD

5. IANA Considerations

No IANA considerations.

6. Acknowledgements

This document was written with the xml2rfc tool described in [RFC2629].

7. References

7.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[I-D.ietf-

p2psip-base]

Jennings, C, Lowekamp, B, Rescorla, E, Baset, S and

H Schulzrinne, "REsource LOcation And Discovery

(RELOAD) Base Protocol", Internet-Draft draft-ietf-

p2psip-base-12, November 2010.

7.2. Informative References

[RFC2629]
Rose, M.T., "Writing I-Ds and RFCs using XML",

RFC 2629, June 1999.

[I-D.ietf-

p2psip-service-

discovery]

Maenpaa, J and G Camarillo, "Service Discovery

Usage for REsource LOcation And Discovery

(RELOAD)", Internet-Draft draft-ietf-p2psip-

service-discovery-02, January 2011.

[I-D.knauf-

p2psip-disco]

Knauf, A, Hege, G, Schmidt, T and M Waehlisch,

"A RELOAD Usage for Distributed Conference

Control (DisCo)", Internet-Draft draft-knauf-

p2psip-disco-01, December 2010.

Appendix A. Examples

Appendix A.1. Standard Access Control Policies

This section shows the JavaScript code that could be used to implement

the standard Access Control Policies defined in [I-D.ietf-p2psip-base].

Appendix A.1.1. USER-MATCH

return resource.equals(signature.user_name);

Appendix A.1.2. NODE-MATCH

return resource.equals(signature.node_id);

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/draft-ietf-p2psip-base-12
http://tools.ietf.org/html/draft-ietf-p2psip-base-12
mailto:mrose@not.invisible.net
http://tools.ietf.org/html/rfc2629
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-02
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-02
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-02
http://tools.ietf.org/html/draft-knauf-p2psip-disco-01
http://tools.ietf.org/html/draft-knauf-p2psip-disco-01

Appendix A.1.3. USER-NODE-MATCH

return resource.equals(signature.user_name)

 && entry.key === signature.node_id;

Appendix A.1.4. NODE-MULTIPLE

for (int i = 0; i < kind.params['max-node-multiple']; i++) {

 if (resource.equals(signature.node_id, i)) return true;

}

return false;

Appendix A.2. Service Discovery Usage

[I-D.ietf-p2psip-service-discovery] defines a specific Access Control

Policy (NODE-ID-MATCH) that need to access the content of the entry to

be written. If implemented as specified by this document, the <kind>

element would look something like this:

<kind name='REDIR'

 xmlns:acp='http://implementers.org/access-control-policy'>

 <data-model>DICTIONARY</data-model>

 <access-control>NODE-ID-MATCH</access-control>

 <max-count>100</max-count>

 <max-size>60</max-size>

 <acp:access-control-code>

 return entry.key === signature.node_id

 && true /* placeholder */

 && (!entry.exists

 || (resource.equals(entry.value.data.namespace,

 entry.value.data.level, entry.value.data.node);

 </acp:access-control-code>

 <acp:data-stored value='RedirServiceProvider'>

 struct {

 NodeId serviceProvider;

 opaque namespace<0..2^16-1>;

 uint16 level;

 uint16 node;

 /* This type can be extended */

 } RedirServiceProviderData;

 struct {

 uint16 length;

 RedirServiceProviderData data;

 } RedirServiceProvider;

 </acp:data-stored>

</kind>

Appendix B. Release notes

This section must be removed before publication as an RFC.

Appendix B.1. TODO List

Need to present the complete list of certificates for the DisCo

[I-D.knauf-p2psip-disco] Usage USER-CHAIN-MATCH.

Add ABNF for the presentation language.

Author's Address

Marc Petit-Huguenin Petit-Huguenin Stonyfish, Inc. EMail:

petithug@acm.org

*

*

mailto:petithug@acm.org

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Processing an extended Kind
	4. Security Considerations
	5. IANA Considerations
	6. Acknowledgements
	7. References
	7.1. Normative References
	7.2. Informative References
	Appendix A. Examples
	Appendix A.1. Standard Access Control Policies
	Appendix A.1.1. USER-MATCH
	Appendix A.1.2. NODE-MATCH
	Appendix A.1.3. USER-NODE-MATCH
	Appendix A.1.4. NODE-MULTIPLE
	Appendix A.2. Service Discovery Usage
	Appendix B. Release notes
	Appendix B.1. TODO List
	Author's Address

