
INTERNET-DRAFT G Brown
draft-petke-remote-pass-auth-00.txt CompuServe
Expires: 19 November 1997 19 May 1997

Remote Passphrase Authentication

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet- Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 Remote Passphrase Authentication provides a way to authenticate a
 user to a service by using a pass phrase over an insecure network,
 without revealing the pass phrase to eavesdroppers. In addition, the
 service need not know and does not learn the user's pass phrase,
 making this scheme useful in distributed environments where it would
 be difficult or inappropriate to trust a service with a pass phrase
 database or to allow the server to learn enough to masquerade as the
 user in a future authentication attempt.

 This scheme was inspired by Dave Raggett's Mediated Digest
 Authentication, draft-ietf-http-mda-00.txt.

 This specification is divided into five parts. Part Zero contains an
 extended introduction to the problem and potential solutions. Part
 One explains the mechanism. Part Two explains how to incorporate the
 mechanism into HTTP. Part Three explains the protocol between the
 service and deity. Part Four explains the GSS-API token formats. Feel
 free to start with Part One; Part Zero provides background
 information and is not a prerequisite for Part One.

https://datatracker.ietf.org/doc/html/draft-petke-remote-pass-auth-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-http-mda-00.txt

Brown [Page 1]

Internet Draft Remote Passphrase Authentication 19 May 1997

Table of Contents

 PART 0. EXTENDED INTRODUCTION

 1. INTRODUCTION
 1.1 IDENTIFICATION
 1.2 AUTHENTICATION
 1.3 AUTHORIZATION

 2. THE PROBLEM AND HOW NOT TO SOLVE IT
 2.1 ENCRYPT THE PASS PHRASE?
 2.2 A CHALLENGE-RESPONSE MECHANISM?
 2.3 WHAT IF I DON'T KNOW YOUR PASS PHRASE?
 2.4 TWO MORE WAYS NOT TO SOLVE THE PROBLEM

 PART 1. THE MECHANISM

 3. INTRODUCTION

 4. TERMINOLOGY

 5. DESIGN CRITERIA

 6. THE MECHANISM
 6.1 AUTHENTICATION
 6.1.1 Values and their representation
 6.1.2 The authentication process
 6.2 REAUTHENTICATION
 6.3 REAUTHENTICATION CHEATING

 PART 2. HTTP AUTHENTICATION SCHEME

 7. INTRODUCTION

 8. USING THIS AUTHENTICATION MECHANISM IN HTTP
 8.1 AUTHENTICATION
 8.2 REAUTHENTICATION CHEATING
 8.3 REAUTHENTICATION

 PART 3. SERVICE-TO-DEITY PROTOCOL

 9. INTRODUCTION

 10. OBJECT FORMATS

 11. MESSAGE OBJECT TYPES
 11.1 AUTHENTICATION REQUEST
 11.2 AUTHENTICATION RESPONSE, AFFIRMATIVE
 11.3 AUTHENTICATION RESPONSE, NO SERVICE

 11.4 AUTHENTICATION RESPONSE, NEGATIVE
 11.5 AUTHENTICATION RESPONSE, INVALID SERVICE

Brown [Page 2]

Internet Draft Remote Passphrase Authentication 19 May 1997

 11.6 AUTHENTICATION RESPONSE, PROBLEM

 12. OBJECT TYPES

 13. THE BLOB

 PART 4. GSS-API HANDSHAKE

 14. INTRODUCTION

 15. THE HANDSHAKE
 15.1 TOKEN 1 (NEGOTIATION, CLIENT-TO-SERVER)
 15.2 TOKEN 2 (CHALLENGE, SERVER-TO-CLIENT)
 15.3 TOKEN 3 (AUTHENTICATION, CLIENT-TO-SERVER)
 15.4 TOKEN 4 (AUTHENTICATION, SERVER-TO-CLIENT)
 15.5 TOKEN 5 (HACK, CLIENT-TO-SERVER)
 15.6 FIELD DESCRIPTIONS

 16 SAMPLE CONVERSATION

Brown [Page 3]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Remote Passphrase Authentication
 Part 0
 Extended Introduction

1 Introduction

 In this introduction we'll explain the problem--fundamentally, how to
 authenticate a user to a service without revealing a pass phrase, and
 without requiring the service to know the user's pass phrase--and
 consider several alternatives and their flaws, leading to the reasons
 for developing this authentication mechanism. If you're already
 familiar with the concept of authentication and the surrounding
 issues, you might prefer to skip to Part One of the specification,
 returning to this part only if you want more information about the
 motivation for the mechanism.

 We'll speak of an environment in which a user communicates with a
 service that wishes to learn and authenticate the user's identity and
 vice versa. You may, of course, think in terms of client and server,
 but those terms generally refer to an implementation. We're speaking
 at a higher level where there's no direct correspondence between
 server and service nor user and client.

 We'll use CompuServe and America Online as concrete examples of
 services, but the same concepts apply even to a single Web server or
 BBS that wants to authenticate users. There are three aspects of this
 environment of interest:

 Identification--the way in which we refer to a user.

 Authentication--the way in which a user may prove his or her
 identity.

 Authorization--the way in which we determine what a given user may
 do.

 The same aspects apply to services as well as users.

1.1 Identification

 A user's identity consists of a user name and a realm name. A realm
 is a universe of identities; CompuServe Information Service user IDs
 and America Online screen names are two examples of realms. The
 combination of username and realm--typically shown as
 name@realm--identifies a user. Any given service will recognize some
 particular set of identities. A realm doesn't have to be large,
 though, either in number of users or size of service. For example, a
 single Web server might have its own realm of users.

 Often, a service recognizes only one realm: CIS recognizes only

Brown [Page 4]

Internet Draft Remote Passphrase Authentication 19 May 1997

 identities within the CIS realm, and AOL recognizes only identities
 within the AOL realm. But one can imagine a service that has
 agreements with both CIS and AOL. The service gives the user a choice
 of realms--"Please supply a CIS or AOL identity, and prove it"--and
 the user chooses a realm in which he has an identity.

1.2 Authentication

 Identification provides the ability to identify, or refer to, a user.
 Authentication provides the ability to prove identity. When you ask
 to do something for which your identity matters, we ask for your
 identity--your username and realm--and we make you prove that you are
 who you say you are.

 To accomplish this, we'll use a secret that we call a pass phrase,
 although it's not necessarily derived from text. Such a secret is
 sometimes called a secret key, but we won't be using it for
 encryption.

 The fundamental problem to be solved is: How can you prove to me that
 you know your pass phrase without revealing the pass phrase in the
 process? We'll explore this problem in more detail momentarily.

1.3 Authorization

 Authorization refers to the process of determining whether a given
 user is allowed to do something. For example, may he post a message?
 May he use a surcharged service? We won't say much about this topic,
 but it's important to realize that authentication and authorization
 are distinct processes, one related to proving an identity, and the
 other related to the properties of an identity.

 Our mechanism has nothing to do with authorization, but it is
 designed to co-exist with authorization mechanisms.

2 The problem and how not to solve it

 Imagine that I'm a service who wishes to authenticate you, a user.
 You must identify yourself and prove to me that you know your pass
 phrase. That's easy: I'll prompt you for your pass phrase.

 But that doesn't work. We learned long ago that plaintext pass
 phrases cannot be transmitted through a network. X.25 networks have
 been compromised, and LANs, modem pools, and "The Internet" likewise
 are not suitable for plaintext pass phrases. Prompting for the pass
 phrase is not the answer.

Brown [Page 5]

Internet Draft Remote Passphrase Authentication 19 May 1997

2.1 Encrypt the pass phrase?

 How about encrypting the pass phrase? Sounds good. You encrypt your
 pass phrase, send me the result, and I'll decrypt it. Techniques like
 Diffie-Hellman can create a one-time key that prevents an
 eavesdropper from decrypting your pass phrase.

 But that doesn't work, either. What if somebody else--a
 spoofer--pretends to be the service? He'll decrypt the result,
 learning your pass phrase and gaining the ability to masquerade as
 you. Perhaps that sounds unlikely, but it's not; even in dial-up
 modem days, people have spoofed services--"Here's a new telephone
 number they left out of their directory. It's much faster than the
 listed numbers!"

 We need a mechanism that won't reveal your pass phrase to anyone,
 even if you're not talking to whom you think you're talking.

2.2 A challenge-response mechanism?

 How about a challenge-response mechanism? Now we're on the right
 track. I send you a challenge, which is a random number, and you use
 a one-way function to calculate a result that depends on the
 challenge and your pass phrase. You send me the result, and I perform
 the same calculation and see if my result matches yours. Done
 correctly, this reveals no information to eavesdroppers, nor does it
 allow a spoofer to acquire your pass phrase--if someone pretends to
 be me, they learn only your result for a particular challenge, which
 is of no value.

 Although such a mechanism works, it doesn't quite solve our problem.
 If I'm the service, I must know your pass phrase in order to
 reproduce your calculation and verify your response to my challenge.
 But what if I don't know your pass phrase?

2.3 What if I don't know your pass phrase?

 Why might I, the service, not know your pass phrase? Consider a set
 of services that share a set of users' identities. For example,
 imagine a collection of Web servers, scattered throughout the world,
 all of which are a part of Gary's Information Service; you may use
 your GIS name and pass phrase to identify yourself to any GIS
 service.

 The obvious implementation--each physical server has a copy of all
 pass phrases or access to a master database--is awkward at best,
 especially if some are third-party servers, not directly under the
 control of our imaginary GIS.

 Or consider a service that accepts identities in multiple realms.
 Imagine a service that has agreements with both CIS and AOL. The

Brown [Page 6]

Internet Draft Remote Passphrase Authentication 19 May 1997

 service gives the user a choice of realms--"Please supply a CIS or
 AOL identity, and prove it"--and the user chooses a realm in which he
 has an identity. It's unlikely that CIS and AOL will entrust a copy
 of their pass phrase databases to a third-party service--or to each
 other.

 So, if I don't know your pass phrase, how can you prove to me that
 you do know it? And that's the fundamental question addressed by this
 mechanism. We'll begin by pointing out a couple of solutions that
 don't work.

2.4 Two more ways not to solve the problem

 Wrong answer #1--I'll prompt you for your pass phase. Let's make this
 example more concrete: I'll display an HTML form with a box that asks
 for your name and a box for your pass phrase. We'll use SSL or SHTTP
 so an eavesdropper can't see it. When I get your reply, I can use a
 challenge-response mechanism to verify your pass phrase with a server
 that knows the pass phrases.

 But that won't work. It's important to teach users not to type their
 pass phrases just because somebody asks for it--that's a standard
 technique for cracking others' accounts. Teaching users to provide
 their pass phrases in an HTML form is a bad idea.

 And I'll see your pass phrase, which is precisely what we want to
 avoid, especially if I'm a spoofer.

 Wrong answer #2--We'll create a pass-phrase database server. I'll ask
 it for a copy of your pass phrase. Now that I know it, we can use an
 ordinary challenge-response mechanism.

 That won't work. We'd need a way to get the pass phrase from that
 database to me, safely. And if I can look up your pass phrase, what's
 to stop somebody else from doing the same? (Don't say "a firewall."
 Services that need to verify your identity exist outside firewalls,
 too.)

 If anything, this is even worse--I could dump the entire pass-phrase
 database--and, again, I should never see your pass phrase.

 But there is a solution, which we'll cover in Part One of this
 specification.

Brown [Page 7]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Remote Passphrase Authentication
 Part 1
 The Mechanism

Table of Contents

 3. INTRODUCTION

 4. TERMINOLOGY

 5. DESIGN CRITERIA

 6. THE MECHANISM
 6.1 AUTHENTICATION
 6.1.1 Values and their representation
 6.1.2 The authentication process
 6.2 REAUTHENTICATION
 6.3 REAUTHENTICATION CHEATING

3 Introduction

 In this mechanism, we'll authenticate a user to a service and vice
 versa. We'll use pass phrases--actually, they're 128-bit shared
 secrets, but we'll define a way to use textual phrases--so the goal
 is to prove to the service that you know your pass phrase, and vice
 versa.

 Of course, it's important not to reveal the pass phrase to an
 eavesdropper. It is equally important not to reveal the pass phrase
 to a spoofer.

 Furthermore, the mechanism should work even if the service does not
 know the user's pass phrase. In a distributed environment, with many
 services that wish to authenticate the same set of users, it may be
 difficult to make users' pass phrases available to all services. And
 we might prefer not to do that, if we don't completely trust the
 services. So, not only should the service not have to know the user's
 pass phrase, but the service should not learn the user's pass phrase
 during the authentication process.

 On the other hand, the mechanism should be simple enough to apply
 even in the traditional case where the service knows the user's pass
 phrase; there's no need to use a different mechanism in that case.

 Part Zero of this specification contains an extended introduction
 that explains the problem and various potential solutions and their
 problems, leading to this mechanism. If you find yourself asking,

 "Why not just...," it might be worth reading Part Zero to see if that
 explains it. However, it contains only background material, so you

Brown [Page 8]

Internet Draft Remote Passphrase Authentication 19 May 1997

 needn't read Part Zero before reading the rest of this specification.

4 Terminology

 Throughout this specification we'll speak of a "user" communicating
 with a "service" that wishes to learn and authenticate the user's
 identity. Often, the user is a "client" and the service is a
 "server," but those terms refer to an implementation.

 The "deity" knows the users' and services' pass phrases, and the
 service talks to the deity during the authentication process.
 Although the term "authentication server" is more conventional, we
 call it a deity because it's got fewer syllables and the term
 "server" is overloaded. If the service knows the pass phrases, then
 it acts as its own deity, simplifying the implementation but
 otherwise having no effect on the mechanism.

 Identities exist in some "realm," and we use that term in its usual
 sense. We often think of a realm as being a relatively large
 collection of users, like compuserve.com or aol.com, but it might
 well consist of a small set of users, e.g., user names and pass
 phrases associated with an individual Web server. We allow the
 service to specify a set of realms, to recognize an identity in any
 of the realms in which it participates.

5 Design criteria

 This authentication mechanism is intended to meet the following
 criteria.

 * The service learns and authenticates the user's identity.

 * The user learns and authenticates the service's identity.

 * The mechanism does not use public-key technology.

 * The mechanism does not use encryption. (By encryption, we're
 referring to reversible encryption, the ability to encrypt
 something and later decrypt it. By avoiding encryption, we avoid
 restrictions on exportability.)

 * The mechanism is based on shared secrets: "pass phrases," although
 they can be arbitrary bit patterns rather than text.

 * Neither the user nor the service needs to know the other's pass
 phrase.

 * Neither the user nor the service nor eavesdroppers will learn the
 other's pass phrase. However, if the pass phrase is based on text,

Brown [Page 9]

Internet Draft Remote Passphrase Authentication 19 May 1997

 it's important to choose a "good" pass phrase to avoid a dictionary
 attack.

 * The mechanism is reasonably easy to implement in clients and does
 not require the client to communicate with a third party nor to a
 possess a reliable clock.

 * The mechanism derives a shared secret that may be used as a session
 key for subsequent authentication.

 * The mechanism may be incorporated into almost any protocol. In
 other words, the mechanism is not designed around a protocol; the
 protocol is designed around the mechanism. But the mechanism must
 be suitable for incorporation into protocols like HTTP.

 * The mechanism provides the ability to accept an identity in any of
 a set of realms in which the user and service are members.

6 The mechanism

 This authentication mechanism consists of three related processes:
 authentication, reauthentication, and reauthentication cheating.

 Authentication is the fundamental process by which a user and a
 service mutually authenticate one another within one of a set of
 realms, without revealing their pass phrases to one another.

 Reauthentication is a process by which a user and service, having
 recently authenticated one another, may again authenticate one
 another. They could, of course, simply repeat the authentication
 process, but that requires interaction with an authentication deity.
 The reauthentication process is faster, requiring no communication
 with a third party. Reauthentication is useful when multiple
 connections between the user and service are established, whether
 sequential as in HTTP or simultaneous. Each connection must be
 authenticated, but the reauthentication process provides a shortcut.

 Reauthentication cheating is a further optimization for HTTP, a
 protocol that is quite unfriendly to challenge-response mechanisms.
 Reauthentication cheating can be performed in parallel with an HTTP
 transaction. True reauthentication is just as simple, but requires
 two sequential requests because of the characteristics of HTTP. By
 using reauthentication cheating, we create a "one-way" handshake.

6.1 Authentication

 There are three parties involved in the authentication process:

 * the user;

Brown [Page 10]

Internet Draft Remote Passphrase Authentication 19 May 1997

 * the service; and

 * the authentication deity.

 Each user has a name and a pass phrase in some realm of interest.
 Similarly, each service has a name and a pass phrase in that realm.
 The pass phrase isn't really text; it's a 128-bit (16-octet) string
 of bits.

 However, it's often useful to use pass phrases in the conventional,
 textual sense, so we define a procedure for converting a textual
 phrase to the 128-bit value used by the authentication mechanism. If
 such a pass phrase is poorly chosen, it will be subject to dictionary
 attack, and that's why we never use the word password in this
 specification (well, except in this sentence)--use a phrase, not a
 word.

 The service may specify a list of realms, and the user chooses one in
 which he has an identity. Thus, a service is not restricted to
 authenticating identities in a single realm. The service must possess
 a name and pass phrase in all realms it lists.

 Each realm has an authentication deity, which knows the names and
 pass phrases of its members. It's the service's responsibility to
 know how to locate an authentication deity for each realm; the user
 never communicates directly with an authentication deity. If the
 service knows the user's pass phrase, it performs the role of the
 authentication deity itself, but this does not affect the mechanism.

6.1.1 Values and their representation

 Following is a glossary of the values involved in the authentication
 process; we'll use these symbols in the following explanation.

 As--Authentication deity's response to service; proves user's
 identity

 Au--Authentication deity's response to user; proves service's
 identity

 Cs--Challenge from service

 Cu--Challenge from user

 Kus--Session key for user and service

 Kuss--Session key obscured so visible only to service

 Kusu--Session key obscured so visible only to user

 Nr--Realm name

Brown [Page 11]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Ns--Service name

 Nu--User name

 Ps--Service's pass phrase, a 128-bit value

 Pu--User's pass phrase, a 128-bit value

 Rs--Service's response to challenge (during authentication
 process, goes to authentication deity; during
 reauthentication, goes to user)

 Ru--User's response to challenge (during authentication process,
 goes via service to authentication deity; during
 reauthentication, goes to service)

 Ts--Service's time stamp

 Z--Padding consisting of 48 octets (384 bits) with all bits set
 to zero

 +--Concatenation of octet strings

 xor--Bitwise exclusive or

 Bit patterns for each value must be specified. Imagine, for example,
 that one implementation uses ASCII, another EBCDIC, and another
 Unicode for the user name. Or one implementation converts the name to
 lowercase, another to all caps. Each would generate a different
 result for the same calculation, and authentication would fail.

 Should we leave such details to the underlying protocol? We could,
 but that would make the service-to-deity protocol dependent on the
 user-to-service protocol, so we couldn't have a single deity for each
 realm. If we specify the bit patterns, we can allow any mixture of
 user-to-service and service-to-deity protocols to operate on the same
 data. Therefore, we adopt the following conventions.

 Text strings are represented in the Unicode character set, in
 big-endian byte order, without a trailing null character. Note that
 ASCII can be converted to ISO 8859-1 by prefixing a single 0 bit, and
 ISO 8859-1 can be converted to Unicode by prefixing eight 0 bits.
 Each 16-bit Unicode character is stored in two octets, with its
 high-order 8 bits in the first octet. Representation of characters
 with multiple encodings is for further study. For example, e-acute
 has more than one representation. The form that uses combining
 characters, in character-code order, is probably the most logical.

 Note, by the way, that this specification refers only to values used
 in the authentication calculations, not the underlying protocol. For

Brown [Page 12]

Internet Draft Remote Passphrase Authentication 19 May 1997

 example, it's quite reasonable for a protocol to use ASCII for user
 names, if that character set is adequate. Those ASCII characters must
 be converted to Unicode before using them in authentication
 calculations, but the protocol need not transmit Unicode characters.

 * Names--Nr, Ns, Nu--are converted to lowercase Unicode. Note that
 there is no trailing null character.

 * Challenges--Cs, Cu--are arbitrary strings of octets, not text. They
 may contain any bit patterns, including nulls, and must be at least
 eight octets in length.

 * The time stamp--Ts--is the ISO 646 (ASCII) textual representation
 of the current universal time--UTC--in exactly 14 octets, using
 24-hour time, with leading zeroes: 19950805011344.

 * Pass phrases--Ps, Pu--are 16-octet quantities that contain
 arbitrary bit patterns, including nulls. If the pass phrase is
 based on a textual phrase, the textual phrase is converted to a
 16-octet quantity by the following process.

 * Convert the text string to a sequence of characters in either the
 Unicode or ISO 8859-1 character sets, as appropriate for the
 realm.

 * Convert each character to its lowercase equivalent, or its
 uppercase equivalent, or leave it alone, as appropriate for the
 realm.

 * Store the sequence of characters in an octet stream, with each
 Unicode character in two consecutive octets in big-endian order,
 or each ISO 8859-1 character in one octet. Do not append a
 trailing null character.

 * Take the MD5 digest of the resulting string of octets. The result
 is the 128-bit value to use in the authentication calculations.

 A realm will specify which of the preceding options--character set,
 case conversion, and hash function--it uses for the text-to-128-bit
 value transformation; the defaults are Unicode, convert to lowercase,
 and MD5. More options might be added in the future. The user-service
 protocol should be designed to convey the appropriate options for
 each realm from the service to the user, if other than the defaults
 are to be supported, to avoid requiring the (human) user to manually
 configure software.

6.1.2 The authentication process

 Here we describe the individual steps. Taken literally, one might

 envision many messages between the service and deity, but an actual
 implementation within a protocol combines steps. For example, "The

Brown [Page 13]

Internet Draft Remote Passphrase Authentication 19 May 1997

 user sends a random challenge" is shown as a separate step for
 clarity, but it needn't be a separate message to the service, nor
 must it be sent at the point shown--if it makes sense in the
 underlying protocol, the user's challenge might be included with the
 user's response to the service.

 * The service supplies a sequence of realms, with the service's name
 in each realm, to the user. For example,

 foo@compuserve.com bar@aol.com

 means "Please identify yourself with a CIS user ID. If you don't
 have one, your AOL ID will do." The service indicates its realm
 preferences in most-preferred to least-preferred order; by
 specifying only one realm, the service requires identification in
 that realm.

 * The user chooses a realm, Nr, and gives it and his name in that
 realm, Nu, to the service. That, in turn, determines Ns, the
 service's name in that realm. Note that a protocol might allow the
 service to include a null realm name, meaning "I'll accept you as
 an anonymous user if you wish." The user might make this choice by
 supplying a null name; the the process stops here, and no
 authentication is performed.

 * The service transmits a random challenge, Cs, and a time stamp, Ts.
 The challenges are random values that make each authentication
 unique. The time stamp is, in effect, a third challenge, which the
 deity will ensure is recent. The user may examine it, but most
 users lack an accurate source of universal time, so most users will
 treat it as an opaque value.

 * The user sends a random challenge, Cu.

 * The user calculates a response, Ru:

 Ru = MD5(Pu + Z + Nu + Ns + Nr + Cu + Cs + Ts + Pu)

 and sends it to the service.

 Only the real user can generate the correct response, because it
 depends on the user's pass phrase, Pu. No one can determine the
 user's pass phrase from a captured response, because it's generated
 by a one-way function, although there is the risk of a dictionary
 attack if Pu is based on a poorly chosen pass phrase.

 * The service calculates a response, Rs:

 Rs = MD5(Ps + Z + Nu + Ns + Nr + Cu + Cs + Ts + Ru + Ps)

 This response is not sent to the user; it would do no harm if the

Brown [Page 14]

Internet Draft Remote Passphrase Authentication 19 May 1997

 user saw it, but the user won't need it.

 * The service sends a request to the authentication deity for the
 realm in question. The request contains

 * The realm name, Nr (included so the same deity can serve more
 than one realm)

 * The user's name, Nu

 * The service's name, Ns

 * The user's challenge, Cu

 * The service's challenge, Cs

 * The time stamp, Ts

 * The user's response, Ru

 * The service's response, Rs

 * The deity verifies the time stamp per previously agreed upon
 criteria. In some applications, one might require it within a few
 minutes; in others, one might want to allow 25 hours to eliminate
 problems of misconfigured time zones. Beware of overzealousness,
 though; this time stamp went from the service to the user, then
 back to the service, then to the deity, perhaps with human
 interaction--typing a pass phrase--introducing further delay. The
 deity might implement a replay cache.

 * The deity uses Nr, Ns, and Nu to look up the user's and service's
 pass phrases.

 * The deity uses the values in the request, plus the service's pass
 phrase, Ps, to verify Rs. If it is incorrect, the deity returns a
 negative response; this request apparently did not come from a
 legitimate service.

 * Having verified the requesting service's identity, the deity uses
 the values in the request, plus the user's pass phrase, Pu, to
 verify Ru. If it is incorrect, the deity returns a failure response
 to the service; the user does not know the correct pass phrase.

 * Having verified both the user's and service's identity, the deity
 creates a random, 128-bit session key, Kus, for use by the user and
 service. They might use it for session encryption; in addition, it
 will be used in the reauthentication process described later.

 * The deity generates two obscured copies of the session key:

Brown [Page 15]

Internet Draft Remote Passphrase Authentication 19 May 1997

 * Kuss = Kus xor MD5(Ps + Z + Ns + Nu + Nr + Cs + Cu + Ts + Ps)

 * Kusu = Kus xor MD5(Pu + Z + Ns + Nu + Nr + Cs + Cu + Ts + Pu)

 The obscuring masks resemble Ru and Rs, but differ, of course, so
 an eavesdropper cannot recover Kus.

 * The deity generates a pair of authentication "proofs":

 * Au = MD5(Pu + Z + Ns + Nu + Nr + Kusu + Cs + Cu + Ts + Kus + Pu)

 * As = MD5(Ps + Z + Ns + Nu + Nr + Kuss + Cs + Cu + Ts + Kus + M +
 Ps)

 Here "M" is the message transmitted from the deity to the
 service; it is included in the calculation to authenticate the
 response to the service. Refer to Part Three of this
 specification for more details.

 * The deity sends the four values Kuss, Kusu, As, and Au to the
 service.

 * The service extracts its copy of the session key from Kuss by
 calculating the obscuring mask value and XORing. (The service can
 determine the user's key-obscuring value by calculating Kus xor
 Kusu; and if the user sees Kuss, it can do likewise. But the
 obscuring masks reveal nothing.)

 * The service verifies As by performing the same calculation and
 comparing the result. If it matches, the service knows that someone
 who knows its pass phrase--the deity--replied, having verified that
 the user is who he claims to be.

 * The service forwards Kusu and Au to the user.

 * The user extracts its copy of the session key from Kusu by
 calculating the mask value and XORing.

 * The user verifies Au by computing it and comparing. If it matches,
 the user knows that someone who knows his pass phrase--the
 deity--replied, having verified that the service is who it claims
 to be. Of course, if the service itself knows the user's pass
 phrase, it can assert any service identity; but this is the case
 where the service is trusted and acts as its own deity.

 Now the user and service are confident of each others' identities,
 and the two parties share a session key that they may use for
 encryption, if they so choose.

 [Perhaps we should add another value to the authentication
 calculations, opaque to the mechanism, provided by the

Brown [Page 16]

Internet Draft Remote Passphrase Authentication 19 May 1997

 protocol in which this mechanism is embedded. This value
 would, of course, have to be added to the service-to-deity
 protocol, and its generation and interpretation would be up
 to the lower-level protocol. For example, HTTP might choose
 to include the Web server's IP address and, perhaps, the
 URL in the authentication calculations, making it harder to
 do a man-in-the-middle attack. (Of course, that problem
 cannot be completely solved without using the session key
 to authenticate data, which is a protocol issue outside the
 scope of this mechanism.)]

6.2 Reauthentication

 Reauthentication is a process by which a user and service, having
 recently authenticated each other, may again mutually authenticate
 without talking to a deity. This is useful with protocols like HTTP,
 which involve a sequence of connections that must be independently
 authenticated. It's also useful with parallel connections--imagine a
 scheme in which a user and service are connected, and wish to
 establish a second connection.

 To reauthenticate one another, the user and service prove to each
 other that they both possess a secret 128-bit key--the session key,
 Kus, derived during the authentication process. The reauthentication
 process is essentially an ordinary challenge-response mechanism in
 which the session key is used as a pass phrase.

 * The service sends a challenge, Cs, to the user.

 * The user sends a challenge, Cu, to the service.

 * The user calculates

 Ru = MD5(Kus + Z + Ns + Nu + Nr + Cs + Cu + Kus)

 and sends it to the service.

 * The service verifies the result. If correct, it calculates

 Rs = MD5(Kus + Z + Nu + Ns + Nr + Cu + Cs + Kus)

 and sends it to the user. Both responses involve the same set of
 values, but they're used in a different order, so the responses are
 different.

 * The user verifies the result.

6.3 Reauthentication cheating

 In HTTP, one can shortcut the reauthentication process by cheating,
 for an increase in efficiency.

Brown [Page 17]

Internet Draft Remote Passphrase Authentication 19 May 1997

 A naive approach allows the user to repeat its authentication data,
 presumably in the form of an Authorization header. If the service
 recognizes the same Authorization header, it presumes that it's
 talking to the previously authenticated user; essentially, we pretend
 that we reauthenticated with the same challenges. But this approach
 is vulnerable to replay attacks during the period of time the service
 considers the data valid. The service can check the user's IP address
 to reduce the risk, but IP addresses mean surprisingly little. Even
 neglecting address spoofing, multiple users share an IP address when
 they're on the same host or routed through a proxy or SOCKS server.

 There's a better solution. We begin by noting why it's
 desirable--from an efficiency, not security, point of view--to allow
 the Authorization header to be replayed. To embed a
 challenge-response mechanism in HTTP, we require at least two HTTP
 transactions for authentication, because we cannot send a challenge
 and receive a response in one HTTP transaction. If we could challenge
 the user without sending a challenge to the user, we could
 authenticate in one HTTP transaction. And we can do exactly that by
 treating the URI as a challenge.

 * The first time, the user and service perform the authentication
 process.

 * The user and service remember the session key (Kus), challenges (Cu
 and Cs), and timestamp (Ts).

 * When the user generates an HTTP request, he includes an
 Authorization header containing a response calculated as

 MD5(Kus + Z + Ns + Nu + Nr + Cs + Cu + Ts + method + URI + Kus)

 The method and URI are canonicalized by taking the big-endian Unicode
 representation and converting all characters to lowercase; the URI
 should not include the scheme://host:port. It always begins with a
 slash; for "http://www.foo.com" the one-character string "/" would be
 used.

 Now the authentication response is unique for each URI, and
 calculable only by the authenticated user, even without a unique
 challenge. This doesn't completely eliminate the risk of replay, of
 course, but an attacker can replay only a previously referenced URI
 during the window in which the service considers the session key to
 be valid. Is that acceptable?

 Sometimes. If we're reading Web pages, and the only impact of replay
 is that the attacker could re-read the page, it might be
 acceptable--after all, the attacker saw the page, anyway, when he

 captured it along with the original request. On the other hand, if
 we're charging the user per page, or if the request "did" something,

Brown [Page 18]

Internet Draft Remote Passphrase Authentication 19 May 1997

 replay might not be so harmless.

 One strategy is to maintain some history. In its simplest form, the
 service sets a flag for this session when it does something for which
 replay would be harmful. If the user tries reauthentication cheating,
 and the flag is set, the service forces reauthentication. Because the
 cheating response is based on Cu and Cs, and those values change
 during reauthentication, the correct response for a given URI changes
 after reauthentication. Thus, reauthentication creates a boundary
 after which previous requests cannot be replayed.

 Or the service can maintain a history of URIs for which replay would
 be harmful, and force reauthentication only if the user tries
 reauthentication cheating on one of those URIs.

Brown [Page 19]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Remote Passphrase Authentication
 Part 2
 HTTP Authentication Scheme

Table of Contents

 7. INTRODUCTION

 8. USING THIS AUTHENTICATION MECHANISM IN HTTP
 8.1 AUTHENTICATION
 8.2 REAUTHENTICATION CHEATING
 8.3 REAUTHENTICATION

7 Introduction

 See Part One of this series for an explanation of the mechanism, its
 motivation, and its specification. This part describes only the HTTP
 encapsulation of the mechanism.

8 Using this authentication mechanism in HTTP

 The HTTP client may indicate that it supports this authentication
 mechanism by whatever technique is appropriate.

 [For example, a header like "Extension:
 Security/Remote-Passphrase" might be appropriate, if that
 extension mechanism is adopted. The extension mechanism is,
 of course, independent of authentication, but we mention it
 here to point out the issue. Theoretically, the server does
 not need to know ahead of time whether the client supports
 a particular authentication scheme.]

 We begin by defining a security context, which represents a logical
 connection between a user and Web server. Because the context spans
 HTTP connections, the server assigns a security context identifier,
 an opaque string, when it creates a context, and it informs the
 client of its value in the Security-Context attribute of the
 WWW-Authenticate header. The client includes the identifier in the
 Authorization header of subsequent requests that refer to the same
 context.

 From the client's point of view, the pair (server IP address,
 security context identifier) uniquely identifies a context; the same
 is essentially true for the server, although a server can make its
 security context identifiers unique, rather than (client IP address,
 identifier) pairs.

 Note that a client might refer to the same security context from

Brown [Page 20]

Internet Draft Remote Passphrase Authentication 19 May 1997

 different IP addresses, if he switches proxies (is that possible?).
 Note also that the client IP address alone is not adequate to
 identify the security context. A multiple-user host, an HTTP proxy,
 and a SOCKS server are examples of situations in which the same IP
 address may be involved in many security contexts. And even an
 individual PC running two browsers falls into this category--if I
 connect to you from both browsers, I'll establish two security
 contexts, which might or might not refer to the same user identity.

 The server should assign security context identifiers that are unique
 over time. If the client refers to an old context identifier--the
 user returns to his PC tomorrow morning and clicks a link that was
 displayed yesterday--it will do no harm if that identifier had been
 reused, but the server won't be able to recognize it as such.

 The security context "contains" information appropriate to the
 context, such as the realm name, user and service names, session key,
 challenges, state, etc. We'll gloss over the details in this
 explanation. Note that a session using this mechanism is secure;
 unlike other "cookie"-type mechanisms, we do not depend on the
 secrecy of the context identifier. However, the content of requests
 and responses is not authenticated, in this version of the protocol.

 We define the authentication scheme name "Remote-Passphrase", used as
 described below. The client begins by making a request for which the
 server requires identification and authentication; because there is
 no Authorization header in the request, the server will demand
 authentication.

 All WWW-Authenticate and Authorization headers used with this scheme
 may include a Version attribute. When omitted, as in the examples
 below, Version="1" is implied, for this version of the protocol.

8.1 Authentication

 The server creates a new security context, assigns it an identifier,
 and responds 401 Unauthorized and includes the header

 WWW-Authenticate:
 Remote-Passphrase
 Realm="compuserve.com",
 State="Initial",
 Realms="foo@compuserve.com
 bar@aol.com:iso-8859-1,lc,md5",
 Challenge="base64 encoding of service challenge",
 Timestamp="19950808132430",
 Security-Context="opaque"

 The first token specifies the authentication scheme,

 Remote-Passphrase. That's followed by a comma-separated list of
 attribute-value pairs. HTTP requires the first attribute to be called

Brown [Page 21]

Internet Draft Remote Passphrase Authentication 19 May 1997

 "Realm" and specify the realm in which the user must indicate his
 identity, but we support multiple realms, so this is merely one realm
 acceptable to the server, perhaps its preferred realm.

 The State attribute distinguishes this as the initial request for
 authentication.

 The Realms attribute provides a list of realms in the order preferred
 by the server, with the server's name in each realm. Each may be
 followed by a colon and a list of parameters separated by commas, to
 drive the transformation from pass phrase to 128-bit shared secret
 for that particular realm. Refer to Part One of this specification
 for more information about the transformation.

 The default transformation, if the colon and parameters are omitted,
 is specified in Part One of this specification--the Unicode character
 set in big-endian ("network") byte order, with all characters
 converted to lowercase, and the MD5 hash algorithm.

 Otherwise, a single parameter, "none", implies that the client must
 already possess a 128-bit value, and no transformation from a textual
 pass phrase is defined.

 Otherwise, three parameters control the transformation from a textual
 pass phrase to the 128-bit shared secret used by the authentication
 mechanism, if such a transformation takes place (it might not, if the
 client believes it already knows a 128-bit value for this user). The
 three parameters specify the character set: Unicode 1.1
 ("unicode-1-1") or ISO 8859-1 ("iso-8859-1"); case conversion:
 convert to all caps ("uc"), all lowercase ("lc"), or as-is with no
 case conversion ("nc"); and hash function: MD5 ("md5"). Omitting the
 colon and parameters is equivalent to specifying
 "unicode-1-1,lc,md5".

 [There's no need for US-ASCII as a character set, because
 ISO 8859-1 will give the same results. Note that these
 parameters are part of the base authentication mechanism
 specification; only the means of conveying them, and the
 textual names shown above, are specific to this HTTP
 authentication scheme. Other variations can be added, but
 they must be added to the authentication mechanism defined
 by Part One of this specification as well as here in Part
 Two.]

 We convey this information to the client because there's no reason
 the client would otherwise know whether a particular realm's pass
 phrases are case sensitive, etc. The server, on the other hand,
 simply must "know" how its particular realm uses pass phrases; these

 characteristics are a part of server's configuration along with its
 name in the realm, deity addresses, etc.

Brown [Page 22]

Internet Draft Remote Passphrase Authentication 19 May 1997

 The Challenge attribute specifies the service's challenge. It is an
 arbitrarily long sequence of octets containing arbitrary bit
 patterns, represented in base64. The client must decode it before
 using it in the authentication calculations; it might contain nulls
 or any other bit patterns. The client may decline to trust the server
 and abort at this point, if it deems the challenge to be too short.

 The Timestamp attribute specifies the server's timestamp. This is a
 UTC date and time in the format specified by the authentication
 standard. It may be treated as an opaque string by the client, unless
 the client chooses to interpret it to make a judgement about its
 reality; but beware that you probably don't have a reliable source of
 universal time.

 The Security-Context attribute contains the server-assigned security
 context identifier, an opaque string.

 The client creates its security context and repeats the request with
 an Authorization header:

 Authorization:
 Remote-Passphrase
 State="Initial",
 Security-Context="opaque",
 Realm="compuserve.com",
 Username="70003.1215",
 Challenge="base64 encoding of user challenge",
 Response="base64 encoding of response"

 The first token specifies the authorization scheme. That's followed
 by the state, "Initial" for the initial authentication; the security
 context identifier; the realm chosen by the user; the user's identity
 in that realm; the user's challenge; and the user's response.

 The service looks up the security context. If the security context
 identifier refers to no context or refers to a context that is
 already established, the server creates a new security context with a
 new identifier, then responds 401 Unauthorized and includes a fresh
 WWW-Authenticate header as shown above, with which the client can
 repeat the request with correct authentication information.

 [Or does this risk a loop? We could just respond with an
 error.]

 Any existing security context is unaffected; if I send you a request
 that specifies someone else's security context, you should not delete
 his context.

 Otherwise--the context identifier is recognized and that context is

 in the awaiting authentication state--the server performs the
 authentication process.

Brown [Page 23]

Internet Draft Remote Passphrase Authentication 19 May 1997

 The server may verify that the client's IP address matches that in
 the previous request that created the "pending" context. The only
 risk is that someone might change proxies at whim, which seems
 unlikely.

 If the authentication process fails, the server refuses to process
 the request, but does not delete the "pending" security context. It
 generates a 401 Unauthorized response with a WWW-Authenticate header
 that indicates failure:

 WWW-Authenticate:
 Remote-Passphrase
 Realm="nonsense",
 State="Failed"

 It is up to the client to try the request again (without an
 Authorization header), restarting the entire process, if it believes
 that it was using the wrong pass phrase but it now has the right pass
 phrase.

 [Sending another "Initial" WWW-Authenticate header would
 provoke a loop: the browser would calculate a new response
 and retry the request, which is pointless if the browser's
 idea of the pass phrase is wrong, so we indicate the
 failure.]

 [One could argue that the browser should forget whichever
 cached pass phrase it used, in order to prompt for it again
 if the user tries to next time. But the pass phrase might
 have been correct, depending on what exactly went wrong at
 the server.]

 Otherwise, having successfully authenticated the user, the server
 processes the client's request and returns an appropriate response,
 including in its reply:

 WWW-Authenticate:
 Remote-Passphrase
 Realm="realm in use",
 State="Authenticated",
 Session-Key="base64 encoding of session key",
 Response="base64 encoding of response"

 The "Authenticated" state indicates that the user was successfully
 authenticated, and includes the session key, masked so only the user
 can extract it (Kusu), and the authentication deity's proof of the
 service's identity (Au, not Rs). The realm is ignorable, but should
 indicate the realm in which the identity was authenticated.

Brown [Page 24]

Internet Draft Remote Passphrase Authentication 19 May 1997

8.2 Reauthentication cheating

 In subsequent requests, the client tries to cheat by including an
 Authorization header in its request:

 Authorization:
 Remote-Passphrase
 State="Cheating",
 Security-Context="opaque",
 Response="base64 encoding of response"

 where the response is calculated based on the previously agreed-upon
 values plus the canonicalized method and URI of this request as
 explained in Part One of this specification.

 [The HTTP specification suggests that clients be allowed to
 replay the previous Authorization header, but it includes
 an escape clause--"for a period of time determined by the
 authentication scheme"--so we simply declare that period of
 time to be zero.]

 If the server is willing to accept the use of reauthentication
 cheating, and the response is correct, the server processes the
 request without comment. If it recognizes the security context but is
 not willing to cheat--e.g., it recognizes a replay--the server
 demands reauthentication. If it does not recognize the security
 context or if it recognizes the context but the client's response is
 incorrect, the server demands authentication but does not delete the
 existing security context.

 [Perhaps the user is referring to a security context that
 has expired because it's been a long time since the user
 last referred to it. And this can happen legitimately, if
 the user refers to an expired security context and the
 server reuses context identifiers. We do not delete an
 existing context because that would provide a way for an
 attacker to delete security contexts.]

 In either of these cases, the server responds 401 Unauthorized and
 includes the appropriate WWW-Authenticate header. To require
 authentication, refer to the preceding section; to require
 reauthentication, refer to the next section.

8.3 Reauthentication

 If the server chooses to require reauthentication, it replies 401
 Unauthorized and includes the header

 WWW-Authenticate:

 Remote-Passphrase
 Realm="realm in use",

Brown [Page 25]

Internet Draft Remote Passphrase Authentication 19 May 1997

 State="Reauthenticate",
 Challenge="base64 encoding of service challenge"

 The client retries the request with an Authorization field:

 Authorization:
 Remote-Passphrase
 State="Reauthenticate",
 Security-Context="opaque",
 Challenge="base64 encoding of user challenge",
 Response="base64 encoding of response"

 If the response is correct--the user has proven his knowledge of the
 previously generated Kus for this context--the server processes the
 request and includes in its reply:

 WWW-Authenticate:
 Remote-Passphrase
 Realm="realm in use",
 State="Reauthenticated",
 Response="base64 encoding of response"

 The past-tense state indicates successful reauthentication, and
 includes the server's response; this response is of debatable
 relevance to HTTP, of course, given that the client's use of
 reauthentication cheating implies its willingness to trust that the
 server's identity has not changed.

 If the client's response is incorrect, the server does not process
 the request. However, there's a possibility that the client attempted
 to do reauthentication with an old security context identifier that
 has been reused by the server. Although the server should avoid
 reusing security context identifiers, it can attempt to avert the
 problem by forcing authentication by responding 401 Unauthorized and
 including the header described above under Authentication.

Brown [Page 26]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Remote Passphrase Authentication
 Part 3
 Service-to-Deity Protocol

9 Introduction

 The service sends a request to the authentication diety and receives
 a reply. The requests and replies may be packaged in UDP datagrams,
 or as byte streams over a TCP connection. The tradeoff is primarily
 that opening a TCP connection requires multiple round trip delays,
 where UDP doesn't; but TCP avoids the "I wonder whether it's actually
 running" issue.

 How to find the deity is a service configuration issue. The service
 must know the IP addresses, TCP or UDP port numbers, etc., for the
 deities for a particular realm; it must also know its name and pass
 phrase in that realm.

10 Object formats

 Every message is an object composed of other objects. Every object
 consists of a type-length-value encoded structure:

 +-+
 | Type | Length MSB | Length LSB | Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 | ... |
 +-+

 In this picture, each box represents one octet. Octets are
 transmitted in order from left to right, top to bottom.

 "Type" is a single octet that identifies the type of the object.

 "Length" indicates the number of octets following the length field,
 as a 16-bit, big-endian value. The appropriate number of value
 octets--possibly none--follow the length field. Their meaning is
 determined by the type of the object; in some cases, the value octets
 contain a sequence of other objects.

 Here is an example of an object that contains 4 value octets:

 +-+
 | Type |0 0 0 0 0 0 0 0|0 0 0 0 0 1 0 0| Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 |
 +-+

 And here is an example of an object that contains 1,000 value octets:

Brown [Page 27]

Internet Draft Remote Passphrase Authentication 19 May 1997

 +-+
 | Type |0 0 0 0 0 0 1 1|1 1 1 0 1 0 0 0| Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 | Value octet 5 |
 +-+
 | ... |
 +-+
 |Value octet 996|Value octet 997|Value octet 998|Value octet 999|
 +-+
 |Value octet1000|
 +-+-+-+-+-+-+-+-+

 No padding or alignment is used; if an object contains sub-objects,
 they follow one another with no padding. For example, an object whose
 value consists consists of three sub-objects might look like this:

 +-+
 | Object type | 00000000 | 00001111 |Sub-obj 1 type |
 +-+
 | 00000000 | 00000101 | Value octet 1 | Value octet 2 |
 +-+
 | Value octet 3 | Value octet 4 | Value octet 5 |Sub-obj 2 type |
 +-+
 | 00000000 | 00000000 |Sub-obj 3 type | 00000000 |
 +-+
 | 00000001 | Value octet 1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 In this example, we have a single object whose value contains 15
 octets. In this example, the value is a sequence of three objects,
 the first of which contains five octets, the second of which is zero
 length, and third of which contains one octet. The meaning of each
 object depends on its type; we'll describe all object types in detail
 after describing the message objects.

 We'll sometimes use the term "sub-object" to refer to an object when
 it is a part of another object, but this is merely a matter of
 terminology. There is no difference in encoding nor in the meaning of
 the type field, regardless of whether the object is contained in some
 other object or not.

 All messages may contain a "blob" that conveys information defined by
 a particular deity. The blob is envisioned for use in three contexts.

 * In a request, a service may use the blob to tell the deity the
 nature of the action for which authentication is being performed,
 if there's some reason to do so. In addition, the service might ask

 the diety for particular information about the username being
 authenticated, although, in the general case, the deity will
 already know what additional information to return to a particular

Brown [Page 28]

Internet Draft Remote Passphrase Authentication 19 May 1997

 service.

 * In an affirmative response, the deity may return additional
 information about the username.

 * In other responses, the blob might indicate something about the
 nature of the problem.

 In general, different deities and services will have different
 information that's appropriate for inclusion in the blob, so it is
 difficult to conceive of a truly "standard" set of information.
 However, we define one format that we'll describe below.

11 Message object types

 There are six message object types, one for a request and six kinds
 of replies.

 * Authentication request
 * Authentication response, affirmative
 * Authentication response, no service
 * Authentication response, negative
 * Authentication response, invalid service
 * Authentication response, problem

 The various response flavors indicate various conditions of the
 account as described below.

 Remember, a message is simply an object that contains other objects.
 The message itself is encoded as a type, length, and value, as
 described above, where the value consists of the concatenation of the
 component objects of that message; each component object consists of
 its own type, length, and value. Unless stated to the contrary, all
 messages must contain exactly the objects indicated in the order
 shown. Optional components, such as the blob, may be omitted.

 [When appropriate, it is possible to add extensions, or
 make a sub-object optional, yet parse the containing object
 successfully. But in a security protocol, it is best to
 stick to well-defined formats, rather than adopting a
 "construct them any way you wish" attitude.]

 Contents of the component objects are explained in more detail
 following the descriptions of the message objects.

11.1 Authentication request

 An authentication request contains the following sub-objects.

Brown [Page 29]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Request identifier
 Nr (Realm name)
 Ns (Service name)
 Nu (User name)
 Cu (Challenge from user)
 Cs (Challenge from service)
 Ts (Timestamp from service)
 Ru (Response from user)
 Blob (optional)
 Rs (Response from service)

 The value contained in most of the sub-objects matches the value
 described in Part One of this specification.

 The request identifier contains arbitrary data that is not
 interpreted by the deity; it is simply echoed in a response to
 provide a way for the requesting service to match requests and
 responses.

 The blob contains additional information about the request, and is
 described below. Usually, it will be omitted or null, i.e.,
 zero-length.

 Rs is calculated as MD5(Ps + Z + M + Ps), where M is the request
 shown above, octet by octet, from the type octet for the message
 object itself through the last length octet of the length field of
 the Rs object. Thus, it serves to protect the entire request,
 including its structure, length, etc., and is a different calculation
 from that shown in the authentication document.

11.2 Authentication response, affirmative

 An affirmative response indicates that the username is recognized,
 and is indeed the user you're talking to.

 Request identifier
 Canonical Nu (User name, case corrected)
 Kuss (Key obscured for service)
 Kusu (Key obscured for user)
 Au (Authentication value for user)
 Blob (optional)
 As (Authentication value for service)

 The response contains the canonical username in the desired case;
 this is not the same object type as Nu in the request. In an
 environment that is not case sensitive, this is the preferred form of
 the name, which might differ from the name in the request.

 The blob may contain additional information about the username; see

 below.

Brown [Page 30]

Internet Draft Remote Passphrase Authentication 19 May 1997

 As is calculated as

 MD5(Ps + Z + Ns + Nu + Nr + Kuss + Cs + Cu + Ts + Kus + M + Ps)

 where M is the request shown above, octet by octet, from the type
 octet for the containing object through the last octet of the length
 field of the As object, inclusive. This serves to protect the entire
 request, and differs from the calculation in the authentication
 document by the addition of the message contents as shown. Note that
 the Nu mentioned as the third component in the formula is the
 originally specified username, not the altered-case version in the
 response message.

 Beware that an affirmative response does not necessarily mean that it
 is reasonable to provide service to the user. Often, there are
 criteria beyond a "yes" answer, which could mean anything from "it's
 a valid user" to "it's a valid user but not billable" to "it's an
 account that was signed up five minutes ago and we haven't had a
 chance to look at it yet."

 Typically, the authentication deity applies criteria appropriate to
 the requesting service. For example, if the service doesn't want to
 allow "free" users, the authentication deity would be configured to
 return a no-service response for such a user. Alternatively, the
 deity could be configured to provide an affirmative response but
 include information in the blob that would permit the service to
 distinguish "free" from "paying" users and treat them differently.

11.3 Authentication response, no service

 The no-service response is an indication that the user is whom he
 claims to be, but you should not provide service to him for one
 reason or another. For example, he might be a "free" user but your
 service is provided only to paying accounts; his billing choices
 might not include your service; or Customer Service might be waiting
 for him to provide a new credit card number.

 The authentication deity's configuration for this particular service
 determines the criteria applied by the deity when making the decision
 to reply affirmative or no service.

 Request identifier
 Canonical Nu (User name, case corrected)
 Kuss (Key obscured for service)
 Kusu (Key obscured for user)
 Au (Authentication value for user)
 Blob (optional)
 As (Authentication value for service)

 The contents of this object are identical to those for an affirmative
 response, but the service would not normally use the keys or Au

Brown [Page 31]

Internet Draft Remote Passphrase Authentication 19 May 1997

 values. The blob might include information useful in distinguishing
 the reason for the no service response, if appropriate for this
 service.

11.4 Authentication response, negative

 A negative response means the user is not who he says he is. Whether
 there is such a username, but that's not who you're talking to; there
 is such a username, but it is not an enabled account; or there is no
 such username, is not specified.

 Request identifier
 Blob (optional)
 As (Authentication value for service)

 As is calculated as MD5(Ps + Z + M + Ps). The message may contain a
 blob if there is additional information about the problem, e.g., for
 logging, but it may be omitted.

11.5 Authentication response, invalid service

 An invalid request response means the request could not be processed
 because you (the service) are not whom you claim to be, based on your
 apparently not knowing the service's pass phrase or based on any
 other kind of authentication checking done by the deity.

 Request identifier
 Blob (optional)

 The blob, if present, contains information that allows the deity
 administrators to trace the problem. There is no As field, because
 there is no shared secret to authenticate the response. This presents
 some obvious denial of service issues.

11.6 Authentication response, problem

 A "problem" response indicates that the request could not be
 processed for some reason. This could indicate a failure in the
 system, an unparsable request, or a request for a realm that isn't
 handled by this deity.

 Request identifier
 Blob (optional)
 As (optional)

 The blob may contain information that allows the deity administrators
 to trace the problem. As might or might not be present, depending on
 the nature of the problem, i.e., whether there is a known shared
 secret with the server; if present, it is calculated as MD5(Ps + Z +

 M + Ps).

Brown [Page 32]

Internet Draft Remote Passphrase Authentication 19 May 1997

12 Object types

 The following types of objects are defined in this protocol. These
 object types apply to the messages themselves and objects contained
 in messages. These types do not apply to the contents of the blob.

 [Numbers for the object type field are indicated for each
 type, but are not necessarily accurate in this draft of the
 document.]

 Authentication request--type 1--The request to the authentication
 deity. Its contents consist of a sequence of other objects as
 described elsewhere in this document.

 Authentication response, affirmative--type 2

 Authentication response, no service--type 3

 Authentication response, negative--type 4

 Authentication response, invalid service--type 5

 Authentication response, problem--type 6

 Request identifier--type 128--A request must contain an identifier to
 assist in matching replies to requests. This identifier is opaque to
 the deity, and is simply echoed in the reply, so its value is defined
 only by the requesting entity. The value should, of course, be unique
 for each request, but it is otherwise meaningless. It may be of any
 length.

 Realm name--type 129--The name of the realm in which the user's and
 service's identities exist. This is included in the request to allow
 a deity to serve more than one realm. The value consists of the name
 in Unicode, in big-endian order. There is no terminating null
 character, and the realm is generally treated as being case
 insensitive. For example, the realm aol.com might look like this:

 +-+
 | 10000001 | 00000000 | 00001110 | 00000000 |
 +-+
 | 01100001 | 00000000 | 01101111 | 00000000 |
 +-+
 | 01101100 | 00000000 | 00101110 | 00000000 |
 +-+
 | 01100011 | 00000000 | 01101111 | 00000000 |
 +-+
 | 01101101 |
 +-+-+-+-+-+-+-+-+

 That's type 129, fourteen octets follow, and the big-endian Unicode

Brown [Page 33]

Internet Draft Remote Passphrase Authentication 19 May 1997

 representation of the seven characters aol.com.

 Service name--type 130--The name of the service in big-endian
 Unicode.

 User name--type 131--The name of the user in big-endian Unicode,
 e.g., gsb.

 User challenge--type 132--The user's challenge, a sequence of random
 octets. The length is not bounded by the protocol, but the deity will
 impose length restrictions, e.g., a minimum and maximum length. All
 bit patterns are legal in the challenge.

 Service challenge--type 133--The service's challenge, a sequence of
 random octets. The length is not bounded by the protocol, but the
 deity will impose length restrictions, e.g., a minimum and maximum
 length. All bit patterns are legal in the challenge.

 Time stamp--type 134--The time stamp, containing 14 octets with the
 value specified in Part One of this specification.

 User's response--type 135--The user's response, containing 16 octets
 with the value specified in Part One of this specification. This is a
 binary value, so any bit pattern is possible in this value.

 Service's response--type 136--The service's response, calculated as
 described elsewhere in this document. This is a binary value, so any
 bit pattern is possible in this value.

 Key obscured for user--type 137--The key for the user, containing 16
 octets as described in Part One of this specification. This is a
 binary value, so any bit pattern is possible in this value.

 Key obscured for service--type 138--The key for the service,
 containing 16 octets as described in Part One of this specification.
 This is a binary value, so any bit pattern is possible in this value.

 Authentication proof for user--type 139--The authentication proof,
 Au, for the user, containing 16 octets as described in Part One of
 this specification. This is a binary value, so any bit pattern is
 possible in this value.

 Authentication proof for service--type 140--The authentication proof,
 As, for the service, containing 16 octets calculated as described
 elsewhere in this document (not as described in Part One of this
 specification). This is a binary value, so any bit pattern is
 possible in this value.

 Canonical user name--type 141--The username adjusted to canonical

 case, in big-endian Unicode.

Brown [Page 34]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Blob--type 142--Deity-specific request and response information.

13 The blob

 The first two octets in the blob contain a major/minor version number
 to indicate the format of the blob. This format is version 1.0, the
 two octets 0x01 0x00.

 This is followed by multiple null-terminated attribute name-value
 pairs with the final attribute followed by an additional null. Names
 and values are represented in the ISO 8859-1 character set. The
 format of an attribute/value pair is

 name[=[value]]

 That is, an attribute name may exist alone, implying that just its
 existence is significant. Additionally, the value may be a null
 string, in which case the '=' character is followed immediately by a
 null character.

 Attribute names may consist of letters, digits, hyphens, and
 underscores; letter case is not significant. The first character must
 be a letter or underscore. Attribute values may contain any ISO
 8859-1 graphic character; they may not contain control characters,
 but they may contain spaces (i.e., octet values 00-1F and 7F-9F are
 illegal). If, for some reason, a particular attribute value should
 contain arbitrary octet values, it must be encoded somehow, e.g., by
 using base64 or MIME quoted-printable encoding. (We presume that you
 know, when you get around to using an attribute value, how it's
 formatted, so as to know whether some form of decoding is necessary.)

Brown [Page 35]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Remove Passphrase Authentication
 Part 4
 GSS-API Handshake

Table of Contents

 14. INTRODUCTION

 15. THE HANDSHAKE
 15.1 TOKEN 1 (NEGOTIATION, CLIENT-TO-SERVER)
 15.2 TOKEN 2 (CHALLENGE, SERVER-TO-CLIENT)
 15.3 TOKEN 3 (AUTHENTICATION, CLIENT-TO-SERVER)
 15.4 TOKEN 4 (AUTHENTICATION, SERVER-TO-CLIENT)
 15.5 TOKEN 5 (HACK, CLIENT-TO-SERVER)
 15.6 FIELD DESCRIPTIONS

 16 SAMPLE CONVERSATION

14 Introduction

 This section explains the GSS-API handshake for RPA, used by
 connection-oriented protocols such as NNTP, POP3, etc. We define
 "tokens" that are conveyed from end to end; they contain arbitrary
 binary data, so a text-based protocol would generally use base64
 encoding to transport the token.

15 The handshake

 RPA uses a four-way or five-way handshake. The protocol requires only
 a four-way handshake, and the additional hop is used to support
 servers that require the last authentication step to go from the
 client to the server. Clients should support both the four-way and
 the five-way handshake. The server indicates which type it requires
 via the "Selected Version" field described below.

15.1 Token 1 (negotiation, client-to-server)

 Token Length
 Mechanism Type
 Earliest Version
 Latest Version
 Flags

15.2 Token 2 (challenge, server-to-client)

 Token Length

 Mechanism Type
 Selected Version

Brown [Page 36]

Internet Draft Remote Passphrase Authentication 19 May 1997

 Service Challenge
 Timestamp
 Realm List

15.3 Token 3 (authentication, client-to-server)

 Token Length
 Mechanism Type
 Identity
 User Challenge
 User Response

15.4 Token 4 (authentication, server-to-client)

 Token Length
 Mechanism Type
 User Authentication
 Obscured Session-Key
 Status

 Note: If the Status field is non-zero, indicating an authentication
 error, the User Authentication and Obscured Session Key values should
 be ignored; although, the values must still be legal values (that is,
 the field lengths should be valid).

15.5 Token 5 (hack, client-to-server)

 Token Length
 Dummy Byte

15.6 Field descriptions

 Dummy Byte: A single octet with the value 0.

 Earliest Version: Two binary octets indicating the earliest version
 of the RPA protocol that the client-side implementation of the
 mechanism supports. First octet is major version; second octet is
 minor version. The client should indicate that it supports version
 1.0.

 Flags: Two binary octets, in network (big-endian) byte order,
 consisting of bit flags. In versions 1.0 and 2.0, bit 0 indicates
 that mutual authentication is requested. Mutual authentication should
 always be selected. In version 3.0 of the protocol, there are no
 flags defined because Token 4 is always returned from the server to
 the client (that is, mutual authentication is always selected).

 Note: Bit 0 is the low-order bit of the second octet.

 Identity: The selected user identity, in the form "name@realm,"
 preceded by two binary octets, in network (big-endian) byte order,

Brown [Page 37]

Internet Draft Remote Passphrase Authentication 19 May 1997

 representing the length of the identity string (in characters, not
 octets). The identity is encoded using the ISO-8859-1 character set.

 Latest Version: Two binary octets indicating the latest version of
 the RPA protocol that the client supports. First octet is major
 version; second octet is minor version. The client should indicate
 that it supports version 3.0.

 Mechanism Type: An OID (object identifier) specifying the RPA SSPI
 scheme. The value is the following sequence of bytes 0x06, 0x09,
 0x60, 0x86, 0x48, 0x01, 0x86, 0xF8, 0x73, 0x01, 0x01.

 Obscured Session-Key: The session-key, generated and obscured by the
 deity, encoded as length plus binary value as described above.

 Realm List: The list of realms in which the service can accept
 identities, along with the service name for each realm. Each realm is
 separated by a single space character; the entire string is preceded
 by two binary octets, in network (big-endian) byte order,
 representing the length of the realm list string (in characters, not
 octets):

 "foo@compuserve.com bar@aol.com"

 The realm name begins with the first character to the right of the
 rightmost '@' character; realm names cannot contain '@' characters.
 The realm list is encoded using the ISO-8859-1 character set.

 Selected Version: Two binary octets indicating the version of RPA the
 server-side implementation of the mechanism has elected to use. It
 must be no earlier than "earliest version" and no later than "latest
 version" as specified in Token 1. If the server indicates version 1.0
 or version 3.0, then the client MUST perform the five-way handshake.
 If version 2.0 is specified, the client should perform the 4-way
 handshake. Version 3.0 indicates that Token 4 contains the Status
 field that is used to report certain errors from the server to the
 client. Previous versions do not contain the Status field.

 Service Challenge: The service's random challenge, consisting of a
 one octet length field followed by the specified number of octets
 containing the challenge. This is raw, binary data, where any bit
 patterns are allowed.

 Status: A single octet indicating the status of the authentication
 attempt. A non-zero value indicates there was an error authenticating
 the user. The following status codes are defined for version 3.0 of
 the protocol:

 0 Success

 1 Restricted user (something wrong with user's account)
 2 Invalid user ID or passphrase

Brown [Page 38]

Internet Draft Remote Passphrase Authentication 19 May 1997

 3 Deity error

 Timestamp: The service's timestamp encoded using the ISO 646 (ASCII)
 textual representation of the current universal time (UTC) in exactly
 14 octets, using 24-hour time with leading zeroes, e.g.
 19950805011344.

 Token Length: To conform to the GSS-API standard for token formats,
 the token is encapsulated in an ASN.1 SEQUENCE that includes its
 length. This consists of one octet containing the value 0x60, an
 ASN.1 SEQUENCE, followed by the length of the token, indicating the
 number of octets following the length field. This length is ASN.1 DER
 encoded: if the length is less than 128 octets, it consists of a
 single octet containing the length. Otherwise, the length is
 represented using the minimum number of octets required, in network
 (big-endian) byte order, preceded by an octet whose MSB is set and
 whose remaining bits indicate the number of octets in the length.

 For example, if there are 126 octets, the length is one octet with a
 value of 0x7E (126 decimal). If there are 150 octets, the length is
 two octets: 0x81 0x96. If there are 258 octets, the length is three
 octets: 0x82 0x01 0x02.

 User Authentication: The deity's response to the user, encoded as
 length plus binary value as described above.

 User Challenge: The user's random challenge, consisting of a one
 octet length field followed by the specified number of octets
 containing the challenge. This is raw, binary data, where any bit
 patterns are allowed.

 User Response: The user's response, encoded as length plus binary
 value as described above.

16 Sample conversation

 RPA SSPI authentication can be used with the POP3 AUTH command to
 perform authentication between a client and server. The following is
 an example conversation between a client and server:

 Server: listens at TCP port 110

 Client: connects to port 110

 Server: +OK <server message>

 Client: AUTH RPA

 Server: +

Brown [Page 39]

Internet Draft Remote Passphrase Authentication 19 May 1997

 The client and server communicate Base64-encoded tokens using one or
 more of the following sequence, ending with the client:

 a) Client: <Base64-encoded token>
 b) Server: + <Base64-encoded token>

 Server: +OK <server message>

Security Considerations

 This entire document is about security.

Author's Address

 Gary S. Brown
 CompuServe Incorporated
 5000 Arlington Centre Blvd
 Columbus OH 43220
 USA

 <gsb@csi.compuserve.com>

Brown [Page 40]

