
Network Working Group Y. Pettersen
Internet-Draft Opera Software ASA
Updates: 2616 (if approved) March 6, 2012
Intended status: Standards Track
Expires: September 7, 2012

A context mechanism for controlling caching of HTTP responses
draft-pettersen-cache-context-06

Abstract

 A common problem for sensitive web services is informing the client,
 in a reliable fashion, when a password protected resource is no
 longer valid because the user is logged out of the service. This is,
 in particular, considered a potential security problem by some
 sensitive services, such as online banking, when the user navigates
 the client's history list, which is supposed to display the resource
 as it was when it was loaded, not as it is the time the user
 navigates to it.

 This document presents a method for collecting such sensitive
 resources into a group, called a "Cache Context", which permits the
 server to invalidate all the resources belonging in the group either
 by direct action, or according to some expiration policy. The
 context can be configured to invalidate not just the resources, but
 also specific cookies, HTTP authentication credentials and HTTP over
 TLS session information.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Pettersen Expires September 7, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Cache Context March 2012

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 7, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pettersen Expires September 7, 2012 [Page 2]

Internet-Draft HTTP Cache Context March 2012

Table of Contents

1. Introduction . 4
1.1. Terminology . 5

2. How Cache Contexts work 5
2.1. What is a Cache Context? 5
2.2. Life of a Cache Context 6
2.3. What happens when a context is discarded? 7
2.4. Server role . 7
2.5. Client role . 8
2.6. Effects on clients that do not support Cache Contexts . . 8

3. Context Specification Syntax 8
3.1. ABNF syntax . 9
3.2. Context directive . 9
3.3. Discard-Context directive 11
3.4. Extensions . 11

4. Examples . 11
4.1. No expiration . 11
4.2. With expiration . 12
4.3. With server-only cookie 13
4.4. With cookiedomain . 14

5. IANA Considerations . 15
6. Security Considerations 16
7. References . 16
7.1. Informative References 16
7.2. Normative References 16

Appendix A. Open Issues . 17
 Author's Address . 17

Pettersen Expires September 7, 2012 [Page 3]

Internet-Draft HTTP Cache Context March 2012

1. Introduction

 An early problem seen with HTTP was that, since it is inherently
 stateless, there is no direct way to tell that two separate requests
 are related, in particular that the requests originated from the same
 user. While it is possible to encode the information in URLs or
 queries, these methods are difficult to secure and it is also
 difficult to maintain that information.

 Finally, much of the problem was solved by the introduction of HTTP
 Cookies [RFC6265] and the HTTP Authentication methods [RFC2617].

 One problem remains, though: History list navigation and access to
 temporarily cached resources in web applications handling sensitive
 data, such as online banking. The user may have logged out of the
 service, or have been logged out automatically, and it is therefore
 difficult for the client to tell whether to display a given resource,
 not display it, or display it only after revalidating.

 A typical use case will be that Alice goes to her online banking
 site, checks her accounts, performs a couple of transactions and,
 then, logs out of the bank. The bank might want to permit Alice to
 navigate in her browser's history session while she is logged in, for
 example, to recheck how much money is available in her account, but
 prevent her from seeing any such information after she has logged
 out. The reason is that, if she forgets to close her session (after
 logging out) and then leaves her computer for a minute, Eve might
 sneak over to peek at her colleague's account information by
 navigating the history list in Alice's client.

 Some providers of sensitive web services, for example banks, consider
 failure to revalidate when displaying a cached document, or during
 history navigation, a security problem. Some of these providers have
 put great efforts into making sure the client is always revalidating
 a page before displaying it, even while navigating history (which is
 quite the opposite of what [RFC2616] sec. 13.13 recommends). This
 has led to numerous strategies, such as the use of scripting and
 using the "must-revalidate" Cache-Control directive as a revalidate
 indication for history navigation.

 Use of most of these methods not only results in more traffic to the
 websites, but may also reduce the usability of the service. For
 example, such methods may prevent a user from reviewing, or
 correcting, data entered or presented earlier in the process, or to
 print or save data presented earlier (for example, a receipt),
 because the document is re-rendered differently.

 While it is possible to use cookies and credential information to

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2616

Pettersen Expires September 7, 2012 [Page 4]

Internet-Draft HTTP Cache Context March 2012

 group such documents, these methods are not fine-grained enough to
 distinguish the sensitive parts of a site from the non-sensitive
 parts. That kind of information is only available to the service
 manager, and potentially the user, but not to the client.

 This document presents a mechanism that permits a webservice to group
 webpages by associating them in a named context, a "Cache Context",
 that can have a specific expiration time or be specifically discarded
 by the service. When a context is expired, or discarded, this
 expires all documents that the client has that are part of the
 context, meaning that they should either be deleted from the client's
 cache or revalidated before being displayed to the user.

 The mechanism is implemented as an extension to the HTTP Cache-
 Control Header, but will also require access to state information
 about HTTP Cookies and various forms of authentication credentials,
 such as HTTP Authentication credentials and SSL Client Certificate
 session states.

1.1. Terminology

 HTTP Resource: A resource loaded from a HTTP [RFC2616] or HTTP over
 TLS (HTTPS) [RFC2818] server

2. How Cache Contexts work

2.1. What is a Cache Context?

 A Cache Context is a group of HTTP resources served from a specific
 HTTP server, or group of HTTP servers, that are associated with a
 name unique on that server, or within that group of servers. The
 same name used from a different server, or a server that is not part
 of the group, becomes a different context. Any given server can use
 multiple contexts.

 An HTTP resource from a server for which a context is defined does
 not become part of the context unless the server explicitly informs
 the client that it is a member of that context.

 Such a group of resources may, for example, consist of all the
 sensitive and password protected pages in a netbank web application,
 but none of the images used when displaying the information. A
 context may also just contain a group of temporary documents that are
 not intended to be persistently cached.

 A Cache Context can be created with policies that define when it is
 to be discarded, and what actions it should then take, aside from

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818

Pettersen Expires September 7, 2012 [Page 5]

Internet-Draft HTTP Cache Context March 2012

 invalidating all the resources that are part of the context. Such
 extra actions may include deleting or invalidating cookies, HTTP
 authentication credentials or SSL session information.

2.2. Life of a Cache Context

 The Cache Context enters existence the first time the server sends a
 directive that informs the client about the context, and what
 boundaries the context has. Resources are added to the context each
 time the server sends a new resource with a directive specifying that
 it is part of the context.

 The server (or servers) that can serve resources in a context are
 either the server defining the context (this is the default), or the
 initial server can specify that the context spans the same group of
 servers that will receive a specific HTTP cookie [RFC6265]. HTTP
 cookies can be set by servers to only be returned by the client to
 the server that sent them, or to be sent to all servers within the
 domain which the sending server belongs to (there are some security
 related restrictions to how extensive such domains can be).

 For example, when Alice logs into her online bank, the server tells
 her client that the "onlinebanking" context has been created, and,
 for each successive action she makes to display her account
 statements and filling in forms with payment information, the server
 informs the client that the resulting pages are also part of the
 "onlinebanking" context.

 This continues until the context is discarded, an event that can come
 about as a result of several conditions:

 o Alice logs out of her online bank, and the server sends a "Discard
 Context" notice to the client.

 o The server has specified how long the context may live, and, when
 the limit expires, the context is automatically discarded.

 o The server can also tie the context to an HTTP State Management
 cookie[RFC6265], and when this cookie expires, the context is also
 automatically discarded.

 o The client SHOULD offer the user the possibility to discard a
 context in the form of a logout button.

 o The client is shut down.

https://datatracker.ietf.org/doc/html/rfc6265

Pettersen Expires September 7, 2012 [Page 6]

Internet-Draft HTTP Cache Context March 2012

2.3. What happens when a context is discarded?

 When a context is discarded, the resources that are part of the
 context are deleted or marked for deletion (e.g., if they cannot be
 deleted immediately due to internal book-keeping). When a resource
 is marked for deletion, its status in the client's cache will be as
 if it had been received with max-age set to 0 (zero); that is, it has
 expired and cannot be displayed to the user unless its freshness has
 been confirmed by the server after a validation request. This also
 applies to such documents that would be displayed after the user
 navigated in the browser's history. Preferably, the resource SHOULD
 NOT be used if the client requests the same URI as that of the
 resource, even conditionally, after the context has been discarded,
 except during history list navigation.

 If the context is associated with an HTTP cookie, discarding the
 context also causes the client to automatically discard the cookie.

 The server can also specify that when a context is discarded, stored
 credentials that are valid for the server(s) that the context spans
 should also be deleted. Such credentials should include, but should
 not be limited to, HTTP Authentication credentials and SSL Session
 information. Credentials stored in a client's password management
 utility MUST NOT be discarded during this process.

 Resources gathered in a context MUST NOT be kept persistently cached
 by the client, but MUST be discarded when it shuts down, even if the
 context is still valid. Please note that this does not prevent a
 client from storing the resource on a disk drive for the duration.
 If a server wants to prevent a resource from being stored on a disk
 drive it MUST indicate this request with the "no-store" Cache-Control
 directive.

 A resource served with an explicit discard context instruction from
 the server is not part of the context and MUST NOT be invalidated,
 and the server SHOULD NOT include sensitive information in such
 resources.

2.4. Server role

 A service that wants to use Cache Contexts must update the HTTP
 Cache-Control headers sent by each of the resources it wants to make
 part of the context. Only the entry point(s) into the service will
 need to send a directive with expiration details and other advanced
 information, all other resources need only send a directive
 specifying the name of the context.

 When a service has exit points, such as a logout button, these

Pettersen Expires September 7, 2012 [Page 7]

Internet-Draft HTTP Cache Context March 2012

 special resources should send a special directive informing
 supporting clients that they must discard the context.

 A server MAY send updated Cache Context directives to the client, and
 need not resend unchanged attributes in such updates.

2.5. Client role

 The client will parse the Cache-Control headers, and when it
 recognizes the Cache Context directives it will take one of several
 actions:

 o Create the context as defined, if it does not already exist.

 o If the server sends updated attributes for the context, update the
 relevant attributes without changing other attributes.

 o Add the resource to the context, unless the context is being
 discarded as a result of the current directive.

 o If the directive specifies that the context must be discarded
 immediately, the client MUST proceed to invalidate all the
 resources contained in the context, as specified above.

 The client MUST maintain a list of active contexts for each server or
 group of servers, their policies and which resources are associated
 with them.

 A server MAY specify that a resource belongs in two different
 contexts by sending two directives in the same response. In such
 cases the resource MUST be invalidated when the first context is
 discarded.

2.6. Effects on clients that do not support Cache Contexts

 All the information about the Cache Contexts and actions on them are
 contained in new HTTP Cache-Control directives. Clients that do not
 recognize these directives will ignore them. They will follow the
 Cache-Control directives they recognize, and otherwise act as they
 would if the Cache Contexts did not exist.

3. Context Specification Syntax

Pettersen Expires September 7, 2012 [Page 8]

Internet-Draft HTTP Cache Context March 2012

3.1. ABNF syntax

 This ABNF has the same syntax as is used in [RFC2616], with the
 addition of Incremental Alternatives from [RFC5234] section 3.3.

 This syntax expands the cache-response-directive part of the Cache-
 Control header ABNF in RFC 2616 sec. 14.9.
 cache-response-directives =/
 "context" "=" context-name *[";" context-attributes]
 | "discard-context" "=" context-name *[; context-name]

 context-name = token

 context-attributes =
 "max-age" ":" delta-seconds
 | "max-idle" ":" delta-seconds
 | "cookie" ":" token
 | "authenticated"
 | "include-credentials"
 | "no-persistent-history"
 | extension-attributes

 extension-attributes = token [":" token]

 delta-seconds = 1*DIGIT

3.2. Context directive

 The Context directive MUST be included with every response that is
 included in a context. It always starts with a context-name, which
 MUST be unique within the given service.

 The context-name, which is case-insensitive, is the only required
 field in the directive. All other attributes are optional, and need
 only be specified when the attribute is updated.

 By default, a given context on one server is not associated with a
 context by the same name for another server, but if a group of
 servers share a common HTTP cookie, they can participate in a common
 context by using the same name.

 Additionally, the directive may contain one or more context-
 attributes that specify how the context as well as additional
 information should be handled by the client. These attributes need
 not be sent with every response, but when an attribute is sent with a
 later response, it will update the context with the new information,
 and any previous information for that attribute will be overwritten.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5234#section-3.3
https://datatracker.ietf.org/doc/html/rfc2616

Pettersen Expires September 7, 2012 [Page 9]

Internet-Draft HTTP Cache Context March 2012

 max-age This attribute indicates how many seconds the context should
 be kept alive. A value of zero (0) means that the context should
 be discarded immediately. A server may send this directive to
 extend the lifetime of the context, e.g when the context nears the
 end of its lifetime. If this attribute is not defined, the
 context may live until the client is shut down, or a discard event
 is received by the client.

 max-idle This attribute indicates how many seconds the context
 should be kept alive after the last time a resource in the context
 was accessed. If this attribute is not defined, or the value is
 zero (0), the context may live until the client is shut down, or a
 discard event is received by the client.

 cookie This attribute names the most specific HTTP State Management
 Cookie [RFC6265] visible to the resource sending when this
 attribute is received by the client. Cookies received and
 accepted in the current response MAY be considered as part of
 evaluating this attribute. The named cookie is used for three
 purposes. First, its expiration date also becomes one of the
 expiration dates of the context (an earlier max-age or max-idle
 takes precedence), and if the server deletes the cookie, it
 automatically deletes the context as well. Second, if a cookie is
 valid across multiple hosts (that is, a domain), the given context
 is also valid across the same hosts. Third, if the context
 expires or is discarded before the cookie expires, the named
 cookie MUST also be deleted when the context is discarded.
 Multiple cookies may be defined by the server. By default, the
 context is not assiciated with a cookie.

 authenticated This attribute specifies that the context shall be
 valid across the domain of the HTTP authentication credential
 currently valid for the resource. The domain MUST at least
 include the entire server, but multiple hosts may be included if
 it is supported by the authentication mechanism, as for example
 Digest Authentication [RFC2617] do. When the context is
 discarded, the authentication credential is also discarded. If
 the credential is invalidated or destroyed, the context must also
 be discarded. By default, the context is not associated with an
 authentication credential.

 include-credentials This attribute informs the client that when this
 context is discarded it MUST also destroy all HTTP Authorization
 credentials, SSL/TLS Client Certificate authenticated sessions,
 and other credentials that are valid for the resources that are
 part of the context, thus logging the user out of the service. By
 default, credentials are not included when discarding a context.

https://datatracker.ietf.org/doc/html/rfc6265
https://datatracker.ietf.org/doc/html/rfc2617

Pettersen Expires September 7, 2012 [Page 10]

Internet-Draft HTTP Cache Context March 2012

 no-persistent-history This attribute informs the client that it
 SHOULD NOT remember resources that are part of this context as
 part of a persistent history mechanism. That is, the client
 SHOULD maintain a history list in the document window or "tab"
 viewed by the user (as described in [RFC2616] Section 13.13) , but
 it SHOULD NOT keep any information about the URLs visited for a
 persistent browsing history. By default, the client MAY remember
 the used resources as part of a persistent history mechanism.

 delta-seconds All periods used in the Cache Context attributes are
 measured in seconds.

3.3. Discard-Context directive

 A server can send this directive when it wants the client to
 immediately discard the named context(s) (which includes the extra
 actions specified in Section 2.3 when specified for the context).

 Multiple context names separated by ";" can be specified in a single
 directive, or multiple directives can be used.

3.4. Extensions

 Extension attribute names SHOULD be documented in an RFC.

4. Examples

4.1. No expiration

https://datatracker.ietf.org/doc/html/rfc2616#section-13.13

Pettersen Expires September 7, 2012 [Page 11]

Internet-Draft HTTP Cache Context March 2012

 Request-URI: http://www.example.com/initial_page

 Response:
 Cache-Control: context=simplecontext

 Request-URI: http://www.example.com/page2

 Response:
 Cache-Control: context=simplecontext

 Request-URI: http://www.example.com/page3

 Response:
 Cache-Control: context=simplecontext

 Request-URI: http://www.example.com/page4

 Response:
 Cache-Control: max-age=3600

 Request-URI: http://www.example.com/final_page

 Response:
 Cache-Control: discard-context=simplecontext

 This example loads 3 resources, "initial_page", "page2" and "page3",
 as part of the Cache Context "simplecontext". By default, this
 context lives until the client is shut down. In this case, however,
 the context is discarded by the response to the request for
 "final_page". After the context has been discarded, all future
 attempts to view "initial_page", "page2" or "page3" will result in an
 "If-Modified-Since" validation request to the server, or a completely
 new request, because the responses are no longer valid.

 "Page4" is not part of the context, and is not discarded by the
 "final_page" action, and no "If-Modified-Since" request will be sent
 for this resource until 3600 seconds (1 hour) after it was originally
 loaded.

4.2. With expiration

Pettersen Expires September 7, 2012 [Page 12]

Internet-Draft HTTP Cache Context March 2012

 Request-URI: http://www.example.com/initial_page

 Response:
 Cache-Control: context=expirecontext;max-age=900

 Request-URI: http://www.example.com/page2

 Response:
 Cache-Control: context=expirecontext

 Request-URI: http://www.example.com/page3

 Response:
 Cache-Control: context=expirecontext

 This example loads 3 resources, "initial_page", "page2" and "page3",
 as part of the Cache Context "expirecontext". By default, this
 context lives for at most 15 minutes (900 seconds). After the
 context has been discarded (in this case, after 15 minutes), all
 future attempts to view "initial_page", "page2" or "page3" will
 result in an "If-Modified-Since" validation request to the server, or
 a completely new request, because the responses are no longer valid.

4.3. With server-only cookie

Pettersen Expires September 7, 2012 [Page 13]

Internet-Draft HTTP Cache Context March 2012

 Defined cookie (server only):
 ExampleSession=UserId; max-age=900; domain=www.example.com

 Request-URI: http://www.example.com/initial_page

 Response:
 Cache-Control: context=cookiecontext;cookie=ExampleSession

 Request-URI: http://www.example.com/page2

 Response:
 Cache-Control: context=cookiecontext

 Request-URI: http://www.example.com/page3

 Response:
 Cache-Control: context=cookiecontext

 Request-URI: http://www.example.com/final_page

 Response:
 Cache-Control: discard-context=cookiecontext

 This example loads 3 resources, "initial_page", "page2" and "page3",
 as part of the Cache Context "cookiecontext" which is associated with
 the cookie "ExampleSession". By default, this context lives until
 the cookie expires 15 minutes (900 seconds) after it was set. In
 this case, however, the context is discarded by the response to the
 request for "final_page". After the context has been discarded, the
 cookie "ExampleSession" no longer exists even if it was not yet
 expired, and all future attempts to view "initial_page", "page2" or
 "page3" will result in an "If-Modified-Since" validation request to
 the server, or a completely new request, because the responses are no
 longer valid.

4.4. With cookiedomain

Pettersen Expires September 7, 2012 [Page 14]

Internet-Draft HTTP Cache Context March 2012

 Defined cookie:
 ExampleDomainSession=UserId; max-age=900; domain=.example.com

 Request-URI: http://www.example.com/initial_page

 Response:
 Cache-Control: context=domaincontext;cookie=ExampleSession

 Request-URI: http://server2.example.com/page2

 Response:
 Cache-Control: context=domaincontext

 Request-URI: http://server3.example.com/page3

 Response:
 Cache-Control: context=domaincontext

 Request-URI: http://final.example.com/final_page

 Response:
 Cache-Control: discard-context=domaincontext

 This example loads 3 resources, "initial_page", "page2" and "page3"
 from different servers, as part of the Cache Context "domaincontext"
 which is associated with the cookie "ExampleDomainSession" which is
 sent to the entire example.com domain. This causes "domaincontext"
 to apply to all servers in the example.com domain, too. By default,
 this context lives until the cookie expires 15 minutes (900 seconds)
 after it was set. In this case, however, the context is discarded by
 the response to the request for "final_page". After the context has
 been discarded, the cookie "ExampleDomainSession" no longer exists
 even if it was not yet expired, and all future attempts to view
 "initial_page", "page2" or "page3" will result in an "If-Modified-
 Since" validation request to the server, or a completely new request,
 because the responses are no longer valid.

5. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

Pettersen Expires September 7, 2012 [Page 15]

Internet-Draft HTTP Cache Context March 2012

6. Security Considerations

 If two independent web applications that use the same name for their
 contexts are hosted on the same server, or within the domain covered
 by one or both of the contexts, they are likely to interfere with
 each other. This can happen if the user uses both applications while
 both contexts are valid, possibly causing some loss of functionality
 and information if a context is discarded, or prolonged exposure of
 information if the session is extended. Such interference can only
 be avoided by choosing context names that are not shared among
 independent web applications.

 When using the Cookie attribute, which expands the context to a
 cookie's domain, this specification relies on the same security
 safeguards that are used by the client when accepting the cookie in
 order to avoid interfering with web applications in other services
 that are using the same context name. Given the wide variety of
 domain name hierarchies used by TLD administrators, it is presently
 possible, unless prevented by client specific heuristics, for a
 server to share a cookie with all servers within a registry-like part
 of a TLD, such as the "co.uk" Domain Name hierarchy. This kind of
 interference may also occur within smaller domain name segments.

 A possible method to avoid or limit such interference could be to
 require clients to perform an evaluation of the context directive's
 cookie specification from the resource's environment, which might
 associate it with a different cookie. Such an evaluation would most
 likely result in undesirable processing overhead, and is therefore
 not included in this specification.

7. References

7.1. Informative References

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

7.2. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP

https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Pettersen Expires September 7, 2012 [Page 16]

Internet-Draft HTTP Cache Context March 2012

 Authentication: Basic and Digest Access Authentication",
RFC 2617, June 1999.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 April 2011.

Appendix A. Open Issues

 Should the client indicate support for Cache Contexts? Is it
 necessary to do so? If so, how should support be indicated? A
 possiblity is an HTTP header with a directive indicating support.

 Should the client indicate that it has accepted a particular context
 and is using it? If so, how should it indicate it? Possible
 solution: The above mentioned header directive could contain a list
 of active contexts.

 Should the client, when automatically discarding a context, replace
 the viewed document with a "you have been logged out of the service"
 document? Or should the last viewed page continue to be displayed?
 If the document is replaced, how should this situation be handled
 when a server specifies an unreasonably short expiration time?

 How should a client interpret non-context Cache-Control directives in
 the same header? Given that such directives are likely intended to
 place more restrictive non-context expiration policies on the
 resource than is necessary for clients that do support Cache
 Contexts, the best solution may be that clients supporting Cache
 Contexts should ignore at least the "no-cache", "max-age=0" and
 "must-revalidate" directives for resources that are part of a
 context, all of which are implied when the cache-context is
 discarded.

 How should responses to requests using methods that have side
 effects, such as POST, be handled after a context has been discarded?
 Such responses should most likely not be revalidated automatically.
 The best option may be to require the client to replace the resource
 with an information message about the resource not being available
 anymore.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6265

Pettersen Expires September 7, 2012 [Page 17]

Internet-Draft HTTP Cache Context March 2012

Author's Address

 Yngve N. Pettersen
 Opera Software ASA
 Waldemar Thranes gate 98
 N-0175 OSLO,
 Norway

 Email: yngve@opera.com

Pettersen Expires September 7, 2012 [Page 18]

