
VIPR J.R. Rosenberg

Internet-Draft jdrosen.net

Intended status: Standards Track C. Jennings

Expires: December 16, 2011 Cisco

M. Petit-Huguenin

Stonyfish

June 14, 2011

The Public Switched Telephone Network (PSTN) Validation Protocol (PVP)

draft-petithuguenin-vipr-pvp-01

Abstract

One of the main challenges in inter-domain federation of Session

Initiation Protocol (SIP) calls is that many domains continue to

utilize phone numbers, and not email-style SIP URI. Consequently, a

mechanism is needed that enables secure mappings from phone numbers to

domains. The main technical challenge in doing this securely is to

verify that the domain in question truly is the "owner" of the phone

number. This specification defines the PSTN Validation Protocol (PVP),

which can be used by a domain to verify this ownership by means of a

forward routability check in the PSTN.

The IETF has been notified of intellectual property rights claimed in

regard to some or all of the specification contained in this document.

For more information consult the online list of claimed rights.

Legal

This documents and the information contained therein are provided on an

"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS

OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND

THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE

INFORMATION THEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on December 16, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. The Wrong Way

3. EKE Protocols

4. Terminology

5. Protocol Overview

6. Username and Password Algorithms

7. Originating Node Procedures

7.1. Establishing a Connection

7.2. Constructing a Username and Password

7.2.1. Method A

7.2.2. Method B

7.3. Requesting Validation

8. Terminating Node Procedures

8.1. Waiting for SRP-TLS

8.2. Receiving Validation Requests

9. Syntax Details

10. Security Considerations

10.1. Entropy

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

10.2. Forward Routing Assumptions

11. IANA Considerations

12. Acknowledgements

13. References

13.1. Normative References

13.2. Informative References

Appendix A. Release notes

Appendix A.1. Modifications between vipr-01 and vipr-00

Appendix A.2. Modifications between vipr-00 and dispatch-03

Appendix A.3. Modifications between dispatch-03 and dispatch-02

Authors' Addresses

1. Introduction

The validation protocol is the key security mechanism in ViPR. It is

used to couple together PSTN calls with IP destinations based on shared

knowledge of a PSTN call. This document relies heavily on the concepts

and terminology defined in [VIPR-OVERVIEW] and will not make sense if

you have not read that document first.

The protocol assumes that two enterprises, the originating one

(enterprise O) initiates a call on the PSTN to an E.164 number ECALLED

that terminates on the terminating enterprise (enterprise T). Each

enterprise has a ViPR server, acting as a P2P node. The node in

enterprise O is PO, and the node in enterprise T is PT. This PSTN call

completes successfully, and knowledge of this call is known to PO and

PT. Later on, PO will query the P2P network with number ECALLED. It

comes back with a Node-ID PCAND for a node. At this time, PO can't know

for sure that PCAND is in fact PT. All it knows is that some node,

PCAND, wrote an entry into the DHT claiming that it was the owner of

number ECALLED. The objective of the protocol is for PO to determine

that node PCAND can legitimately claim ownership of number ECALLED, by

demonstrating knowledge of the previous PSTN call. It demonstrates that

knowledge by demonstrating it knows the start time, stop timer, and

possibly caller ID for the PSTN call made previously.

*

*

*

*

*

*

*

*

*

*

*

 /-----------\

 /// \\\

 || ||

 | ViPR \

 || DHT ||\

 X\\ /// \

 / \-----------/ \

 ---------/- ----\------

 /// \\\ /// \\\

 // \\ // \\

 | |///---\\\ | |

 | Enterprise O | PSTN | Enterprise T |

 | |\\\---/// | |

 \\ // \\ //

 \\\ /// \\\ ///

 -----+----- ------+----

 +---+----+ +---+----+

 | Phone O| |Phone T |

 +--------+ +--------+

If node PCAND can demonstrate such knowledge, then enterprise O can

assume that node PCAND had in fact received the call, which could only

have happened if it had knowledge of the call to number ECALLED, which

could only have happened if PCAND is in enterprise T, and thus it is

PT. This is because PSTN routing is assumed to be "secure", in that, if

someone calls some number through the PSTN, it will in fact reach a

terminating line (whether it be analog, PRI, or other) which is the

rightful "owner" of that number. If enterprise T was not the owner of

the number, if would not have received the call, would not know its

start/stop/caller ID, not be able to provide that information to PT,

and not be able to satisfy the knowledge proof. This basic approach is

shown in Figure 102.

A first question commonly asked is, why not just do regular

authentication? What if we give each node a certificate, and then have

the nodes authenticate each other? The answer is that a certificate

certifies that a particular node belongs to a domain - for example,

that node PT is part of example.com. A certificate does not assert

that, not only is PT example.com, but example.com owns the following

phone numbers. Therefore simple certificate authentication does not

provide any guarantee over ownership of phone numbers.

In principle, it might be possible to ask certificate authorities, such

as Verisign, to assert just that. However, traditionally, certificate

authorities have been extremely hesitant to certify much at all. The

reason is, the certifier needs to be able to assure that the

information is correct. How can a certifier like Verisign verify that,

in fact, a particular enterprise owns phone numbers? It could make a

few test calls, perhaps, to check if they look right. However, these

test calls are disruptive to users that own the numbers (since their

phones will ring!). If the test calls are done for a subset of the

numbers, it is not secure. If the certifier simply required, as part of

the business agreement, that the enterprises provided correct

information, the certifier might avoid legal liability, but the

legitimacy of the service will be compromised and customers will stop

using it. Furthermore, it has proven incredibly hard to do this kind of

certification worldwide with a single certificate authority.

ViPR has, as a goal, to work anywhere in the world and do guarantee

correct call routing with five nines of reliability. Consequently,

traditional certificates and authentication do not work. It turns out

to be quite hard to design a secure version of this validation

protocol. To demonstrate this, we will walk through some initial

attempts at it, and show how they fail.

2. The Wrong Way

The first attempt one might make is the following. PO takes the caller

ID for the call, ECALLING and called number ECALLED for the call, and

sends them to candidate node PCAND. These two identifiers - the called

number E and the caller ID, form a unique handle that can be used to

identify the call in question. Node PCAND looks at all of the ViPR Call

Records (VCRs) of the calls over the last 48 hours, and takes those

with the given called party number and calling party number. If there

is more than one match, the most recent one is used. We now have a

unique call.

Now, node PCAND demonstrates knowledge of this call by handing back the

start and stop times for this call in a message back to PO. This

approach is shown in Figure 103.

 Po Pt

 | |

 | |

 | |

 |Tell me start+stop

 |------------->|

 | |

 | |

 | |Retrieve records

 | |

 | |

 | |

 |start and stop|

 |<-------------|

 | |

 | |

 | |

 | |

Unfortunately, this method has a major problem, shown in Figure 104.

 Po Pbad Pt DHT

 | | | |

 | | | |

 | | | |

 | |I own Ecalled | |

 | |---------------------------->|

 | | | |

 | | | |

 | | |I own Ecalled |

 | | |------------->|

 | | | |

 | | | |

 |Who owns Ecalled? | |

 |--->|

 | | | |

 | | | |

 |Pbad and Pt | | |

 |<---|

 | | | |

 | | | |

 |Tell me start+stop | |

 |------------->| | |

 | | | |

 | | | |

 | |Tell me start+stop |

 | |------------->| |

 | | | |

 | | | |

 | | |Retrieve records

 | | | |

 | | | |

 | | | |

 | |start+stop | |

 | |<-------------| |

 | | | |

 | | | |

 |start+stop | | |

 |<-------------| | |

 | | | |

 | | | |

 | | | |

 | | | |

Consider an attacker BadGuy PBAD. PBAD joins the P2P network, and

advertises a number prefix they do NOT own, but which is owned by

enterprise T and node PT. Now, when PO queries the DHT with number

ECALLED, it comes back with two results - the one from PBAD and the one

from node PT. Details of querying the DHT are provided in [VIPR-RELOAD-

USAGE]. It begins validation procedures with both. PBAD will now be

asked to show the start and stop times for the call, given ECALLED and

ECALLING. It doesn't know that information. However, node PT does. So

now, PBAD, acting as if it where the originating party, begins the

validation protocol with node PT. It passes the calling and called

numbers sent by PO. PT finds a match and returns the call start and

stop times to PBAD. PBAD, in turn, relays them back to PO. They are

correct, and as a consequence, PO has just validated PBAD!

Typically, the first response to this is, "Well the problem is, you let

two separate people write the same number into the DHT. Why don't you

make sure on the right one is allowed to write it in?". That is not

possible, since there is no mechanism by which an arbitrary node in the

DHT can determine who is the rightful owner of this number. "OK", the

reader responds, "So instead, why don't you define a rule that says, if

there are two entries in the DHT for a particular number, consider this

an attack and don't try to validate the number". That would prevent the

attack above. However, it introduces a Denial of service attack. An

attacker can pick a target number, write it into the DHT, and prevent

successful validation from happening towards that number. They can't

misroute calls, but they can stop ViPR from working for targeted

numbers. That is not acceptable. ViPR has to be immune from attacks

like this; it should not be possible, through simple means such as

configuration, for an attacker to cause a targeted number to never be

validated.

One might be tempted to add a signature over the call start and stop

times, but it does not help. BadGuy can just resign them and relay them

on.

In essence, this simple approach is like a login protocol where the

client sends the password in the clear. Such mechanisms have serious

security problems.

Realizing the similarities between the validation protocol and a login

protocol, a next attempt would be to use a much more secure login

mechanism - digest authentication. To do this, domain O takes the

called number E and the caller ID, and send them to node P. Node P

treats these as a "username" of sorts - an index to find a single

matching call. The start time and stop times of the call become the

"password". Enterprise O also sends a big random number - a nonce - to

node P. Node P then takes the random number, takes the password, hashes

them together, and sends back the hash. All of this is done over a TLS

connection between enterprise O and node P. Digest over TLS is very

secure, so surely this must be secure too, right? Wrong!

It is not. Indeed it is susceptible to EXACTLY the same attack

described previously. This is shown in Figure 105.

 Po Pbad Pt DHT

 | | | |

 | | | |

 | | | |

 | |I own Ecalled | |

 | |---------------------------->|

 | | | |

 | | | |

 | | |I own Ecalled |

 | | |------------->|

 | | | |

 | | | |

 |Who owns Ecalled? | |

 |--->|

 | | | |

 | | | |

 |Pbad and Pt | | |

 |<---|

 | | | |

 | | | |

 |TLS | | |

 |------------->| | |

 | | | |

 | | | |

 |Login user=Ecaller+Ecalled | |

 |------------->| | |

 | | | |

 | | | |

 | |Login user=Ecaller+Ecalled |

 | |------------->| |

 | | | |

 | | | |

 | | |Retrieve records

 | | | |

 | | | |

 | | | |

 | |Digest response |

 | |<-------------| |

 | | | |

 | | | |

 |Digest response | |

 |<-------------| | |

 | | | |

 | | | |

 | | | |

 | | | |

In a similar attack, PBAD could pick a random called number it is

interested in, query the P2P network for it, find node PT. Then,

provide node PT the number ECALLED to attack, and ECALLING, assuming it

can guess a likely caller ID. It then takes the received digest

response, and goes through every possible start/stop time over the last

24 hours, running them through the hash function. When the hash

produces a match, the PBAD has just found a full VCR for node PT. It

can then write into the DHT using number E as a key, pointing to

itself, and satisfy validation requests against it, without even

needing to ask node P again. Our first attempt is susceptible to this

attack too.

The problem here is that the call start and stop times have "low

entropy" - they are not very random and are easily guessable, just like

a poorly chosen password.

What we really want to do here is have a "login" protocol that creates

a secure connection between a client and a server, where we use the

called number and caller ID as a "username" to identify a PSTN call,

and then use the start and stop times as a "password". But our login

protocol has to have some key features:

Someone posing as a server, but which does not have the

username and password, cannot determine the username and

password easily as a consequence of an authentication operation

started by a valid client, aside from successfully guessing in

the one attempt it is given on each connection attempt.

Someone posing as a client, but which does not have the

username and password, cannot determine the username and

password as a consequence of an authentication operation

started against a valid server, aside from guessing in the one

attempt it is given on each TLS connection attempt.

An active MITM, who is explicitly on the path of the exchanges

and has visibility and the ability to modify messages, cannot

obtain the shared secret, nor can it observe or modify

information passed between the client and real server.

It is impossible for a passive observer to view the exchange

and obtain the shared secret or any of the material that is

exchanged.

It is impossible for a rogue client or rogue server to

participate in a login with a legitimate peer, and then take

the messages exchanged, and run an offline dictionary attack to

work through every possible combination of start and stop

times. Fortunately, these properties are provided by a class of

password authentication protocols called Encrypted Key Exchange

or EKE protocols.

1.

2.

3.

4.

5.

3. EKE Protocols

EKE protocols were proposed in 1992 by Steve Bellovin. Since their

proposal, numerous variations have been defined. One of them, the

Secure Remote Password protocol, was standardized by the IETF in RFC

2945 [RFC2945]. A TLS mode of SRP was later defined in RFC 5054

[RFC5054]. It is the latter protocol which is actually used by ViPR. A

high level overview of EKE protocols is shown in Figure 106. Alice and

Bob share a shared secret P. Alice generates a public/private keypair.

She then takes her public key, and encrypts it using her password as a

symmetric encryption key. She sends this encrypted key to Bob. Bob, who

shares the password, uses it as a symmetric key and decrypts the

message, obtaining Alice's new public key. Bob then constructs a big

random number R, which is to be used as a session key. Bob then

encrypts R with the public key he just got from Alice, and sends that

to Alice. Now, Alice, using her public key, decrypts the message and

obtains the session key R.

 Alice Bob

 | |

 | |

 | |

 |Bob knows P |

 | |

 | |

 | |

 |Generate PUB+PRIV |

 | |

 | |

 | |

 |E(PUB,P) |

 |----------------------->|

 | |

 | |

 | |decrypt with P, get PUB

 | |

 | |

 | |

 | |create session key R

 | |

 | |

 | |

 |E(R,PUB) |

 |<-----------------------|

 | |

 | |

 |decrypt with PUB, get R |

 | |

 | |

 | |

 |shares R with Bob |

 | |

 | |

 | |

 | |

 | |

At this point Alice and Bob share a session key R which can be used for

authentication (by having Alice and Bob prove to each other that they

have the same value for R) or for encrypting data back and forth. How

does this help? Consider our man-in-the-middle attack again, in Figure

107. Once again, Alice shares a password with legitimate user Bob.

However, she begins the "login" process with BadGuy. She passes

E(PUB,P) to BadGuy. BadGuy doesn't know P, so he can't decrypt the

message. More importantly, he can't run through each possible password

P and decrypt the message. If he did, he wouldn't be able to tell if he

got it right, since PUB appears random; the decryption process would

produce a random string of bits whether it was successful or not. So

for now, BadGuy can only pass it on. BadGuy now intercepts E(R,PUB).

Now, BadGuy can try the following. He can run through each P, decrypt

E(PUB,R), obtain PUB. However, since we are using asymmetric encryption

(i.e., public key encryption), even with PUB he cannot DECRYPT

E(R,PUB)! BadGuy does not have the private key, which he needs to

decrypt. Given a public key, he cannot guess the private key either.

That is how public/private keying systems work. That is the secret here

to making this work. So, once again, BadGuy has no choice but to pass

the message on. Now, Alice and Bob share R but it is unknown to BadGuy.

Bob now takes his Node-ID, encrypts it with R, and sends to Alice. Once

again, BadGuy doesn't have R and can't get it, so he has no choice but

to pass it on. Alice decrypts this Node-ID with R, and now knows that

she is actually talking to Bob - since she has Bob's Node-ID. Other

data can be substituted for the Node-ID, and indeed this is what

happens in the actual validation protocol.

 Alice Bad Bob

 | | |

 | | |

 | | |

 |Bob knows P | |

 | | |

 | | |

 | | |

 |Generate PUB+PRIV | |

 | | |

 | | |

 | | |

 |E(PUB,P) | |

 |------------------>| |

 | | |

 | | |

 | |E(PUB,P) |

 | |------------------>|

 | | |

 | | |

 | | |decrypt w P, get PUB

 | | |

 | | |

 | | |

 | | |create session key R

 | | |

 | | |

 | | |

 | |E(R,PUB) |

 | |<------------------|

 | | |

 | | |

 |E(R,PUB) | |

 |<------------------| |

 | | |

 | | |

 |decrypt with PUB, get R |

 | | |

 | | |

 | | |

 |shares R with Bob | |

 | | |

 | | |

 | | |

 | |E(Bob PeerID, R) |

 | |<------------------|

 | | |

 | | |

 |E(Bob PeerID, R) | |

 |<------------------| |

 | | |

 | | |

 | | |

 | | |

However, the main point of this exercise is to demonstrate that EKE

protocols have the desired properties.

4. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

5. Protocol Overview

The validation protocol begins with the following assumptions:

Node PO wishes to validate with node PCAND, and has its Node-ID

(which it obtained via the DHT) and VServiceID (which it also

obtained via the DHT Fetch).

Node PO and PCAND have a series of call records over the last

48 hours, uploaded by their call agents. Each call record

contains an E.164 calling and called party number, and a start

and stop time in NTP time. On the terminating side, each call

record is also associated with a VServiceID.

Node PO is seeking to validate a call to called number ECALLED

with caller ID ECALLING.

The validation protocol operates by having the originating node make a

series of attempts to connect to, and "login" to the terminating node.

Each "login" attempt consists of establishment of a TCP connection, and

then execution of TLS-SRP procedures over that connection. TLS-

SRP[RFC5054] relies on a shared secret - in the form of a username and

password - in order to secure the connection. In ViPR, the username and

password are constructed by using information from a target VCR along

with the VServiceID learned from the DHT. The "username", instead of

identifying a user, identifies a (hopefully) unique VCR shared between

the originating and terminating nodes. The "password" is constructed

from the VCR such that it knowledge of the information is unique to

knowledge of the VCR itself.

Unfortunately, it is difficult to construct usernames and passwords

that always uniquely identify a VCR. To deal with this, the validation

protocol requires the originator to construct a series of usernames and

passwords against a series of different nodes and their corresponding

1.

2.

3.

IP addresses and ports, and then run through them until a connection is

securely established.

6. Username and Password Algorithms

ViPR provides two different algorithms for mapping from a particular

VCR to a username and password:

Method A: This method makes use of the called party and calling

party number to form the username, and the start and stop times

of the call to form the password.

Method B: This method makes use of the called party number,

along with a point in time in the middle of the call, as the

username, and then the start and stop times to form the

password.

The originating node will first try validations with method A, and if

those all fail, then try with method B. The method itself, along with

necessary information on how to use the method, is encoded into the

username itself. The format of the username is (using ABNF [RFC4234]):

username = method-a / method-b / future-method

future-method = method ":" method-data

method = 1ALPHA

method-data = 1*(alphanum / method-unreserved)

method-a = "a:" vserviceid originating-number terminating-number

 rounding-time

method-b = "b:" vserviceid terminating-number timekey rounding-time

vserviceid = "vs=" 1*32HEXDIG ";"

originating-number = "op=+" 1*15DIGIT ";"

terminating-number = "tp=+" 1*15DIGIT ";"

timekey = "tk=" 1*10DIGIT "." 1*10DIGIT ";"

rounding-time = "r=" 1*6DIGIT ";" ; Cannot be equal to 0

This format starts with the method, followed by a colon, followed by a

sequence of characters that are specific to the method. Both methods a

and b rely on conveyance of information attributes that make up the

username. Each attribute follows a specific format.

Examples include:

a:vs=7f5a8630b6365bf2;op=+17325552496;tp=+14085553084;r=1000;

b:vs=7f5a8630b6365bf2;tp=+14085553084;tk=172636364.133622;r=1000;

Both methods use a rounding factor R. This is used to round the start

and stop times in the password to a specific nearest multiple of R

1.

2.

(which is in milliseconds). This rounding is done because the passwords

need to be bit exact and we need to compensate for different measured

values.

If we will fallback to method B (which works more often), why have

both? There are two answers:

The caller ID mechanism (method A) will work, and the non-

caller ID (method B) won't work, for numbers like 8xx.

Method A has much higher entropy (see analysis in Section

10.1). Validating with it provides greater confidence in the

validity of the number. In this phase, nothing is done with

this "confidence". However, in later phases, it is anticipated

that low-confidence numbers will require multiple validations

for different calls to occur before they are trusted. To allow

for this feature to be added later, validation with both

methods must be present in the initial release.

The sections below detail precisely how these are constructed.

7. Originating Node Procedures

Most of the work for validation is on the side of the originator. It

establishes connections and performs a series of validation checks.

7.1. Establishing a Connection

The first step in the process is to establish a TCP connection to

PCAND. To do that, PO sends a RELOAD AppAttach message targeted towards

PCAND, using the Application-ID defined in [VIPR-RELOAD-USAGE]. Once

connected, TLS-SRP is run over the connection.

7.2. Constructing a Username and Password

When a terminating node receives a username in a format it doesn't

understand, it fails the validation. This allows for graceful upgrade

to new mechanisms in the future.

7.2.1. Method A

The PO examines the VCR it is using for validation. It extracts the

calling and called party numbers, both of which are E.164 based. This

VCR will have been uploaded at a previous point in time. PO then

examines the VCRs posted in the time since this one was uploaded, and

looks for any more recent VCRs with the same calling and called party

numbers regardless of VService. If it finds one or more, it takes the

most recent one (as measured by its end time). If it finds no more

recent, it uses the VCR which triggered the validation in the first

place.

1.

2.

Why do this? This deals with the following case. User A calls user B,

causing a VCR to be uploaded. The originating node sets a timer, which

fires 12 hours later. However, within that 12 hour period, A called B

again. If node A provides the caller ID and called party numbers as the

"key" to select a VCR, it will match multiple records over the past

day. We need to pick one, so the most recent is always used. This

requires the originating node to know and use the most recent VCR.

Furthermore, we must choose the most recent VCR regardless of its

VService, because the originating Upload VCRs are sent using an

arbitrary VService. Thus, the more recent call may have been done using

a different VService than the one which triggered the validation. Since

the actual Vservices are not common between originating and terminating

sides, we must choose the VCR on the originating side regardless of

VService. The username is constructed by using the syntax for method A

described above. The calling party number is set to "op", and the

called party number is set to "tp", and "r" is the value of Tr as an

integral number of milliseconds. The VServiceID learned from the

dictionary entry is used as the value of "vs".

This username will select the identical VCR at the terminating node,

under the following conditions:

PT is aware of all calls made to the called party number. This

property is true so long as each incoming number is handled by

a single call agent within a domain, and furthermore, the VCR

for calls to that number is always posted to a ViPR server

which advertises that number into the DHT. These properties are

readily met by ViPR for typical single user numbers. For 8xx

numbers, which are translated within the PSTN and may route to

a multiplicity of non-8xx numbers, it is more difficult. ViPR

will only work with 8xx numbers if all calls to those numbers

get sent to agents which share the same ViPR server.

PO is aware of all calls made to the called party number with

the given caller ID. This property can be hard to meet. If the

caller ID for a call is set to the number of the calling phone,

and all VCRs made from that phone are posted to the same ViPR

server, that server will know about all calls made by the

domain with the given DID in the caller ID. However, in domains

that set the PSTN caller ID to the attendant line number, it is

possible that there would be two separate agents, each

utilizing different ViPR servers. A user in each agent calls

the same number, and the same PSTN caller ID is used. However,

one ViPR server knows about one of the calls, and a different

ViPR server knows about the other call. However, PT knows about

both. In that case, validation from one of the ViPR servers

will fail, and from the other, succeed.

There were no calls on the PSTN to the called party which

spoofed the caller ID to match the caller ID used by the valid

1.

2.

3.

enterprise. In that case, PT will have a VCR for a call with a

matching calling/called party number, but this VCR is unknown

to PO since the call was not actually made by the originating

enterprise. This attack is described in more detail in XXXX.

Next, the password is selected. The password is basically the start and

stop times for the call. However, the SRP protocol requires a bit exact

agreement on the password. Unfortunately, the calling and called

parties will not have the same values for the start and stop times, for

several reasons:

The call start time at the originating and terminating ends

will differ by the propagation delay of the call acceptance

message through the PSTN. This can be several hundreds of

milliseconds.

The clocks at the originating and terminating ends may not be

synchronized, which can also introduce different values for the

start and stop times.

The call termination time at the originating and terminating

ends will also differ by the propagation time; this propagation

time may in fact be different for the call acceptance and

termination.

It is also important to note that agreement on a call acceptance and

termination time assumes an explicit signaling message is sent for

these two events. In the case of analog FXO ports, there is no

signaling at all, and consequently, these points in time cannot be

measured. It is possible to agree upon other call characteristics when

analog lines are in use, but they have much worse accuracy and

consequently much, much lower entropy. For this reason, this

specification of ViPR only works in telephony systems with explicit

messaging for call acceptance and termination, which includes PRI, SS7,

BRI, analog trunks with answer and disconnect supervision, and CAS

trunks.

To deal with these inaccuracies in timing, the start and stop times

need to be rounded. Let Tr be the rounding interval, so that each time

is rounded to the value of N*Tr for integral N, such that N*Tr is less

than the start or stop time, and (N+1)*Tr is greater than it. In other

words, "round down". If Tr=1 second, this would round down to the

nearest second.

Unfortunately, rounding doesn't fully help. Lets say that the

difference between the start times on the originating and terminating

nodes is delta. We can still have different values for the start time

if one side rounds to one value, and the other side to a different

value. If delta=100ms and Tr=1s, consider a start time of 10.08 seconds

on one side, and 9.98 on the other side. One side will round to 10

seconds and the other to nine seconds. The probability of this

1.

2.

3.

happening is approximately delta/Tr. We could just make Tr really large

to compensate, but this reduces the entropy of the system (see below).

To deal with this, the originating node will actually compute FOUR

different passwords. For the start time and stop time both, the

originating node will round down as follows. Let T be the time in

question. Let N be the value such that N*Tr <= T < (N+1)*Tr. In other

words, N*Tr is the nearest round-down value, and (N+1)*Tr is the

nearest round up. Let T1 and T2 be the two rounded values of T. We

have:

if (T >= ((2N+1)/2) * Tr) then:

 T1 = N*Tr

 T2 = (N+1)*Tr

if (T < ((2N+1)/2) * Tr) then:

 T1 = N*Tr

 T2 = (N-1)*Tr

In other words, if T is in the top half of the rounding interval, we

try the rounded values above and below. If T is in the bottom half, we

try the rounded values below, and below again. Pictorially:

[[TBD]]

These are tried in the following sequence:

Try Tstart-1 and Tend-1.

Try Tstart-2 and Tend-1.

Try Tstart-1 and Tend-2.

Try Tstart-2 and Tend-2.

For example, if the originating side has a start time of 10.08 and a

stop time of 30.87, the four start and stop times with Tr=1s are:

Start Stop

10 30

9 30

10 31

9 31

Each of these times is represented in 64 bit NTP time (Tr can be

configured to less than 1s in which case there will be non-zero values

in the least significant 32 bits). Each password is then computed by

taking the 64 bit start time, followed by the 64 bit end time,

resulting in a 128 bit word. This word is base64 encoded to produce an

ASCII string representation of 21 characters. To perform the caller ID

based validation, the SRP-TLS procedure is done four times, once with

1.

2.

3.

4.

each of the four username/password combinations (of course the username

is identical in all four cases). As long as delta is less than Tr/2,

one of this is guaranteed to work.

7.2.2. Method B

Unfortunately, in many cases caller ID cannot be used as an identifier

for the VCR. This is because:

CallerID is frequently suppressed in the PSTN, and not

delivered. This is especially true in international cases.

CallerID is sometimes munged by the PSTN, and delivered, but

with a different value than was sent by the originator. This

happens in certain arbitrage interexchange carriers.

Consequently, if no caller ID was delivered at all, the terminating

side will not have a matching record. In that case, it informs the

calling side that it should abort and revert to method B. If munged, it

will also abort for the same reason.

If the caller ID attempt aborts, PO now tries a different approach. In

this approach, the "username" is the combination of the called party

number and a point during the call, selected at random. The password is

equal to the start and stop times of the call. This method uses the

method-tag "B" in the username.

Unlike method A, with method B, the VCR which triggered the validation

is used, regardless of whether there were other, more recent, calls to

the same calledparty number! This is because, in method B (unlike

method A), the time itself is used as a key to select a VCR.

Furthermore, using a more recent VCR does not interact properly with

multi-tenancy. The called number and point during that call will select

an identical VCR on the terminating side if the following conditions

are met:

For the called party number, there was not more than one call

in progress made to that number at the same time. This is

generally true for numbers for a single user; typically there

is only one active call at a time. Of course, it is possible a

user receives a call, and then gets another. It then puts the

first on hold while the second call is taken. In these cases,

it is possible that the "username" will select a different VCR

on PT, in which case the validation fails. More troubling are

numbers representing call centers, conference bridges, 8xx

numbers, and attendant numbers, all of which frequently have

multiple calls in progress to them at the same time. As a

consequence, for these types of called numbers, validation is

typically only going to work if caller ID is delivered.

Fortunately, 8xx numbers are only national in the first place,

so it is likely that this will work.

1.

2.

1.

PO is aware of all calls made from within its enterprise to

ECALLED. This can fail if there are multiple ViPR servers

serving different agents, and a call is made from one agent,

sent to one ViPR server, and a call to that same number is made

on a different agent, send to a different ViPR server. As in

the caller ID case, this will still be OK in many cases - the

validation from one ViPR server succeeds, the other fails.

PT is aware of all calls made to ECALLED. The same caveats as

described above for the caller ID mechanism apply. PO takes the

VCR, and chooses a time Tkey which is uniformly distributed

between Tstart+Tr and Tstop-Tr. The usage of the Tr here is to

make sure that Tkey is squarely inside of the call start and

stop for PT as well. Note that, because Tkey is not a password,

it is sent in the clear and does not need to be rounded.

The username encodes the called party number, Tkey, the DHT, and the

VServiceID learned from the DHT query. The password is computed

identically to method A.

7.3. Requesting Validation

Once the SRP-TLS connection is up, data is exchanged. This is done

through a single VAP transaction initiated by PO. This transaction is

only VAP in the sense that it utilizes the basic syntax (the header and

TLV attribute structure), and its request/response model. Other than

that, it is effectively a different protocol - the validation protocol.

PO sends a VAP request with method ValExchange (0x00d). It contains one

attribute, Domain. The originating ViPR server obtains this domain by

looking at the VService of the VCR that was eventually used for the

validation. Note that, in cases where the VCR which triggered the

validation, is different than the one actually used for validation

(because a more recent VCR to the same number was found), it is

important to use the VService associated with the VCR which was

actually used for validation, and NOT the VService associated with the

VCR which triggered the attempt. Multi-tenancy does not work properly

without this. The domain from the VService is placed into the message.

This is basically the domain name of the originating enterprise. It is

included since it is needed by PT to compute the ticket.

PO will then receive a response. If it never receives a response within

a timeout, it considers the validation to have failed, and continues to

the next choice. If it receives any kind of error response, including a

rejection due to a blacklisted domain, it considers validation to have

failed, and continues to the next choice. If it is a success response,

it will contain one attribute - ServiceContent, which contains a

ValInfo XML object. ValInfo is an XML object which contains the SIP

URIs and the ticket. The ViPR server must parse the ValInfo XML object

and perform verification on it to avoid attacks. The following checks

are done:

2.

3.

Extract the <number> element. This will contain a single

number. That value is compared with the E.164 called party

number which was just validated. If they do not match, this is

a potential attack, and the XML is discarded and the ViPR

server acts as if validation failed. However it does not

generate an alarm.

Remove any extensions to the XML which are not supported by the

ViPR server (no extensions defined, so in this version, any

elements except for the <ticket>, <number>, <route>s and their

embedded <SIPURI> are removed.

Verify that the <route> element contains a single element,

<SIPURI>.

Verify that the SIP URI is not larger than 614 characters,

contains a domain name that is a valid set of domain name

characters, contains a user part that is a valid set of

characters, if it contains maddr, that the maddr is a valid

domain or IP and less than 255 characters, and if there is a

port, it is within 0-65535. This is for security purposes; to

make sure a malicious ViPR server on the terminating side

cannot send invalid URI and attack the call agent.

Verify that each SIP URI contains the same domain name. Once

the checks and fixes are done, the patched XML is passed to

subscribers in a Notify as described in [VIPR-VAP].

8. Terminating Node Procedures

8.1. Waiting for SRP-TLS

PT will wait for an AppAttach request on the Application-ID defined in

[VIPR-RELOAD-USAGE] and the connection is established, it begins

waiting for SRP-TLS. The TLS messaging will provide PT with a username.

It parses the username and determines the method. If the value of the

method is not "a" or "b", this is a new method not supported by the

node. The SRP-TLS procedures should be failed. If the method is "a", it

is the caller ID mechanism. The called number, calling number,

VService, and rounding time are extracted. PT then searches through its

VCRs over the last 48 hours for one with a matching called number and

caller ID and VService whose VServiceID matches the one from the

username:

If none are found, PT proceeds with the SRP-TLS exchange, but

using a fake username and password. This will cause the

validation to eventually fail.

If one is found, it is used.

1.

2.

3.

4.

5.

1.

2.

If more than one is found, the one with the most recent end

time is used.

The start and stop times from the selected VCR are taken. Using the

value of Tr from the username, both times are rounded down to the

nearest multiple of Tr. Note that, this rounding is different than the

one used on the originating side. The values are ALWAYS rounded down.

So if the stop time is 10.99 and Tr is one second, the rounded down

value of 10 is used. The start and stop times are then represented as

64 bit NTP times (after rounding), concatenated, and base64ed to

produce a 21 character password. This is the password used with SRP-

TLS.

Note that, the originating node will try up to four different password

combinations. One of these should work, the others will cause SRP-TLS

to fail due to differing shared secrets. However, it is the job of the

originator to perform these four; to the terminating node, they are

four separate attempts. Processing of SRP-TLS login attempts is

stateless on the terminating side. This means that each attempt is

treated independently by PT. It performs identical processing on each

SRP-TLS attempt - examine the username, find a matching VCR, extract

password, and fail the attempt or continue to success. The originating

side has the main burden of sequencing through the various mechanisms.

If the method is "b", PT uses the extracted called party ID and a time

in the middle of the call. It searches through all VCR records whose

called number matches and whose VServiceID matches, and of those, takes

the ones where Tkey is between Tstart and Tstop. Of those, if more than

one match, the one with the most recent Tstop is used. Tstart and Tstop

for that VCR are extracted, and converted to a password just as is done

for the PO. The resulting SRP-TLS procedure will then either succeed or

fail. Note that, if a domain has multiple Vservices that contain the

same number, there will be multiple VCRs for calls to that number, and

there will be multiple validation attempts, one for each of the

Vservices.

Note that there could be multiple successful validations coming from

different domains for one specific VCR, so VCRs should not be removed

before the end of the 48 hours period. This can happen when a calling

domain uses a PSTN provider that is itself VIPR enabled.

8.2. Receiving Validation Requests

PT listens for incoming VAP/validation requests once the TLS connection

is up. It rejects anything but a ValExchange method with a 400

response. This allows for future extensibility of the validation

protocol. If the request was ValExchange, it extracts the domain name.

This will be something like "example.com". PT knows the VCR against

which validation succeeded. That VCR is associated with a VService. The

ViPR server checks the domain in the ValExchange request against the

black/white list associated with that VService. If no VService is

currently active, the ValExchange is rejected with a 403. If there is

3.

one active, and if the domain appears on the black list, or does not

appear in the white list, the ViPR server rejects the ValExchange

request with a 403 error response, indicating that this domain is not

allowed to call.

If the domain was in the whitelist or not in the blacklist, or there

was no whitelist/blacklist, PT constructs a successful response to the

ValExchange request. It contains one attribute: ServiceContent. It has

a ValInfo XML object, which contains a number, a ticket, and a series

of routes.

The number is always the E.164 number which was just validated,

including the plus sign. Note that this will also appear in the ticket.

The route element is the sequence of route elements for each instance

associated with the vservice.

Details of the ticker are provided in [VIPR-SIP-ANTISPAM] but the

ticket attribute is constructed as follows:

A ticket unique ID TLV is created, containing a randomly chosen

128 bit value as the ticket ID. That is the first TLV in the

ticket.

A salt TLV is created, containing a random 32 bit value. This

is the second TLV in the ticket.

The validity has the start time set using the current time as

the start time, and the current time + the ticket lifetime as

the end time. The ticket lifetime is a per-DHT configurable

parameter. The terminating ViPR server will have performed the

validation using a particular VService; the DHT for that

VService is used to find the right value for this parameter.

Number: This is the terminating number, in E.164 format, which

was just validated.

Granting node: this is set to one of the Node-IDs associated

with this ViPR server. Any will do.

Granting domain: This value is taken from the domain part of

the SIP URI associated with the VService in which the validated

VCR was found.

Granted-To domain: This is formed using the Domain sent in the

ValExchange request.

Epoch: This is the current epoch associated with the password.

Integrity: Using the current password, this is computed from

the rest of the Ticket.

1.

2.

3.

4.

5.

6.

7.

8.

9.

The resulting sequence of TLVs is base64 encoded and that is placed

into the ticket element in the ServiceContent attribute in the

ValExchange response.

9. Syntax Details

This section enumerates the methods and attributes used by PVP.

The methods and their corresponding method values, are:

Method Value

------ ------

ValExchange 0x00d

The attribute names and corresponding types are:

Attribute Name Type

-------------- ----

Domain 0x3001

10. Security Considerations

[[This section is mostly missing and needs to be done.]]

10.1. Entropy

[[The entropy obtained in the information from the PSTN calls

significantly impacts the security of this protocol. This section needs

to provide an analysis of how much entropy actually exists in this

information.]]

[[Defines the worst case of conference calls and resulting entropy]]

[[Describe the idea of doing multiple validations to aggregate

entropy]]

10.2. Forward Routing Assumptions

[[Discuss forward routing security in PSTN and explain how this

protocol is reliant on that.]]

11. IANA Considerations

[[TBD Define ports used.]]

12. Acknowledgements

Thanks to Patrice Bruno for his comments, suggestions and questions

that helped to improve this document.

13. References

13.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4234]
Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", RFC 4234, October 2005.

[RFC5054]

Taylor, D., Wu, T., Mavrogiannopoulos, N. and T.

Perrin, "Using the Secure Remote Password (SRP)

Protocol for TLS Authentication", RFC 5054, November

2007.

[VIPR-

OVERVIEW]

Jennings, C, Rosenberg, J and M Petit-Huguenin,

"Verification Involving PSTN Reachability:

Requirements and Architecture Overview", Internet-

Draft draft-jennings-vipr-overview-00, April 2011.

[VIPR-VAP]

Jennings, C, Rosenberg, J and M Petit-Huguenin,

"Verification Involving PSTN Reachability: The ViPR

Access Protocol (VAP)", Internet-Draft draft-jennings-

vipr-vap-00, April 2011.

[VIPR-SIP-

ANTISPAM]

Rosenberg, J.R., Jennings, C. and M. Petit-Huguenin,

"Session Initiation Protocol (SIP) Extensions for

Blocking VoIP Spam Using PSTN Validation", Internet-

Draft draft-petithuguenin-vipr-sip-antispam-01, June

2011.

[VIPR-

RELOAD-

USAGE]

Rosenberg, J.R., Jennings, C. and M. Petit-Huguenin,

"A Usage of Resource Location and Discovery (RELOAD)

for Public Switched Telephone Network (PSTN)

Verification", Internet-Draft draft-petithuguenin-

vipr-reload-usage-01, June 2011.

13.2. Informative References

[RFC2945]
Wu, T., "The SRP Authentication and Key Exchange

System", RFC 2945, September 2000.

Appendix A. Release notes

This section must be removed before publication as an RFC.

Appendix A.1. Modifications between vipr-01 and vipr-00

Added text explaining that VCRs should not be removed before the

end of the 48 hours delay.

Inserted Terminology section.

Fixed the timekey ABNF.

*

*

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:dcrocker@bbiw.net
mailto:paul.overell@thus.net
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc5054
http://tools.ietf.org/html/rfc5054
http://tools.ietf.org/html/draft-jennings-vipr-overview-00
http://tools.ietf.org/html/draft-jennings-vipr-overview-00
http://tools.ietf.org/html/draft-jennings-vipr-vap-00
http://tools.ietf.org/html/draft-jennings-vipr-vap-00
http://tools.ietf.org/html/draft-petithuguenin-vipr-sip-antispam-01
http://tools.ietf.org/html/draft-petithuguenin-vipr-sip-antispam-01
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-01
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-01
http://tools.ietf.org/html/draft-petithuguenin-vipr-reload-usage-01
http://tools.ietf.org/html/rfc2945
http://tools.ietf.org/html/rfc2945

Specified that rounding-time cannot be equal to 0.

Appendix A.2. Modifications between vipr-00 and dispatch-03

Moved to new Working Group.

Appendix A.3. Modifications between dispatch-03 and dispatch-02

Nits.

Shorter I-Ds references.

Removed sentence saying that Tkey is converted to base64.

Added ValExchange method and Domain attribute definitions.

Fixed the last sentence of 7.2 - the ticket goes into the ticket

element in the ServiceContent attribute.

Expanded first usage of VCR initialism.

Replaced any insteance of peerID by Node-ID.

Rewrote the ABNF.

Authors' Addresses

Jonathan Rosenberg Rosenberg jdrosen.net Monmouth, NJ US EMail:

jdrosen@jdrosen.net URI: http://www.jdrosen.net

Cullen Jennings Jennings Cisco 170 West Tasman Drive San Jose, CA

95134 USA Phone: +1 408 421-9990 EMail: fluffy@cisco.com

Marc Petit-Huguenin Petit-Huguenin Stonyfish EMail:

marc@stonyfish.com

*

*

*

*

*

*

*

*

*

*

mailto:jdrosen@jdrosen.net
http://www.jdrosen.net
mailto:fluffy@cisco.com
mailto:marc@stonyfish.com

	Abstract
	Legal
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. The Wrong Way
	3. EKE Protocols
	4. Terminology
	5. Protocol Overview
	6. Username and Password Algorithms
	7. Originating Node Procedures
	7.1. Establishing a Connection
	7.2. Constructing a Username and Password
	7.2.1. Method A
	7.2.2. Method B
	7.3. Requesting Validation
	8. Terminating Node Procedures
	8.1. Waiting for SRP-TLS
	8.2. Receiving Validation Requests
	9. Syntax Details
	10. Security Considerations
	10.1. Entropy
	10.2. Forward Routing Assumptions
	11. IANA Considerations
	12. Acknowledgements
	13. References
	13.1. Normative References
	13.2. Informative References
	Appendix A. Release notes
	Appendix A.1. Modifications between vipr-01 and vipr-00
	Appendix A.2. Modifications between vipr-00 and dispatch-03
	Appendix A.3. Modifications between dispatch-03 and dispatch-02
	Authors' Addresses

