
INTERNET-DRAFT G Brown
draft-petke-ext-intro-00.txt CompuServe
Expires: 15-May-97 15 November 1996

Remote Passphrase Authentication
Part One: Extended Introduction

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-
 Drafts Shadow Directories on ftp.is.co.za (Africa),
 nic.nordu.net (Europe), munnari.oz.au (Pacific Rim),
 ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 Remote Passphrase Authentication provides a way to authenticate a
 user to a service by using a pass phrase over an insecure network,
 without revealing the pass phrase to eavesdroppers. In addition, the
 service need not know and does not learn the user's pass phrase,
 making this scheme useful in distributed environments where it would
 be difficult or inappropriate to trust a service with a pass phrase
 database or to allow the server to learn enough to masquerade as the
 user in a future authentication attempt.

 This draft is part one of a four part series and contains an extended
 introduction to the problem and potential solutions to the problem.
 It is optional reading for those already familiar with the general
 issues of authentication over insecure networks. Part two
 (draft-petke-mech-00.txt) explains the RPA mechanism. Part three
 (draft-petke-http-auth-scheme-00.txt) explains how to incorporate the
 mechanism into HTTP. Part four
 (draft-petke-serv-deity-protocol-00.txt) explains the protocol
 between the service and deity.

 This scheme was inspired by Dave Raggett's Mediated Digest
 Authentication paper.

https://datatracker.ietf.org/doc/html/draft-petke-ext-intro-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-http-auth-scheme-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-serv-deity-protocol-00.txt

G Brown [Page 1]

INTERNET-DRAFT RPA - Part One 15 November 1996

Table of Contents

 1. INTRODUCTION
 1.1 IDENTIFICATION
 1.2 AUTHENTICATION
 1.3 AUTHORIZATION

 2. THE PROBLEM AND HOW NOT TO SOLVE IT
 2.1 ENCRYPT THE PASS PHRASE?
 2.2 A CHALLENGE-RESPONSE MECHANISM?
 2.3 WHAT IF I DON'T KNOW YOUR PASS PHRASE?
 2.4 TWO MORE WAYS NOT TO SOLVE THE PROBLEM

 3. SECURITY CONSIDERATIONS

 4. AUTHOR'S ADDRESS

1. Introduction

 In this introduction we'll explain the problem--fundamentally, how to
 authenticate a user to a service without revealing a pass phrase, and
 without requiring the service to know the user's pass phrase--and
 consider several alternatives and their flaws, leading to the reasons
 for developing this authentication mechanism. If you're already
 familiar with the concept of authentication and the surrounding
 issues, you might prefer to skip to Part two of the specification,
 (draft-petke-mech-00.txt), returning to this part only if you
 want more information about the motivation for the mechanism.

 We'll speak of an environment in which a user communicates with a
 service that wishes to learn and authenticate the user's identity and
 vice versa. You may, of course, think in terms of client and server,
 but those terms generally refer to an implementation. We're speaking
 at a higher level where there's no direct correspondence between
 server and service nor user and client.

 We'll use CompuServe and America Online as concrete examples of
 services, but the same concepts apply even to a single Web server or
 BBS that wants to authenticate users. There are three aspects of this
 environment of interest:

 Identification--the way in which we refer to a user.

 Authentication--the way in which a user may prove his or her
 identity.

 Authorization--the way in which we determine what a given user may
 do.

https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt

 The same aspects apply to services as well as users.

G Brown [Page 2]

INTERNET-DRAFT RPA - Part One 15 November 1996

1.1 Identification

 A user's identity consists of a user name and a realm name. A realm
 is a universe of identities; CompuServe Information Service user IDs
 and America Online screen names are two examples of realms. The
 combination of username and realm--typically shown as
 name@realm--identifies a user. Any given service will recognize some
 particular set of identities. A realm doesn't have to be large,
 though, either in number of users or size of service. For example, a
 single Web server might have its own realm of users.

 Often, a service recognizes only one realm: CIS recognizes only
 identities within the CIS realm, and AOL recognizes only identities
 within the AOL realm. But one can imagine a service that has
 agreements with both CIS and AOL. The service gives the user a choice
 of realms--"Please supply a CIS or AOL identity, and prove it"--and
 the user chooses a realm in which he has an identity.

1.2 Authentication

 Identification provides the ability to identify, or refer to, a user.
 Authentication provides the ability to prove identity. When you ask
 to do something for which your identity matters, we ask for your
 identity--your username and realm--and we make you prove that you are
 who you say you are.

 To accomplish this, we'll use a secret that we call a pass phrase,
 although it's not necessarily derived from text. Such a secret is
 sometimes called a secret key, but we won't be using it for
 encryption.

 The fundamental problem to be solved is, How can you prove to me that
 you know your pass phrase without revealing the pass phrase in the
 process? We'll explore this problem in more detail momentarily.

1.3 Authorization

 Authorization refers to the process of determining whether a given
 user is allowed to do something. For example, may he post a message?
 May he use a surcharged service? We won't say much about this topic,
 but it's important to realize that authentication and authorization
 are distinct processes, one related to proving an identity, and the
 other related to the properties of an identity.

 Our mechanism has nothing to do with authorization, but it is
 designed to co-exist with authorization mechanisms.

G Brown [Page 3]

INTERNET-DRAFT RPA - Part One 15 November 1996

2. The problem and how not to solve it

 Imagine that I'm a service who wishes to authenticate you, a user.
 You must identify yourself and prove to me that you know your pass
 phrase. That's easy: I'll prompt you for your pass phrase.

 But that doesn't work. We learned long ago that plaintext pass
 phrases cannot be transmitted through a network. X.25 networks have
 been compromised, and LANs, modem pools, and "The Internet" likewise
 are not suitable for plaintext pass phrases. Prompting for the pass
 phrase is not the answer.

2.1 Encrypt the pass phrase?

 How about encrypting the pass phrase? Sounds good. You encrypt your
 pass phrase, send me the result, and I'll decrypt it. Techniques like
 Diffie-Hellman can create a one-time key that prevents an
 eavesdropper from decrypting your pass phrase.

 But that doesn't work, either. What if somebody else--a
 spoofer--pretends to be the service? He'll decrypt the result,
 learning your pass phrase and gaining the ability to masquerade as
 you. Perhaps that sounds unlikely, but it's not; even in dial-up
 modem days, people have spoofed services--"Here's a new telephone
 number they left out of their directory. It's much faster than the
 listed numbers!"

 We need a mechanism that won't reveal your pass phrase to anyone,
 even if you're not talking to whom you think you're talking.

2.2 A challenge-response mechanism?

 How about a challenge-response mechanism? Now we're on the right
 track. I send you a challenge, which is a random number, and you use
 a one-way function to calculate a result that depends on the
 challenge and your pass phrase. You send me the result, and I perform
 the same calculation and see if my result matches yours. Done
 correctly, this reveals no information to eavesdroppers, nor does it
 allow a spoofer to acquire your pass phrase--if someone pretends to
 be me, they learn only your result for a particular challenge, which
 is of no value.

 Although such a mechanism works, it doesn't quite solve our problem.
 If I'm the service, I must know your pass phrase in order to
 reproduce your calculation and verify your response to my challenge.
 But what if I don't know your pass phrase?

G Brown [Page 4]

INTERNET-DRAFT RPA - Part One 15 November 1996

2.3 What if I don't know your pass phrase?

 Why might I, the service, not know your pass phrase? Consider a set
 of services that share a set of users' identities. For example,
 imagine a collection of Web servers, scattered throughout the world,
 all of which are a part of Gary's Information Service; you may use
 your GIS name and pass phrase to identify yourself to any GIS
 service.

 The obvious implementation--each physical server has a copy of all
 pass phrases or access to a master database--is awkward at best,
 especially if some are third-party servers, not directly under the
 control of our imaginary GIS.

 Or consider a service that accepts identities in multiple realms.
 Imagine a service that has agreements with both CIS and AOL. The
 service gives the user a choice of realms--"Please supply a CIS or
 AOL identity, and prove it"--and the user chooses a realm in which he
 has an identity. It's unlikely that CIS and AOL will entrust a copy
 of their pass phrase databases to a third-party service--or to each
 other.

 So, if I don't know your pass phrase, how can you prove to me that
 you do know it? And that's the fundamental question addressed by this
 mechanism. We'll begin by pointing out a couple of solutions that
 don't work.

2.4 Two more ways not to solve the problem

 Wrong answer #1--I'll prompt you for your pass phase. Let's make this
 example more concrete: I'll display an HTML form with a box that asks
 for your name and a box for your pass phrase. We'll use SSL or SHTTP
 so an eavesdropper can't see it. When I get your reply, I can use a
 challenge-response mechanism to verify your pass phrase with a server
 that knows the pass phrases.

 But that won't work. It's important to teach users not to type their
 pass phrases just because somebody asks for it--that's a standard
 technique for cracking others' accounts. Teaching users to provide
 their pass phrases in an HTML form is a bad idea.

 And I'll see your pass phrase, which is precisely what we want to
 avoid, especially if I'm a spoofer.

 Wrong answer #2--We'll create a pass-phrase database server. I'll ask
 it for a copy of your pass phrase. Now that I know it, we can use an
 ordinary challenge-response mechanism.

G Brown [Page 5]

INTERNET-DRAFT RPA - Part One 15 November 1996

 That won't work. We'd need a way to get the pass phrase from that
 database to me, safely. And if I can look up your pass phrase, what's
 to stop somebody else from doing the same? (Don't say "a firewall."
 Services that need to verify your identity exist outside firewalls,
 too.)

 If anything, this is even worse--I could dump the entire pass-phrase
 database--and, again, I should never see your pass phrase.

 But there is a solution, which we'll cover in Part two of this
 specification (draft-petke-mech-00.txt).

3. Security Considerations

 This entire document is about security.

4. Author's Address

 Gary S. Brown
 CompuServe Incorporated
 5000 Britton Rd
 P.O. Box 5000
 Hilliard OH 43026-5000
 USA
 +1 614 723 1127
 <gsb@csi.compuserve.com>

This Internet-Draft expires on May 15, 1997.

https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt

G Brown [Page 6]

