
INTERNET-DRAFT G Brown
draft-petke-serv-deity-protocol-00.txt CompuServe
Expires: 15-May-97 15 November 1996

Remote Passphrase Authentication
Part Four: Service-to-Deity Protocol

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 To learn the current status of any Internet-Draft, please check
 the "1id-abstracts.txt" listing contained in the Internet-
 Drafts Shadow Directories on ftp.is.co.za (Africa),
 nic.nordu.net (Europe), munnari.oz.au (Pacific Rim),
 ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

 Remote Passphrase Authentication provides a way to authenticate a
 user to a service by using a pass phrase over an insecure network,
 without revealing the pass phrase to eavesdroppers. In addition, the
 service need not know and does not learn the user's pass phrase,
 making this scheme useful in distributed environments where it would
 be difficult or inappropriate to trust a service with a pass phrase
 database or to allow the server to learn enough to masquerade as the
 user in a future authentication attempt.

 This draft is part four of a four part series and explains the
 protocol between the service and the deity. Part one of this series
 (draft-petke-ext-intro-00.txt) provides an extended introduction to
 the problems of authentication over insecure networks. Part two
 (draft-petke-mech-00.txt) explains the RPA mechanism. Part three
 (draft-petke-http-auth-scheme-00.txt) explains how to incorporate
 the mechanism into HTTP.

 This scheme was inspired by Dave Raggett's Mediated Digest
 Authentication paper.

https://datatracker.ietf.org/doc/html/draft-petke-serv-deity-protocol-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-ext-intro-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-http-auth-scheme-00.txt

G Brown [Page 1]

INTERNET-DRAFT RPA - Part Four 15 November 1996

Table of Contents

 1. INTRODUCTION

 2. OBJECT FORMATS

 3. THE BLOB

 4. MESSAGE OBJECT TYPES
 4.1 AUTHENTICATION REQUEST
 4.2 AUTHENTICATION RESPONSE, AFFIRMATIVE
 4.3 AUTHENTICATION RESPONSE, NO SERVICE
 4.4 AUTHENTICATION RESPONSE, NEGATIVE
 4.5 AUTHENTICATION RESPONSE, INVALID SERVICE
 4.6 AUTHENTICATION RESPONSE, PROBLEM

 5. OBJECT TYPES

 6. THE BLOB

 7. SECURITY CONSIDERATIONS

 8. AUTHOR'S ADDRESS

1. Introduction

 The service sends a request to the authentication deity and receives
 a reply. The requests and replies may be packaged in UDP datagrams,
 or as byte streams over a TCP connection. The tradeoff is primarily
 that opening a TCP connection requires multiple round trip delays,
 where UDP doesn't; but TCP avoids the "I wonder whether it's actually
 running" issue.

 How to find the deity is a service configuration issue. The service
 must know the IP addresses, TCP or UDP port numbers, etc., for the
 deities for a particular realm; it must also know its name and pass
 phrase in that realm.

2. Object formats

 Every message is an object composed of other objects. Every object
 consists of a type-length-value encoded structure:

 +-+
 | Type | Length MSB | Length LSB | Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 | ... |

 +-+

G Brown [Page 2]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 In this picture, each box represents one octet. Octets are
 transmitted in order from left to right, top to bottom.

 "Type" is a single octet that identifies the type of the object.

 "Length" indicates the number of octets following the length field,
 as a 16-bit, big-endian value. The appropriate number of value
 octets--possibly none--follow the length field. Their meaning is
 determined by the type of the object; in some cases, the value octets
 contain a sequence of other objects.

 Here is an example of an object that contains 4 value octets:

 +-+
 | Type |0 0 0 0 0 0 0 0|0 0 0 0 0 1 0 0| Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 |
 +-+

 And here is an example of an object that contains 1,000 value octets:

 +-+
 | Type |0 0 0 0 0 0 1 1|1 1 1 0 1 0 0 0| Value octet 1 |
 +-+
 | Value octet 2 | Value octet 3 | Value octet 4 | Value octet 5 |
 +-+
 | ... |
 +-+
 |Value octet 996|Value octet 997|Value octet 998|Value octet 999|
 +-+
 |Value octet1000|
 +-+-+-+-+-+-+-+-+

 No padding or alignment is used; if an object contains sub-objects,
 they follow one another with no padding. For example, an object whose
 value consists of three sub-objects might look like this:

 +-+
 | Object type | 00000000 | 00001111 |Sub-obj 1 type |
 +-+
 | 00000000 | 00000101 | Value octet 1 | Value octet 2 |
 +-+
 | Value octet 3 | Value octet 4 | Value octet 5 |Sub-obj 2 type |
 +-+
 | 00000000 | 00000000 |Sub-obj 3 type | 00000000 |
 +-+
 | 00000001 | Value octet 1 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

G Brown [Page 3]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 In this example, we have a single object whose value contains 15
 octets. In this example, the value is a sequence of three objects,
 the first of which contains five octets, the second of which is zero
 length, and third of which contains one octet. The meaning of each
 object depends on its type; we'll describe all object types in detail
 after describing the message objects.

 We'll sometimes use the term "sub-object" to refer to an object when
 it is a part of another object, but this is merely a matter of
 terminology. There is no difference in encoding nor in the meaning of
 the type field, regardless of whether the object is contained in some
 other object or not.

3. The blob

 All messages may contain a "blob" that conveys information defined by
 a particular deity. The blob is used in three contexts.

 * In a request, a service may use the blob to tell the deity the
 nature of the action for which authentication is being performed,
 if there's some reason to do so. In addition, the service might ask
 the deity for particular information about the username being
 authenticated, although, in the general case, the deity will
 already know what additional information to return to a particular
 service.

 * In an affirmative response, the deity may return additional
 information about the username.

 * In other responses, the blob might indicate something about the
 nature of the problem.

 In general, different deities and services will have different
 information that's appropriate for inclusion in the blob, so it is
 difficult to conceive of a truly "standard" set of information. Thus,
 the definition of the blob's contents is left to each deity, but we
 define one format for inclusion of attribute/value pairs.

 Should information in the blob be encrypted? That's a deity
 configuration issue. Beware, though, of naively encrypting the blob
 by XOR'ing it with the session key. That would reveal parts of the
 key because, in general, portions of the plaintext are known.

G Brown [Page 4]

INTERNET-DRAFT RPA - Part Four 15 November 1996

4. Message object types

 There are six message object types, one for a request and five kinds
 of replies.

 * Authentication request
 * Authentication response, affirmative
 * Authentication response, no service
 * Authentication response, negative
 * Authentication response, invalid service
 * Authentication response, problem

 The various response flavors indicate various conditions of the
 account as described below.

 Remember, a message is simply an object that contains other objects.
 The message itself is encoded as a type, length, and value, as
 described above, where the value consists of the concatenation of the
 component objects of that message; each component object consists of
 its own type, length, and value. Unless stated to the contrary, all
 messages must contain exactly the objects indicated in the order
 shown. Optional components, such as the blob, may be omitted.

 [When appropriate, it is possible to add extensions, or
 make a sub-object optional, yet parse the containing object
 successfully. But in a security protocol, it is best to
 stick to well-defined formats, rather than adopting a
 "construct them any way you wish" attitude.]

 Contents of the component objects are explained in more detail
 following the descriptions of the message objects.

4.1 Authentication request

 An authentication request contains the following sub-objects.

 Request identifier
 Nr (Realm name)
 Ns (Service name)
 Nu (User name)
 Cu (Challenge from user)
 Cs (Challenge from service)
 Ts (Timestamp from service)
 Ru (Response from user)
 Blob (optional)
 Rs (Response from service)

 The value contained in most of the sub-objects matches the value

 described in part two of this specification
 (draft-petke-mech-00.txt).

G Brown [Page 5]

https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt

INTERNET-DRAFT RPA - Part Four 15 November 1996

 The request identifier contains arbitrary data that is not
 interpreted by the deity; it is simply echoed in a response to
 provide a way for the requesting service to match requests and
 responses.

 The blob contains additional information about the request, and is
 described below. Usually, it will be omitted or null, i.e.,
 zero-length.

 Rs is calculated as MD5(Ps + Z + M + Ps), where M is the request
 shown above, octet by octet, from the type octet for the message
 object itself through the last length octet of the length field of
 the Rs object. Thus, it serves to protect the entire request,
 including its structure, length, etc., and is a different calculation
 from that shown in the authentication document.

4.2 Authentication response, affirmative

 An affirmative response indicates that the username is recognized,
 and is indeed the user you're talking to.

 Request identifier
 Canonical Nu (User name, case corrected)
 Kuss (Key obscured for service)
 Kusu (Key obscured for user)
 Au (Authentication value for user)
 Blob (optional)
 As (Authentication value for service)

 The response contains the canonical username in the desired case;
 this is not the same object type as Nu in the request. In an
 environment that is not case sensitive, this is the preferred form of
 the name, which might differ from the name in the request.

 The blob may contain additional information about the username; see
 below.

 As is calculated as

 MD5(Ps + Z + Ns + Nu + Nr + Kuss + Cs + Cu + Ts + Kus + M + Ps)

 where M is the request shown above, octet by octet, from the type
 octet for the containing object through the last octet of the length
 field of the As object, inclusive. This serves to protect the entire
 request, and differs from the calculation in the authentication
 document by the addition of the message contents as shown. Note that
 the Nu mentioned as the third component in the formula is the
 originally specified username, not the altered-case version in the

 response message.

G Brown [Page 6]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 Beware that an affirmative response does not necessarily mean that it
 is reasonable to provide service to the user. Often, there are
 criteria beyond a "yes" answer, which could mean anything from "it's
 a valid user" to "it's a valid user but not billable" to "it's an
 account that was signed up five minutes ago and we haven't had a
 chance to look at it yet."

 Typically, the authentication deity applies criteria appropriate to
 the requesting service. For example, if the service doesn't want to
 allow "free" users, the authentication deity would be configured to
 return a no-service response for such a user. Alternatively, the
 deity could be configured to provide an affirmative response but
 include information in the blob that would permit the service to
 distinguish "free" from "paying" users and treat them differently.

4.3 Authentication response, no service

 The no-service response is an indication that the user is whom he
 claims to be, but you should not provide service to him for one
 reason or another. For example, he might be a "free" user but your
 service is provided only to paying accounts; his billing choices
 might not include your service; or Customer Service might be waiting
 for him to provide a new credit card number.

 The authentication deity's configuration for this particular service
 determines the criteria applied by the deity when making the decision
 to reply affirmative or no service.

 Request identifier
 Canonical Nu (User name, case corrected)
 Kuss (Key obscured for service)
 Kusu (Key obscured for user)
 Au (Authentication value for user)
 Blob (optional)
 As (Authentication value for service)

 The contents of this object are identical to those for an affirmative
 response, but the service would not normally use the keys or Au
 values. The blob might include information useful in distinguishing
 the reason for the no service response, if appropriate for this
 service.

4.4 Authentication response, negative

 A negative response means the user is not who he says he is. Whether
 there is such a username, but that's not who you're talking to; there
 is such a username, but it is not an enabled account; or there is no

 such username, is not specified.

G Brown [Page 7]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 Request identifier
 Blob (optional)
 As (Authentication value for service)

 As is calculated as MD5(Ps + Z + M + Ps). The message may contain a
 blob if there is additional information about the problem, e.g., for
 logging, but it may be omitted.

4.5 Authentication response, invalid service

 An invalid request response means the request could not be processed
 because you (the service) are not whom you claim to be, based on your
 apparently not knowing the service's pass phrase or based on any
 other kind of authentication checking done by the deity.

 Request identifier
 Blob (optional)

 The blob, if present, contains information that allows the deity
 administrators to trace the problem. There is no As field, because
 there is no shared secret to authenticate the response. This presents
 some obvious denial of service issues.

4.6 Authentication response, problem

 A "problem" response indicates that the request could not be
 processed for some reason. This could indicate a failure in the
 system, an unparsable request, or a request for a realm that isn't
 handled by this deity.

 Request identifier
 Blob (optional)
 As (optional)

 The blob may contain information that allows the deity administrators
 to trace the problem. As might or might not be present, depending on
 the nature of the problem, i.e., whether there is a known shared
 secret with the server; if present, it is calculated as MD5(Ps + Z +
 M + Ps).

5. Object types

 The following types of objects are defined in this protocol. These
 object types apply to the messages themselves and objects contained
 in messages. These types do not apply to the contents of the blob.

G Brown [Page 8]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 [Numbers for the object type field are indicated for each
 type, but are not necessarily accurate in this draft of the
 document.]

 Authentication request--type 1--The request to the authentication
 deity. Its contents consist of a sequence of other objects as
 described elsewhere in this document.

 Authentication response, affirmative--type 2

 Authentication response, no service--type 3

 Authentication response, negative--type 4

 Authentication response, invalid service--type 5

 Authentication response, problem--type 6

 Request identifier--type 128--A request must contain an identifier to
 assist in matching replies to requests. This identifier is opaque to
 the deity, and is simply echoed in the reply, so its value is defined
 only by the requesting entity. The value should, of course, be unique
 for each request, but it is otherwise meaningless. It may be of any
 length.

 Realm name--type 129--The name of the realm in which the user's and
 service's identities exist. This is included in the request to allow
 a deity to serve more than one realm. The value consists of the name
 in Unicode, in big-endian order. There is no terminating null
 character, and the realm is generally treated as being case
 insensitive. For example, the realm aol.com might look like this:

 +-+
 | 10000001 | 00000000 | 00001110 | 00000000 |
 +-+
 | 01100001 | 00000000 | 01101111 | 00000000 |
 +-+
 | 01101100 | 00000000 | 00101110 | 00000000 |
 +-+
 | 01100011 | 00000000 | 01101111 | 00000000 |
 +-+
 | 01101101 |
 +-+-+-+-+-+-+-+-+

 That's type 129, fourteen octets follow, and the big-endian Unicode
 representation of the seven characters aol.com.

 Service name--type 130--The name of the service in big-endian
 Unicode.

G Brown [Page 9]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 User name--type 131--The name of the user in big-endian Unicode,
 e.g., gsb.

 User challenge--type 132--The user's challenge, a sequence of random
 octets. The length is not bounded by the protocol, but the deity will
 impose length restrictions, e.g., a minimum and maximum length. All
 bit patterns are legal in the challenge.

 Service challenge--type 133--The service's challenge, a sequence of
 random octets. The length is not bounded by the protocol, but the
 deity will impose length restrictions, e.g., a minimum and maximum
 length. All bit patterns are legal in the challenge.

 Time stamp--type 134--The time stamp, containing 14 octets with the
 value specified in part two of this specification
 (draft-petke-mech-00.txt).

 User's response--type 135--The user's response, containing 16 octets
 with the value specified in part two of this specification
 (draft-petke-mech-00.txt). This is a binary value, so any bit pattern
 is possible in this value.

 Service's response--type 136--The service's response, calculated as
 described elsewhere in this document. This is a binary value, so any
 bit pattern is possible in this value.

 Key obscured for user--type 137--The key for the user, containing 16
 octets as described in part two of this specification
 (draft-petke-mech-00.txt). This is a binary value, so any bit pattern
 is possible in this value.

 Key obscured for service--type 138--The key for the service,
 containing 16 octets as described in part two of this specification
 (draft-petke-mech-00.txt). This is a binary value, so any bit pattern
 is possible in this value.

 Authentication proof for user--type 139--The authentication proof,
 Au, for the user, containing 16 octets as described in part two of
 this specification (draft-petke-mech-00.txt). This is a binary value,
 so any bit pattern is possible in this value.

 Authentication proof for service--type 140--The authentication proof,
 As, for the service, containing 16 octets calculated as described
 elsewhere in this document (not as described in part two of this
 specification). This is a binary value, so any bit pattern is
 possible in this value.

 Canonical user name--type 141--The username adjusted to canonical
 case, in big-endian Unicode.

https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt
https://datatracker.ietf.org/doc/html/draft-petke-mech-00.txt

 Blob--type 142--Deity-specific request and response information.

G Brown [Page 10]

INTERNET-DRAFT RPA - Part Four 15 November 1996

6. The blob

 The blob consists of a sequence of objects that contain information
 about the user's account, or indicate, by their presence or absence,
 some characteristic of the user's account. Note that the use of any
 particular object is a function of the deity's configuration for a
 particular service.

 Consider, for example, a "free" account in an environment where
 services are normally provided for a price. There are three
 most-likely possibilities for how the deity would handle a free
 account when a particular service asks the deity to authenticate a
 user:

 * If the account is free, return an affirmative response.

 * If the account is free, return an affirmative response and include
 a "free" indicator in the blob.

 * If the account is free, return a no-service response.

 The first alternative would be appropriate for a service that should
 provide service to free users, when it's none of the service's
 business whether the user is paying or not.

 The second alternative would be appropriate for a service that should
 provide service to free users, but should know that it's doing so,
 e.g., to provide a different class of service to free users than
 not-free users.

 The third alternative would be appropriate for a service that should
 not provide service to free users. In that case, the deity might
 include a free indicator in the blob, to note the reason why.

 It's difficult to conceive of a truly general, standard blob format;
 that's why we called it a "blob." Therefor, a service-deity pair may
 define the blob in any way they wish. However, we define one type of
 sub-object that contains textual attribute/value pairs, to provide a
 standard encoding for one common need.

 Type 1--Attribute/value pairs

 If the blob contains a type-1 object, that object is composed of a
 sequence of textual attribute/value pairs, where the value is
 optional: sometimes, the presence or absence of an attribute is
 significant, with no need for a corresponding value. An attribute
 consists of a sequence of Unicode characters in the syntax

 attribute ["=" value]

G Brown [Page 11]

INTERNET-DRAFT RPA - Part Four 15 November 1996

 i.e., the attribute name optionally followed by an '=' character
 (code 003D) and a value. All characters are taken from the Unicode
 character set and stored in big-endian byte order. The attribute name
 may consist of any characters except a null or equals sign; the value
 may consist of any characters except a null.

 To include more than one attribute, use a null character (code 0000)
 as a separator. A null character following the last attribute is
 optional, and may be omitted.

 L"free\0language=en"

 is a C-syntax example of a pair of attributes, the first with no
 value.

 Attribute names are meaningful only in the context of a particular
 service-deity pair. They may be case sensitive or not as appropriate.

 [Perhaps there should be two blocks of named attributes,
 one with standard-defined attributes and one with
 deity-specific attributes?]

7. Security Considerations

 This entire document is about security.

8. Author's Address

 Gary S. Brown
 CompuServe Incorporated
 5000 Britton Rd
 P.O. Box 5000
 Hilliard OH 43026-5000
 USA

 +1 614 723 1127
 <gsb@csi.compuserve.com>

G Brown [Page 12]

