
Network Working Group I. Petrov, Ed.
Internet-Draft Acklio
Intended status: Informational November 04, 2019
Expires: May 7, 2020

YANG Object Universal Parsing Interface
draft-petrov-t2trg-youpi-01

Abstract

 YANG Object Universal Parsing Interface (YOUPI) specification
 describes generic way to encode and decode binary data based on a
 YANG model for use of constrainted devices. YOUPI is a generic
 mechanism designed for great flexibility, so that it can be adapted
 for any of the constainted devices.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 7, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Petrov Expires May 7, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft YOUPI November 2019

Table of Contents

1. Introduction . 2
1.1. Terminology . 3

2. YOUPI . 3
2.1. YANG extentions . 3
2.2. Position . 5
2.2.1. Bit positions . 5
2.2.2. Cursor . 5
2.2.3. Absolute position 5
2.2.4. Relative position 5

2.3. FieldIndex . 6
2.4. Multiplier . 6
2.5. Offset . 6
2.6. Units-subject . 6
2.7. Data definitions . 6
2.7.1. Supported built-in type 6
2.7.2. Leafs . 7
2.7.3. Type min/max values 7
2.7.4. Type fraction digits 7
2.7.5. Containers . 8
2.7.6. Condition . 8
2.7.7. Lists . 9
2.7.8. Enumerations as mappings 10
2.7.9. Groupings . 10
2.7.10. Typedefs . 10

3. Security Considerations 10
4. IANA Considerations . 11

 Acknowledgements . 11
 Contributors . 11

7. Normative References . 11
Appendix A. Complete examples 11

 Author's Address . 11

1. Introduction

 A huge number of very constraint IoT devices are expected to be
 coming to the market. They are very constraint in terms of the MTU
 (sometimes as small as 10b per message). As they are expected to be
 running for many years without the need for external energy, energy
 efficiency which is directly linked to the size of the payloads that
 need to be sent, is also very important. For those devices JSON and
 even CBOR formats might be too wasteful in terms of payload size.
 The reality of the ecosystem is that currently a great number of
 applications use proprietary binary formats for exchanging
 information. A significant problem exists if those systems are to be
 interacting in a purely M2M fashion. While there are a number of
 possibilities to resolve those issues, due to the constraints it is

Petrov Expires May 7, 2020 [Page 2]

Internet-Draft YOUPI November 2019

 mandatory to have a way to extract and encode information from/to the
 binary payload and be able to annotate it with semantic metadata.

 While binary formats can be rather complicated to parse and sometimes
 even context dependent (some entity needs to keep context in order to
 parse a message), for most cases a simple description format could be
 sufficient.

 A good solution should not be bounded to the output format. It
 should be a data modeling language like YANG [RFC7950] that simply
 describes the structure of the obtained data and that allows
 different serialization formats afterwards.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. YOUPI

 YOUPI provides a number of yang extentions as defined in Section 2.1.
 Thanks to that additional information in the YANG definitions, it is
 possible to decode binary data and then transform it to a different
 easier to parse format like JSON, XML or CBOR. Additionally it
 defines extensions that allow meta information to be added so that
 JSON-LD is generated. This draft is not describing how the data is
 formatted as JSON or other format. For information how this could be
 done, please refer to RESTCONF, NETCONF or CORECONF.

 The opposite process is also possible - generating binary packets
 from parsed data that comes from JSON or other format.

2.1. YANG extentions

 The definitions of the YANG extensions.

 <CODE BEGINS> file "petrov-youpi-file@2019-07-22.yang"
 module youpi {
 namespace "http://ackl.io/youpi";

 prefix "youpi";

 organization
 "Acklio";

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Petrov Expires May 7, 2020 [Page 3]

Internet-Draft YOUPI November 2019

 contact
 "Ivaylo Petrov
 <mailto:ivaylo@ackl.io>";

 description
 "This module defines the extentions used by youpi.";

 revision 2019-07-22 {
 description "Initial revision.";
 }

 /**
 *
 * Extension for Binary data to CBOR mapping.
 *
 **/
 extension position {
 argument object;
 }

 extension fieldIndex {
 argument object;
 }

 extension condition {
 argument object;
 }

 extension multiplier {
 argument object;
 }

 extension offset {
 argument object;
 }

 extension units-subject {
 argument object;
 }

 extension js {
 argument object;
 }
 }

Petrov Expires May 7, 2020 [Page 4]

Internet-Draft YOUPI November 2019

2.2. Position

 Information about which bits need to be used in order to find the
 value of a field.

2.2.1. Bit positions

 If the position is not present or is empty, the value contains 0 bits
 and has a default value of 0 (or equivalent for the given type).
 Could be useful if a field needs to be the result of arithmetic
 operations from different fields.

 It is possible to have a single bit read by giving only its value in
 the position extension.

 If continuous bits need to be used to obtain the value of a given
 field, this can be achieved using the ".." syntax. For example
 "0..3" means bits 0, 1, 2 and 3.

 If non-continuous bits need to be used, one can use the concatenation
 of bit ranges using the "|" operator. For example "0..1 | 3".

2.2.2. Cursor

 Starts at 0 and changes with each read to the last bit index that was
 read. Used in Section 2.2.4 to determine where the read will start
 from. Section 2.2.3 is not affected by it, but changes its value.

2.2.3. Absolute position

 The default one if no keyword is used. Alternatively "absolute"
 keyword can be provided to explicitly request such position.

 Example:

 leaf temp {
 type uint8;
 default -19;
 description "The temperature";
 youpi:position "0..6";
 }

2.2.4. Relative position

 Example:

Petrov Expires May 7, 2020 [Page 5]

Internet-Draft YOUPI November 2019

 leaf temp {
 type uint8;
 default -19;
 description "The temperature";
 youpi:position "relative 1..7";
 }

 This means that the value starts 1 bit after the current cursor and
 will read up to 7 bits after the current cursor position, including
 that 7th bit.

2.3. FieldIndex

 Can be used to change the order in which fields are processed. By
 default the order in which fields appear in the document is the order
 in which they are processed.

2.4. Multiplier

 A value or another field by which a given field needs to be
 multiplied before the final value is obtained. The operations are
 executed in the order of appearance (this includes "offset" extension
 defined in Section 2.5).

2.5. Offset

 A value or another field to which a given field needs to be added
 before the final value is obtained. The operations are executed in
 the order of appearance (this includes "offset" extension defined in

Section 2.5).

2.6. Units-subject

 Meta information used to compute JSON-LD.

2.7. Data definitions

2.7.1. Supported built-in type

 o binary

 o enumeration

 o int8

 o int16

 o int32

Petrov Expires May 7, 2020 [Page 6]

Internet-Draft YOUPI November 2019

 o int64

 o string

 o uint8

 o uint16

 o uint32

 o uint64

2.7.2. Leafs

 Simple fields like integers and strings are represented by leafs in
 YOUPI.

2.7.3. Type min/max values

 "range" attribute can be used for giving a "min"/"max" acceptable
 value for a type. If the value is outside of the defined range, it
 is silently excluded from the final result.

 Example:

 typedef temp {
 type int8 {
 range "-20 .. 107";
 }
 }

2.7.4. Type fraction digits

 It is possible to specify how many fraction digits are expected for a
 value to have.

 Example:

 leaf temp {
 type decimal64 {
 fraction-digits 2;
 }
 }

Petrov Expires May 7, 2020 [Page 7]

Internet-Draft YOUPI November 2019

2.7.5. Containers

 Complex fields like objects are represented by containers in YOUPI.

2.7.6. Condition

2.7.6.1. Choice

 Inside a choice statement, the condition extension gives information
 based on what value the choice will be decided.

 For example considering that there is a value "mode" with the value
 of btn inside the model

 leaf mode {
 ...
 }
 choice data {
 case _btn {
 container button-data {
 ...
 }
 }
 case _temp {
 container temperature-data {
 ...
 }
 }
 youpi:condition "../mode";
 }

 Then the button-data container will be used to parse the data.

2.7.6.2. When

 With when statement it is possible to link the presence of some piece
 of data to a value of another field. For example it is possible to
 have button-data or temperature-data depending of the value of the
 mode field.

 container button-data {
 when "../mode[.=1]"
 ...
 }
 container temperature-data {
 when "../mode[.=2]"
 ...
 }

Petrov Expires May 7, 2020 [Page 8]

Internet-Draft YOUPI November 2019

2.7.7. Lists

 List statements are supported and they generate an array of a given
 composite type.

2.7.7.1. With explicit length

 A list of minimum and maximum temperatures can be defined as:

 leaf temperature-len {
 type int32;
 }

 list temperatures {
 youpi:length "../temperatures-len";
 leaf min-value {
 type int32;
 }
 leaf max-value {
 type int32;
 }
 }

2.7.7.2. Until the end of input

 The list as defined in Section 2.7.7.1 can omit the length extension
 statement if all the remaining bytes in the payload are part of the
 list.

2.7.7.3. Until a specific value

 The list as defined in Section 2.7.7.1 can also omit the length if it
 has a defined key and if it only has one leaf or container in the
 list apart from the key and it is a subject to when statement that
 defines a stop value for the key.

 list temperatures {
 key option-id;
 leaf option-id {
 type int32;
 }
 container value {
 when "../option-id[.!=0xffffffff]";
 ...
 }
 }

Petrov Expires May 7, 2020 [Page 9]

Internet-Draft YOUPI November 2019

2.7.8. Enumerations as mappings

 Enumerations can be used inside a typedef in order to restrict a
 field only to a set of acceptable values or in order to accomplish
 mapping between some values and other values (for example 0 stands
 for "temperature", 1 stands for "humidity", etc).

 Example:

 typedef mode-type {
 type enumeration {
 enum temp {
 value 0;
 }
 enum humidity {
 value 1;
 }
 enum light {
 value 2;
 }
 ...
 }
 ...
 }

2.7.9. Groupings

 Groupings can be used for better reuse of definitions. They don't
 affect the generated output.

2.7.10. Typedefs

 Typedefs can be used to provide extra information about the type of a
 field, including semantic information about it.

3. Security Considerations

 The YANG file should be valid.

 Segmentation faults might result from invalid data being provided
 with a given YANG model.

 Resource exhaustion can be looked for.

Petrov Expires May 7, 2020 [Page 10]

Internet-Draft YOUPI November 2019

4. IANA Considerations

 This document registers a YANG model.

Acknowledgements

Contributors

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Complete examples

Author's Address

 Ivaylo Petrov (editor)
 Acklio
 1137A avenue des Champs Blancs
 Cesson-Sevigne, Bretagne 35510
 France

 Email: ivaylo@ackl.io

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174

Petrov Expires May 7, 2020 [Page 11]

