
Network Working Group M.P.H. Petit-Huguenin

Internet-Draft (Unaffiliated)

Intended status: Standards Track October 31, 2011

Expires: May 03, 2012

Configuration of Access Control Policy in REsource LOcation And

Discovery (RELOAD) Base Protocol

draft-petithuguenin-p2psip-access-control-04

Abstract

This document describes an extension to the REsource LOcation And

Discovery (RELOAD) base protocol to distribute the code of new Access

Control Policies without having to upgrade the RELOAD implementations

in an overlay.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 03, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may not be modified, and derivative works of it may not

be created, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction*

2. Terminology

3. Processing

4. Security Considerations

5. IANA Considerations

6. Acknowledgements

7. References

7.1. Normative References

7.2. Informative References

Appendix A. Examples

Appendix A.1. Standard Access Control Policies

Appendix A.1.1. USER-MATCH

Appendix A.1.2. NODE-MATCH

Appendix A.1.3. USER-NODE-MATCH

Appendix A.1.4. NODE-MULTIPLE

Appendix A.2. Service Discovery Access Control Policy NODE-ID-

MATCH

Appendix A.3. VIPR Access Control Policy

Appendix A.4. ShaRe Access Control Policy USER-CHAIN-ACL

Appendix B. Release notes

Appendix B.1. Modifications between -04 and -03

Appendix B.2. Modifications between -03 and -02

Appendix B.3. Modifications between -02 and -01

Appendix B.4. Modifications between -01 and -00

Appendix B.5. Running Code Considerations

Appendix B.6. TODO List

Author's Address

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

The RELOAD base protocol specifies an Access Control Policy as

"defin[ing] whether a request from a given node to operate on a given

value should succeed or fail." The paragraph continues saying that

"[i]t is anticipated that only a small number of generic access control

policies are required", but there is indications that this assumption

will not hold. On all the RELOAD Usages defined in other documents than

the RELOAD base protocol, roughly 50% defines a new Access Control

Policy.

The problem with a new Access Control Policy is that, because it is

executed when a Store request is processed, it needs to be implemented

by all the peers and so requires an upgrade of the software. This is

something that is probably not possible in large overlays or on

overlays using different implementations. For this reason, this

document proposes an extension to the RELOAD configuration document

that permits to transport the code of a new Access Control Policy to

each peer.

This extension defines a new element <access-control-code> that can be

optionally added to a <configuration> element in the configuration

document. The <access-control-code> element contains ECMAScript

[ECMA-262] code that will be called for each StoredData object that use

this access control policy. The code receives four parameters,

corresponding to the Resource-ID, Signature, Kind and StoredDataValue

of the value to store. The code returns true or false to signal to the

implementation if the request should succeed or fail.

For example the USER-MATCH Access Control Policy defined in the base

protocol could be redefined by inserting the following code in an

<access-control-code> element:

return resource.equalsHash(signer.user_name.bytes());

The <kind> parameters are also passed to the code, so the NODE-MULTIPLE

Access Control Policy could be implemented like this:

for (var i = 0; i < kind.max_node_multiple; i++) {

 if (resource.equalsHash(signer.node_id, i.width(4))) {

 return true;

 }

}

return false;

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

"SHOULD", "SHOULD NOT", "RECOMMENDED", and "NOT RECOMMENDED" are

appropriate when valid exceptions to a general requirement are known to

configuration.instance_name:

configuration.topology_plugin:

configuration.node_id_length:

configuration.kinds:

configuration.evaluate(String, String, String):

exist or appear to exist, and it is infeasible or impractical to

enumerate all of them. However, they should not be interpreted as

permitting implementors to fail to implement the general requirement

when such failure would result in interoperability failure.

3. Processing

A peer receiving a configuration document containing one or more

<access-control-code> elements, either by retrieving it from the

configuration server or in a ConfigUpdateReq message, MUST reject this

configuration if is not is not signed or if the signature verification

fails.

The Compact Relax NG Grammar for this element is:

namespace acp = "http://implementers.org/access-control"

parameter &= element acp:access-control-code {

 attribute name { xsd:string },

 xsd:base64Binary

}?

The "name" attribute defines the access control policy and can then be

used in a <kind> element as if it was defined by IANA.

If the <access-control-code> element is present in the namespace

allocated to this specification, and the Access Control Policy is not

natively implemented, then the code inside the element MUST be called

for each DataValue found in a received StoreReq for a Kind that is

defined with this access control policy. The content of the <access-

control-code> element MUST be decoded using the base64 [RFC4648]

encoding, uncompressed using gzip [RFC1952] then converted to

characters using UTF-8. <access-control-code> elements that are not

encoded using UTF-8, compressed with gzip or finally converted to the

base64 format MUST be ignored. For each call to the code, the following

ECMAScript objects, properties and functions MUST be available:

The name of the overlay, as a String

object.

The overlay algorithm, as a String

object.

The length of a NodeId in bytes, as a

Number object.

An array of kinds (with the same definition than

the kind object), indexed by id and eventually by name.

A function that

evaluates the first parameter as an XPath expression against the

kind.id:

kind.name:

kind.data_model:

kind.access_control:

kind.max_count:

kind.max_size:

kind.max_node_multiple:

kind.evaluate(String, String, String):

resource:

resource.entries:

resource.equalsHash(Object...):

entry.index:

configuration element, and returns the result as a String object.

The second parameter must contain a namespace prefix and the third

parameter must contain a namespace.

The id of the Kind associated with the entry, as a Number

object.

If the Kind associated with the entry is registered by

IANA, contains the name as a String object. If not, this property is

undefined.

The name of the Data Model associated with the entry,

as a String object.

The name of the Access Control Policy associated

with the entry, as a String object.

The value of the max-count element in the

configuration file, as a Number object.

The value of the max-size element in the configuration

file as a Number object.

If the Access Control is MULTIPLE-NODE,

contains the value of the max-node-multiple element in the

configuration file, as a Number object. If not, this property is

undefined.

A function that evaluates the

first parameter as an XPath expression against the kind element, and

returns the result as a String object. The second parameter must

contain a namespace prefix and the third parameter must contain a

namespace.

An opaque object representing the Resource-ID, as an array

of bytes.

An array of arrays of entry objects, with the first

array level indexed by Kind-Id and kind names, and the second level

indexed by index, key or nothing, depending on the data model of the

kind. This permits to retrieve all the values of all Kinds stored at

the same Resource-ID than the entry currently processed.

A function that returns true if

hashing the concatenation of the arguments according to the mapping

function of the overlay algorithm is equal to the Resource-ID. Each

argument is an array of bytes.

If the Data Model is ARRAY, contains the index of the

entry, as a Number object. If not, this property is undefined.

entry.key:

entry.storage_time:

entry.lifetime:

entry.exists:

entry.value:

entry.signer.user_name:

entry.signer.node_id:

If the Data Model is DICTIONARY, contains the key of the

entry, as an array of bytes. If not, this property is undefined.

The date and time used to store the entry, as a

Date object.

The validity for the entry in seconds, as a Number

object.

Indicates if the entry value exists, as Boolean object.

This property contains an opaque object that represents

the whole data, as an array of bytes.

The rfc822Name stored in the certificate that

was used to sign the request, as a String object.

The Node-ID stored in the certificate that was

used to sign the request, as an array of bytes.

The properties SHOULD NOT be modifiable or deletable and if they are,

modifying or deleting them MUST NOT modify or delete the equivalent

internal values (in other words, the code cannot be used to modify the

elements that will be stored).

The value returned by the code is evaluated to true or false, according

to the ECMAScript rules. If the return value of one of the call to the

code is evaluated to false, then the StoreReq fails, the state MUST be

rolled back and an Error_Forbidden MUST be returned.

4. Security Considerations

Because the configuration document containing the ECMAScript code is

under the responsability of the same entity that will sign it, using a

scripting language does not introduce any additional risk if the RELOAD

implementers follow the rules in this document (no side effect when

modifying the parameters, only base classes of ECMAScript implemented,

etc...). It is even possible to deal with less than perfect

implementations as long as they do not accept a configuration file that

is not signed correctly. One way for the signer to enforce this would

be to deliberately send in a ConfigUpdate an incorrectly signed version

of the configuration file and blacklist all the nodes that accepted it

in a newly issued configuration file.

By permitting multiple overlay implementations to interoperate inside

one overlay, RELOAD helps build overlays that are not only resistant to

hardware or communication failures, but also to programmer errors.

Distributing the access control policy code inside the configuration

document reintroduces this single point of failure. To mitigate this

problem, new access control policies should be implemented natively as

soon as possible, but if all implementations uses the script as a

blueprint for the native code, an hidden bug can be duplicated. This is

why developers should implement new access control policies from the

normative text instead of using the code. That is anyway probably not

legal under most copyright laws but to help developers do the right

thing the code in the configuration is obfuscated by compressing and

encoding it as a base64 character string.

5. IANA Considerations

If this document is accepted as a standard track document this section

will request an URN in the "XML Namespaces" class of the "IETF XML

Registry" from IANA. Until this is done, implementions should use the

following URN:

http://implementers.org/access-control

6. Acknowledgements

This document was written with the xml2rfc tool described in [RFC2629].

7. References

7.1. Normative References

[RFC1952]

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L.P.

and G. Randers-Pehrson, "GZIP file format

specification version 4.3", RFC 1952, May 1996.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4648]
Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, October 2006.

[I-D.ietf-

p2psip-base]

Jennings, C, Lowekamp, B, Rescorla, E, Baset, S and

H Schulzrinne, "REsource LOcation And Discovery

(RELOAD) Base Protocol", Internet-Draft draft-ietf-

p2psip-base-19, October 2011.

[ECMA-262]
Ecma, , "ECMAScript Language Specification 3rd

Edition", December 2009.

7.2. Informative References

[RFC2629]
Rose, M.T., "Writing I-Ds and RFCs using

XML", RFC 2629, June 1999.

[I-D.ietf-p2psip-

service-discovery]

Maenpaa, J and G Camarillo, "Service

Discovery Usage for REsource LOcation And

Discovery (RELOAD)", Internet-Draft draft-

ietf-p2psip-service-discovery-03, July 2011.

[I-D.petithuguenin-

vipr-reload-usage]

Rosenberg, J, Jennings, C and M Petit-

Huguenin, "A Usage of Resource Location and

Discovery (RELOAD) for Public Switched

Telephone Network (PSTN) Verification",

mailto:ghost@aladdin.com
mailto:gzip@prep.ai.mit.edu
mailto:madler@alumni.caltech.edu
mailto:ghost@aladdin.com
mailto:randeg@alumni.rpi.edu
http://tools.ietf.org/html/rfc1952
http://tools.ietf.org/html/rfc1952
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/draft-ietf-p2psip-base-19
http://tools.ietf.org/html/draft-ietf-p2psip-base-19
mailto:mrose@not.invisible.net
http://tools.ietf.org/html/rfc2629
http://tools.ietf.org/html/rfc2629
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-03
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-03
http://tools.ietf.org/html/draft-ietf-p2psip-service-discovery-03
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-02
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-02
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-02

Internet-Draft draft-petithuguenin-vipr-

reload-usage-02, July 2011.

[I-D.knauf-p2psip-

share]

Knauf, A, Hege, G, Schmidt, T and M

Waehlisch, "A Usage for Shared Resources in

RELOAD (ShaRe)", Internet-Draft draft-knauf-

p2psip-share-02, October 2011.

Appendix A. Examples

Appendix A.1. Standard Access Control Policies

This section shows the ECMAScript code that could be used to implement

the standard Access Control Policies defined in [I-D.ietf-p2psip-base].

Appendix A.1.1. USER-MATCH

String.prototype['bytes'] = function() {

 var bytes = [];

 for (var i = 0; i < this.length; i++) {

 bytes[i] = this.charCodeAt(i);

 }

 return bytes;

};

return resource.equalsHash(entry.signer.user_name.bytes());

Appendix A.1.2. NODE-MATCH

return resource.equalsHash(entry.signer.node_id);

Appendix A.1.3. USER-NODE-MATCH

String.prototype['bytes'] = function() {

 var bytes = [];

 for (var i = 0; i < this.length; i++) {

 bytes[i] = this.charCodeAt(i);

 }

 return bytes;

};

var equals = function(a, b) {

 if (a.length !== b.length) return false;

 for (var i = 0; i < a.length; i++) {

 if (a[i] !== b[i]) return false;

 }

 return true;

};

return resource.equalsHash(entry.signer.user_name.bytes())

 && equals(entry.key, entry.signer.node_id);

http://tools.ietf.org/html/draft-knauf-p2psip-share-02
http://tools.ietf.org/html/draft-knauf-p2psip-share-02

Appendix A.1.4. NODE-MULTIPLE

Number.prototype['width'] = function(w) {

 var bytes = [];

 for (var i = 0; i < w; i++) {

 bytes[i] = (this >>> ((w - i - 1) * 8)) & 255;

 }

 return bytes;

};

for (var i = 0; i < kind.max_node_multiple; i++) {

 if (resource.equalsHash(entry.signer.node_id, i.width(4))) {

 return true;

 }

}

return false;

[[Note that base-15 still does not state exactly the length of i when

concatenated in the hash input]]

Appendix A.2. Service Discovery Access Control Policy NODE-ID-MATCH

[I-D.ietf-p2psip-service-discovery] defines a specific Access Control

Policy (NODE-ID-MATCH) that need to access the content of the entry to

be written. If implemented as specified by this document, the

ECMAScript code would look something like this:

/* Insert here the code from

 http://jsfromhell.com/classes/bignumber

 */

var toBigNumber = function(node_id) {

 var bignum = new BigNumber(0);

 for (var i = 0; i < node_id.length; i++) {

 bignum = bignum.multiply(256).add(node_id[i]);

 }

 return bignum;

};

var checkIntervals = function(node_id, level, node, factor) {

 var size = new BigNumber(2).pow(128);

 var node = toBigNumber(node_id);

 for (var f = 0; f < factor; f++) {

 var temp = size.multiply(new BigNumber(f)

 .pow(new BigNumber(level).negate()));

 var min = temp.multiply(node.add(new BigNumber(f)

 .divide(factor)));

 var max = temp.multiply(node.add(new BigNumber(f + 1)

 .divide(factor)));

 if (node.compare(min) === -1 || node.compare(max) == 1

 || node.compare(max) == 0) return false;

 }

 return true;

};

var equals = function(a, b) {

 if (a.length !== b.length) return false;

 for (var i = 0; i < a.length; i++) {

 if (a[i] !== b[i]) return false;

 }

 return true;

};

var level = function(value) {

 var length = value[16] * 256 + value[17];

 return value[18 + length] * 256 + value[18 + length + 1];

};

var node = function(value) {

 var length = value[16] * 256 + value[17];

 return value[18 + length + 2] * 256

 + value[18 + length + 3];

};

var namespace = function(value) {

 var length = value[16] * 256 + value[17];

 return String.fromCharCode.apply(null,

 value.slice(18, length + 18));

};

var branching_factor =

 kind.evaluate('/branching-factor',

 'redir', 'urn:ietf:params:xml:ns:p2p:redir');

return equals(entry.key, entry.signer.node_id)

 && (!entry.exists || checkIntervals(entry.key,

 level(entry.value), node(entry.value),

 branching_factor))

 && (!entry.exists

 || resource.equalsHash(namespace(entry.value),

 level(entry.value), node(entry.value)));

Note that the code for the BigNumber object was removed from this

example, as the licensing terms are unclear. The code is available at

http://jsfromhell.com/classes/bignumber.

Appendix A.3. VIPR Access Control Policy

[I-D.petithuguenin-vipr-reload-usage] defines a specific Access Control

Policy. If implemented as specified by this document, the ECMAScript

code would look something like this:

var equals = function(a, b) {

 if (a.length !== b.length) return false;

 for (var i = 0; i < a.length; i++) {

 if (a[i] !== b[i]) return false;

 }

 return true;

};

var length = configuration.node_id_length;

return equals(entry.key.slice(0, length),

 entry.value.slice(4, length + 4))

 && equals(entry.key.slice(0, length), entry.signer.node_id);

Appendix A.4. ShaRe Access Control Policy USER-CHAIN-ACL

[I-D.knauf-p2psip-share] defines a new Access Control Policies, USER-

CHAIN-ACL. If implemented as specified by this document, the ECMAScript

code would look something like this:

http://jsfromhell.com/classes/bignumber

var pattern = kind.evaluate('/share:pattern',

 'share', 'urn:ietf:params:xml:ns:p2p:config-share');

var username = entry.signer.user_name.match(/^([^@]+)@(.+)$/);

var new_pattern = new RegExp(

 pattern.replace('$USER', username[1])

 .replace('$DOMAIN', username[2]));

var length = entry.value[0] * 256 + entry.value[1];

var resource_name = String.fromCharCode.apply(null,

 entry.value.slice(2, length + 2));

return new_pattern.test(resource_name);\n"));

[[Note: the code is incomplete]]

Appendix B. Release notes

This section must be removed before publication as an RFC.

Appendix B.1. Modifications between -04 and -03

Added a kinds array on the configuration object.

Added an entries array on the resource object for retrieve all

the entries of all kinds stored at the same Resource-Id.

the signer property is now an attribute of entry.

Added initial code for ShaRe policy.

Appendix B.2. Modifications between -03 and -02

Moved the access-control-code element fom the kind element to the

configuration element so the code can be shared between kinds. A

new "name" attribute is used to name the access control policy.

Added configuration object to pass information about the whole

overlay.

Added evaluate functions to retrieve extensions parameters.

Renamed the signature attribute to signer.

Filled Security section.

Added temporary namespace to IANA section.

The content of the access-control-code is now UTF-8 encoded,

compressed with gzip and converted back to characters with

base64.

*

*

*

*

*

*

*

*

*

*

*

Fixed the implementation of the service discovery access control

policy.

Added code for VIPR policy.

Appendix B.3. Modifications between -02 and -01

Made clear that an unsigned kind with this extension must be

rejected.

Removed the kind.params array, and converted the max-count, max-

size and max-node-multiple as Number objects. Fixed the examples.

Removed the parsing of extensions in the kind element. The former

system did not work with namespaces or attributes, and the right

solution (xpath) is probably too complex. The value of the

parameters can still be manually mirrored in the script, so there

is perhaps no need for the added complexity. Also fixed the

examples.

Reference draft-p2psip-share instance of draft-p2psip-disco.

Added a "Running Code Considerations" section that contain the

reference to the reference implementation and script tester.

Nits

Appendix B.4. Modifications between -01 and -00

Changed reference from JavaScript to ECMAScript.

Changed signature from equals() to equalsHash().

Fixed the examples following implementation.

Replaced automatic decoding of value by ECMAScript code.

Added the type of each property.

Specified that the code cannot be used to modify the value

stored.

Appendix B.5. Running Code Considerations

Reference Implementation and Access Control Policy script tester

(<http://debian.implementers.org/testing/source/reload.tar.gz>).

Marc Petit-Huguenin. Implements version -03.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Appendix B.6. TODO List

Finish the code for ShaRe.

Author's Address

Marc Petit-Huguenin Petit-Huguenin (Unaffiliated) EMail:

petithug@acm.org

*

mailto:petithug@acm.org

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Processing
	4. Security Considerations
	5. IANA Considerations
	6. Acknowledgements
	7. References
	7.1. Normative References
	7.2. Informative References
	Appendix A. Examples
	Appendix A.1. Standard Access Control Policies
	Appendix A.1.1. USER-MATCH
	Appendix A.1.2. NODE-MATCH
	Appendix A.1.3. USER-NODE-MATCH
	Appendix A.1.4. NODE-MULTIPLE
	Appendix A.2. Service Discovery Access Control Policy NODE-ID-MATCH
	Appendix A.3. VIPR Access Control Policy
	Appendix A.4. ShaRe Access Control Policy USER-CHAIN-ACL
	Appendix B. Release notes
	Appendix B.1. Modifications between -04 and -03
	Appendix B.2. Modifications between -03 and -02
	Appendix B.3. Modifications between -02 and -01
	Appendix B.4. Modifications between -01 and -00
	Appendix B.5. Running Code Considerations
	Appendix B.6. TODO List
	Author's Address

