
Network Working Group Y. Pettersen
Internet-Draft Opera Software ASA
Obsoletes: 2965 (if approved) March 14, 2011
Intended status: Standards Track
Expires: September 15, 2011

HTTP State Management Mechanism v2
draft-pettersen-cookie-v2-06

Abstract

 This document specifies a way to create a stateful session with
 Hypertext Transfer Protocol (HTTP) requests and responses. It
 describes three HTTP headers, Cookie, Cookie2, and Set-Cookie2, which
 carry state information between participating origin servers and user
 agents. The method described here differs from both Netscape's
 Cookie proposal [Netscape], and [RFC2965], but it can, provided some
 requirements are met, interoperate with HTTP/1.1 user agents that use
 Netscape's method. (See the HISTORICAL section.)

 This document defines new rules for how cookies can be shared between
 servers within a domain. These new rules are intended to address
 security and privacy concerns that are difficult to counter for
 clients implementing Netscape's proposed rules or the rules specified
 by RFC 2965.

 This document reflects implementation experience with RFC 2965 and
 obsoletes it.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any

Pettersen Expires September 15, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP State Management Mechanism v2 March 2011

 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Pettersen Expires September 15, 2011 [Page 2]

Internet-Draft HTTP State Management Mechanism v2 March 2011

Table of Contents

1. Introduction . 4
2. Terminology . 5
3. Description . 7
3.1. Syntax: General . 7
3.2. Origin Server Role . 8
3.3. User Agent Role . 12
3.4. How an Origin Server Interprets the Cookie Header 19
3.5. Caching Proxy Role . 19

4. Examples . 20
4.1. Example 1 . 20
4.2. Example 2 . 22

5. Implementation Considerations 22
5.1. Set-Cookie2 Content 23
5.2. Stateless Pages . 23
5.3. Implementation Limits 23
5.4. Backwards Compatibility 24

6. Privacy . 24
6.1. User Agent Control . 24
6.2. Origin Server Role . 25
6.3. Clear Text . 26

7. IANA Considerations . 26
8. Security Considerations 26
8.1. Protocol Design . 26
8.2. Cookie Spoofing . 27
8.3. Unexpected Cookie Sharing 27
8.4. Cookies for Account Information 27

9. Historical . 28
9.1. Compatibility with Existing Implementations 28
9.2. Caching and HTTP/1.0 29

10. Acknowledgements . 29
11. References . 29
11.1. Normative References 29
11.2. Non-normative References 30

Appendix A. Open issues . 30
 Author's Address . 30

Pettersen Expires September 15, 2011 [Page 3]

Internet-Draft HTTP State Management Mechanism v2 March 2011

1. Introduction

 HTTP cookies are widely used to maintain state across multiple HTTP
 requests in a wide variety of HTTP based applications, such as
 shopping carts for web shops, login credentials, preferences,
 identity information, etc. While alternatives exists, they are more
 cumbersome than HTTP cookies. The flexibility and ease of use of
 cookies may therefore have assisted the rapid spread of the World
 Wide Web.

 Unfortunately, some of the flexibility of cookies, specifically how
 cookies are shared among multiple hosts, is causing security and
 privacy concerns.

 [RFC2965] specifies that a cookie may be shared with any server
 within the Reach of the host, that is, the parent domain of the host,
 and the [Netscape] proposal allowed, within certain restrictions,
 even wider sharing to servers in the entire second- or third-level
 domain in which the request-host is part.

 In some domain hierarchies, such as the generic Top Level Domain
 (TLD) dotCOM domain this will work well, but in many TLDs such as the
 Country-Code TLD (ccTLD) dotUK, this kind of sharing can cause
 problems, unless severely restricted, because it makes assumptions
 about what control and authorization has actually been granted the
 request-host. The dotUK TLD and many other ccTLDs have numerous
 subdomains that are treated as actual TLDs or registry like domains,
 similar to dotCOM, dotNet and dotORG, such as the co.uk, org.uk and
 ac.uk domains that are used to group otherwise unrelated domains into
 categories based on their intended usage (e.g. commercial, non-
 commercial, governmental, academic).

 Permitting cookies to be shared across such registry-like domains may
 result in undesirable datasharing, denial of service problems, even
 security related problems.

 The original rules in Netscape's proposal, one internal dot in domain
 in the generic TLDs and two in domain name for non-generic TLDs,
 turned out not to be good enough, nor were they properly implemented
 in any client as they severely limited legitimate use of cookies;

RFC2965's one level up rule restricted the problem somewhat, but not
 enough, as it was still possible to bypass the restrictions. Clients
 have implemented or proposed various heuristics to limit the impact
 of the problem, some by using a blacklist of second level domains
 that the client is not permitted to accept cookies for, others use
 DNS IP address lookups of the Set-Cookie header field's Domain
 attribute as a heuristic method to determine the appropriateness of
 permitting a cookie to be set, and a large database of domains that

https://datatracker.ietf.org/doc/html/rfc2965

Pettersen Expires September 15, 2011 [Page 4]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 should not be able to accept cookies have also been proposed.

 Similarly, but less serious, the ability to set cookies to a parent
 path can, under some circumstances, cause interference between
 different applications in a given environment. In single application
 environments such sharing is not dangerous, but could be problematic
 when multiple independent administrators share the same service, such
 as in shared hosting environments where all users are hosted in their
 own path on the same server. In such environments a malicious user
 can set a cookie that is shared by many users, and since most version
 0 [Netscape] implementations do not enforce a prefix path restriction
 it is also possible to limit the cookies to a path not controlled by
 the user, but not visible to all the other users on the host. Such
 cookies can interfere with the function of other applications on the
 host or within the domain.

 This document presents an alternative method for reducing these
 problems by

 o Removing the Domain attribute that permitted cookies to be
 specified for the parent domain, and instead introduces the
 SubDomain attribute that will permit servers to share cookies, but
 only with servers whose name domain-matches the name of the
 request-host that set the cookie, and not parent domains.

 o Removing the Path attribute, replacing it by the SubPath attribute
 that may be used to specify which resources under the request-path
 will be allowed to receive the cookie, instead of specifying which
 parent path is allowed to send the cookie.

 This specification will not be able to accept cookies for hosts that
 are using domain specifications for parent domains as defined by the
 previous cookie specifications, but implementations using the older
 specification will be able to accept cookies from hosts following
 this specification.

 This document also introduces new requirements for the contents of
 the Cookie header field, specifically that the $Domain and $Path
 attributes must always be sent, even when no domain or path has been
 specified, as this will allow request-hosts to verify the domain of
 the cookies even for cookies received from hosts using the older
 specifications.

2. Terminology

 The terms user agent, client, server, proxy, origin server, and
 header field, and the tokens DIGIT, token, http_URL, and quoted-

Pettersen Expires September 15, 2011 [Page 5]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 string have the same meaning as in the HTTP/1.1 specification
 [RFC2616]. The terms abs_path and absoluteURI have the same meaning
 as in the URI Syntax specification [RFC3986].

 The grammar uses the notation from the HTTP/1.1 specification
 [RFC2616] to describe the syntax of the HTTP header fields.

 Host name (HN) means either the host domain name (HDN) or the numeric
 Internet Protocol (IP) address or IP-literal of a host, as defined by
 [RFC3986]. The fully qualified domain name is preferred; use of
 numeric IP addresses or IP-literals is strongly discouraged.

 The terms request-host and request-URI refer to the values the client
 would send to the server as, respectively, the host (but not port)
 and abs_path portions of the absoluteURI (http_URL) of the HTTP
 request line. Note that request-host is a HN.

 The term effective host name is related to host name. If a host name
 is a host domain name and contains no dots, the effective host name
 is that name with the string .local appended to it. Otherwise the
 effective host name is the same as the host name. Note that all
 effective host names contain at least one dot.

 The term request-port refers to the port portion of the absoluteURI
 (http_URL) of the HTTP request line. If the absoluteURI has no
 explicit port, the request-port is the HTTP default, 80, for HTTP
 URIs, and the HTTPS default, 443, for HTTPS URIs [RFC2818]. The
 request-port of a cookie is the request-port of the request in which
 a Set-Cookie2 response header field was returned to the user agent.

 Host names can be specified either as an IP address, IP-literal or an
 HDN string. Sometimes we compare one host name with another. (Such
 comparisons SHALL be case-insensitive.) Host A's name domain-matches
 host B's if

 o their host name strings string-compare equal; or

 o A is a HDN string and has the form NB, where N is a non-empty name
 string, B has the form .B', and B' is a HDN string. (So, x.y.com
 domain-matches .Y.com but not Y.com.)

 Note that domain-match is not a commutative operation: a.b.c.com
 domain-matches .c.com, but not the reverse.

 The reach R of a host name H is defined as follows:

 o If

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2818

Pettersen Expires September 15, 2011 [Page 6]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 * H is the host domain name of a host; and,

 * H has the form A.B; and

 * A has no embedded (that is, interior) dots; and

 * B has at least one embedded dot, or B is the string "local".
 then the reach of H is .B.

 o Otherwise, the reach of H is H.

 For two strings that represent paths, P1 and P2, P1 path-matches P2
 if P2 is a prefix of P1 (including the case where P1 and P2 string-
 compare equal). Thus, the string /tec/waldo path-matches /tec.

 Because it was used in Netscape's original implementation of state
 management, we will use the term cookie to refer to the state
 information that passes between an origin server and user agent, and
 that gets stored by the user agent.

3. Description

 We describe here a way for an origin server to send state information
 to the user agent, and for the user agent to return the state
 information to the origin server. The goal is to have a minimal
 impact on HTTP and user agents.

3.1. Syntax: General

 The two state management header fields, Set-Cookie2 and Cookie, have
 common syntactic properties involving attribute-value pairs.

 av-pairs = av-pair *(";" av-pair)
 av-pair = attr ["=" value] ; optional value
 attr = token
 value = token | quoted-string

 Attributes (names) (attr) are case-insensitive. White space is
 permitted between tokens. Note that while the above syntax
 description shows value as optional, most attrs require them. Note
 also that, unless prohibited, all values in the grammar below can be
 represented as quoted string, even if the grammar does not directly
 indicate it.

 NOTE: The syntax above allows whitespace between the attribute name
 and the = sign.

Pettersen Expires September 15, 2011 [Page 7]

Internet-Draft HTTP State Management Mechanism v2 March 2011

3.2. Origin Server Role

3.2.1. General

 The origin server initiates a session, if it so desires. To do so,
 it returns an extra HTTP response header to the client, Set-Cookie2,
 described below.

 A user agent returns a Cookie request header field (see below) to the
 origin server if it chooses to continue the session. The origin
 server MAY ignore it or use it to determine the current state of the
 session. It MAY send back to the client a Set-Cookie2 response
 header field with the same or different information, or it MAY send
 no Set-Cookie2 header at all. The origin server effectively ends a
 session by sending the client a Set-Cookie2 header field with Max-
 Age=0.

 Servers MAY return Set-Cookie2 response header fields with any
 response. User agents SHOULD send Cookie request header fields,
 subject to other rules detailed below, with every request.

 An origin server MAY include multiple Set-Cookie2 header fields in a
 response. Note that an intervening gateway could fold such multiple
 headers into a single header, as described by [RFC2616].

3.2.2. Set-Cookie2 Syntax

 The syntax for the Set-Cookie2 response header field is

 set-cookie = "Set-Cookie2:" cookies
 cookies = 1#cookie
 cookie = NAME "=" VALUE *(";" set-cookie-av)
 NAME = attr
 VALUE = value
 set-cookie-av = "Comment" "=" value
 | "CommentURL" "=" <"> http_URL <">
 | "Discard"
 | "SubDomain"
 | "Max-Age" "=" value
 | "SubPath" "=" value
 | "Port" ["=" <"> portlist <">]
 | "Unsecure"
 | "Version" "=" 1*DIGIT
 | "HttpOnly"
 portlist = 1#portnum
 portnum = 1*DIGIT

 Informally, the Set-Cookie2 response header comprises the token "Set-

https://datatracker.ietf.org/doc/html/rfc2616

Pettersen Expires September 15, 2011 [Page 8]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 Cookie2:", followed by a comma-separated list of one or more cookies.
 Each cookie begins with a NAME=VALUE pair, followed by zero or more
 semi-colon-separated attribute-value pairs. The syntax for
 attribute-value pairs was shown earlier. The specific attributes and
 the semantics of their values follows. The NAME=VALUE attribute-
 value pair MUST come first in each cookie. The others, if present,
 can occur in any order. If an attribute appears more than once in a
 cookie, the client SHALL use only the value associated with the first
 appearance of the attribute; a client MUST ignore values after the
 first.

 The NAME of a cookie MAY be the same as one of the attributes in this
 specification. However, because the cookie's NAME must come first in
 a Set-Cookie2 response header field, the NAME and its VALUE cannot be
 confused with an attribute-value pair.

 NAME=VALUE REQUIRED. The name of the state information ("cookie")
 is NAME, and its value is VALUE. NAMEs that begin with $ are
 reserved and MUST NOT be used by applications. The VALUE is
 opaque to the user agent and may be anything the origin server
 chooses to send, possibly in a server-selected printable ASCII
 encoding. "Opaque" implies that the content is of interest and
 relevance only to the origin server. The content may, in fact, be
 readable by anyone that examines the Set-Cookie2 header field.

 Comment=value OPTIONAL. Because cookies can be used to derive or
 store private information about a user, the value of the Comment
 attribute allows an origin server to document how it intends to
 use the cookie. The user can inspect the information to decide
 whether to initiate or continue a session with this cookie.
 Characters in value MUST be in UTF-8 encoding. [RFC3629]

 CommentURL="http_URL" OPTIONAL. Because cookies can be used to
 derive or store private information about a user, the CommentURL
 attribute allows an origin server to document how it intends to
 use the cookie. The user can inspect the information identified
 by the URL to decide whether to initiate or continue a session
 with this cookie.

 Discard OPTIONAL. The Discard attribute instructs the user agent to
 discard the cookie unconditionally when the user agent terminates.

 SubDomain OPTIONAL. The SubDomain attribute specifies that the user
 agent should share the cookie with any hosts that domain-matches
 the name of the host sending the cookie

https://datatracker.ietf.org/doc/html/rfc3629

Pettersen Expires September 15, 2011 [Page 9]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 Max-Age=value OPTIONAL. The value of the Max-Age attribute is
 delta-seconds, the lifetime of the cookie in seconds, a decimal
 non-negative integer. To handle cached cookies correctly, a
 client SHOULD calculate the age of the cookie according to the age
 calculation rules in the HTTP/1.1 specification [RFC2616]. When
 the age is greater than delta-seconds seconds, the client SHOULD
 discard the cookie. A value of zero means the cookie SHOULD be
 discarded immediately.

 SubPath=value OPTIONAL. The value of the SubPath attribute
 specifies the subset of URLs within the default path on the origin
 server to which this cookie applies.

 Port[="portlist"] OPTIONAL. The Port attribute restricts the port
 to which a cookie may be returned in a Cookie request header
 field. Note that the syntax REQUIREs quotes around the OPTIONAL
 portlist even if there is only one portnum in portlist.

 Unsecure OPTIONAL. The Unsecure attribute (with no value) is only
 used for cookies sent over secure connections and directs the user
 agent that the associated cookie can also be sent over an unsecure
 connection, not just to over (unspecified) secure connections, to
 the origin server whenever it sends back this cookie. The default
 for cookies sent over a secure connection is to protect the
 confidentiality and authenticity of the information in the cookie,
 so the client MUST NOT send a cookie over an unsecure connection
 if that cookie was received over a secure connection, but only
 send it over a connection at least as secure as the one it was
 received over unless the Unsecure flag was set for that cookie.

 Version=value REQUIRED. The value of the Version attribute, a
 decimal integer, identifies the version of the state management
 specification to which the cookie conforms. For this
 specification, Version=2 applies.

 HttpOnly Cookies with this flag set MUST NOT be provided to non-HTTP
 requestors, such as scripts. Additionally, non-HTTP updates that
 would overwrite such cookies, or that includes this flag, MUST be
 refused.

3.2.3. Controlling Caching

 An origin server must be cognizant of the effect of possible caching
 of both the returned resource and the Set-Cookie2 header field.
 Caching "public" documents is desirable. For example, if the origin
 server wants to use a public document such as a "front door" page as
 a sentinel to indicate the beginning of a session for which a Set-
 Cookie2 response header field must be generated, the page SHOULD be

https://datatracker.ietf.org/doc/html/rfc2616

Pettersen Expires September 15, 2011 [Page 10]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 stored in caches "pre-expired" so that the origin server will see
 further requests. "Private documents", for example those that
 contain information strictly private to a session, SHOULD NOT be
 cached in shared caches.

 If the cookie is intended for use by a single user, the Set-Cookie2
 header field SHOULD NOT be cached. A Set-Cookie2 header field that
 is intended to be shared by multiple users MAY be cached.

 The origin server SHOULD send the following additional HTTP/1.1
 response header fields, depending on circumstances:

 o To suppress caching of the Set-Cookie2 header field:

 Cache-control: no-cache="set-cookie2"

 and one of the following:

 o To suppress caching of a private document in shared caches:

 Cache-control: private

 o To allow caching of a document and require that it be validated
 before returning it to the client:

 Cache-Control: must-revalidate, max-age=0

 o To allow caching of a document, but to require that proxy caches
 (not user agent caches) validate it before returning it to the
 client:

 Cache-Control: proxy-revalidate, max-age=0

 o To allow caching of a document and request that it be validated
 before returning it to the client (by "pre-expiring" it):

 Cache-control: max-age=0
 Not all caches will revalidate the document in every case.

 HTTP/1.1 servers MUST send Expires: old-date (where old-date is a
 date long in the past) on responses containing Set-Cookie2 response
 header fields unless they know for certain (by out of band means)
 that there are no HTTP/1.0 proxies in the response chain. HTTP/1.1
 servers MAY send other Cache-Control directives that permit caching
 by HTTP/1.1 proxies in addition to the Expires: old-date directive;
 the Cache-Control directive will override the Expires: old-date for
 HTTP/1.1 proxies.

Pettersen Expires September 15, 2011 [Page 11]

Internet-Draft HTTP State Management Mechanism v2 March 2011

3.3. User Agent Role

3.3.1. Interpreting Set-Cookie2

 The user agent keeps separate track of state information that arrives
 via Set-Cookie2 response header fields from each origin server (as
 distinguished by name or IP address and port). The user agent MUST
 ignore attribute-value pairs whose attribute it does not recognize or
 that contain invalid data, and if necessary ignore the entire header
 field. The user agent applies these defaults for optional attributes
 that are missing:

 Discard The default behavior is dictated by the presence or absence
 of a Max-Age attribute.

 Domain Defaults to the effective request-host. (Note that because
 there is no dot at the beginning of effective request-host, the
 default Domain can only domain-match itself.)

 Max-Age The default behavior is to discard the cookie when the user
 agent exits.

 Path Defaults to the path of the request URL that generated the Set-
 Cookie2 response, up to and including the right-most /.

 Port The default behavior is that a cookie MAY be returned to any
 request-port.

 Unsecure Only for cookies received over a secure connection: If
 absent, the user agent MUST NOT send the cookie over an unsecure
 channel. (Cookies received over an unsecure connection can be
 sent to secure connections)

 HttpOnly The default behavior is that a cookie can be included in
 all listings of cookies for a given URL, also those requested by
 non-HTTP requestors, e.g scripts.

 The user agent MUST ignore the SubDomain attribute if the effective
 request-host is an IP-address or IP-literal.

 If the SubDomain attribute is present the state attribute Domain
 becomes .H where H is the effective request-host.

 If the SubPath attribute is present the state attribute Path becomes
 Px where P is the default path, up to and including the right-most /
 and x is the value of the attribute.

Pettersen Expires September 15, 2011 [Page 12]

Internet-Draft HTTP State Management Mechanism v2 March 2011

3.3.2. Rejecting Cookies

 To prevent possible security or privacy violations, a user agent
 rejects a cookie according to rules below. The goal of the rules is
 to try to limit the set of servers for which a cookie is valid, based
 on the values of the Path, Domain, and Port attributes and the
 request-URI, request-host and request-port.

 A user agent rejects (SHALL NOT store its information) if the Version
 attribute is missing, or contains a value of 1 or higher. Moreover,
 a user agent rejects (SHALL NOT store its information) if any of the
 following is true of the attributes explicitly present in the Set-
 Cookie2 response header field:

 o The value for the SubPath attribute appended to the default path
 is not a prefix of the request-URI.

 o The Port attribute has a "port-list", and the request-port was not
 in the list.

 o The source of the cookie is non-HTTP, e.g. a script, that either
 include the HttpOnly attribute, or would overwrite a cookie with
 the HttpOnly attribute.

 Examples:

 o A Set-Cookie2 with Port="80,8000" will be accepted if the request
 was made to port 80 or 8000 and will be rejected otherwise.

 o A Set-Cookie2 from a path /example1/example1 for SubPath=exam will
 be accepted for the path /example1/exam

 o A Set-Cookie2 from a path /example1/example1 for SubPath=exor will
 be rejected because exor is not a prefix of example1.

3.3.3. Cookie Management

 If a user agent receives a Set-Cookie2 response header field whose
 NAME is the same as that of a cookie it has previously stored, the
 new cookie supersedes the old when: the old and new Domain attribute
 values compare equal, using a case-insensitive string-compare; and,
 the old and new Path attribute values string-compare equal (case-
 sensitive). However, if the Set-Cookie2 has a value for Max-Age of
 zero, the (old and new) cookie is discarded. Otherwise a cookie
 persists (resources permitting) until whichever happens first, then
 gets discarded: its Max-Age lifetime is exceeded; or, if the Discard
 attribute is set, the user agent terminates the session.

Pettersen Expires September 15, 2011 [Page 13]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 Because user agents have finite space in which to store cookies, they
 MAY also discard older cookies to make space for newer ones, using,
 for example, a least-recently-used algorithm, along with constraints
 on the maximum number of cookies that each origin server may set.

 If a Set-Cookie2 response header field includes a Comment attribute,
 the user agent SHOULD store that information in a human-readable form
 with the cookie and SHOULD display the comment text as part of a
 cookie inspection user interface.

 If a Set-Cookie2 response header field includes a CommentURL
 attribute, the user agent SHOULD store that information in a human-
 readable form with the cookie, or, preferably, SHOULD allow the user
 to follow the http_URL link as part of a cookie inspection user
 interface.

 The cookie inspection user interface may include a facility whereby a
 user can decide, at the time the user agent receives the Set-Cookie2
 response header field, whether or not to accept the cookie. A
 potentially confusing situation could arise if the following sequence
 occurs:

 o the user agent receives a cookie that contains a CommentURL
 attribute;

 o the user agent's cookie inspection interface is configured so that
 it presents a dialog to the user before the user agent accepts the
 cookie;

 o the dialog allows the user to follow the CommentURL link when the
 user agent receives the cookie; and,

 o when the user follows the CommentURL link, the origin server (or
 another server, via other links in the returned content) returns
 another cookie.

 The user agent SHOULD NOT send any cookies in this context. The user
 agent MAY discard any cookie it receives in this context that the
 user has not, through some user agent mechanism, deemed acceptable.

 User agents SHOULD allow the user to control cookie destruction, but
 they MUST NOT extend the cookie's lifetime beyond that controlled by
 the Discard and Max-Age attributes. An infrequently-used cookie may
 function as a "preferences file" for network applications, and a user
 may wish to keep it even if it is the least-recently-used cookie.
 One possible implementation would be an interface that allows the
 permanent storage of a cookie through a checkbox (or, conversely, its
 immediate destruction).

Pettersen Expires September 15, 2011 [Page 14]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 Privacy considerations dictate that the user have considerable
 control over cookie management. The PRIVACY section contains more
 information.

3.3.4. Sending Cookies to the Origin Server

 When it sends a request to an origin server, the user agent includes
 a Cookie request header field if it has stored cookies that are
 applicable to the request, based on

 o the request-host and request-port;

 o the request-URI;

 o the cookie's age.

 The syntax for the header field is:

cookie = "Cookie:" cookie-version 1*((";" | ",") cookie-value)
cookie-value = NAME "=" VALUE ";" cookie-path ";" cookie-domain
 [";" cookie-port] [";" cookie-origin]

cookie-version = "$Version" "=" value
NAME = attr
VALUE = value
cookie-path = "$Path" "=" value
cookie-domain = "$Domain" "=" value
cookie-port = "$Port" ["=" <"> port_list <">]
cookie-origin = "$Origin" "=" [<"> http_URL <">]

 cookie-version The value of the cookie-version attribute MUST be the
 value from the Version attribute of the corresponding Set-Cookie2
 response header field. Otherwise the value for cookie-version is
 0.

 name This is the verbatim name from the original Set-Cookie or Set-
 Cookie2 header field setting the cookie item.

 cookie-value This is a verbatim copy of the value from the original
 Set-Cookie or Set-Cookie2 header field setting the cookie item.
 Quotes MUST be included if they were originally used, and MUST NOT
 be used if the original value did not contain them.

 cookie-path The value for the cookie-path attribute MUST be the
 value from the cookie's Path state attribute, as determined when
 the corresponding Set-Cookie2 response header field was parsed.
 If the cookie was set using a previous specification this value

Pettersen Expires September 15, 2011 [Page 15]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 MUST be the value of the Path attribute of the corresponding
 response header field or, if the Path attribute was absent, the
 default path of the URI used to set the cookie.

 cookie-domain The value for the cookie-domain attribute MUST be the
 value from the cookie's Domain state attribute, as determined when
 the corresponding Set-Cookie2 response header field was parsed.
 If the response header field used the SubDomain attribute the
 domain value MUST be prefixed by a ".", if the Domain attribute is
 a default domain the domain value MUST NOT be prefixed by a ".".
 If the cookie was set by host supporting a previous version this
 value MUST be the Domain attribute from the correponding header
 field, including a preceding "." if the Domain attribute was
 present; if it was not present the domain value must be the name
 of the host setting the cookie, without being prefixed with a ".".

 cookie-port The cookie-port attribute of the Cookie request header
 field MUST be exactly the value of the Port attribute, if one was
 present, in the corresponding Set-Cookie2 response header field.
 That is, the port attribute MUST be present if the Port attribute
 was present in the Set-Cookie2 header field, and it MUST have the
 same value (the exact character sequence), if any. Otherwise, if
 the Port attribute was absent from the Set-Cookie2 header field,
 the attribute likewise MUST be omitted from the Cookie request
 header field.

 cookie-origin The cookie-origin attribute of the Cookie header field
 MUST be sent for all cookies that were set according to [Netscape]
 and [RFC2965], and the value MUST be at least the scheme,
 authority and default path portion (as defined for the cookie path
 attribute) of the URI that originally set the cookie. If the URI
 is not known then the URI part of this attribute MUST be empty.
 This attribute can be used by the server receiving the cookie to
 determine if it is willing to trust the cookie, based on which
 server (and path) originally set the cookie. The basic
 information of this attribute, except the scheme, is implied by
 the cookie-domain and cookie-path attributes when the cookie is
 set according to this specification, and the client SHOULD NOT
 send this attribute with cookies set according to this
 specification.

 Note that there is neither a Comment nor a CommentURL attribute in
 the Cookie request header field corresponding to the ones in the Set-
 Cookie2 response header field. The user agent does not return the
 comment information to the origin server.

 The user agent applies the following rules to choose applicable
 cookie-values to send in a Cookie request header field from among all

https://datatracker.ietf.org/doc/html/rfc2965

Pettersen Expires September 15, 2011 [Page 16]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 the cookies it has received:

 Domain Selection The origin server's effective host name MUST
 domain-match the Domain state attribute of the cookie.

 Port Selection There are three possible behaviors, depending on the
 Port attribute in the Set-Cookie2 response header field:

 1. By default (no Port attribute), the cookie MAY be sent to any
 port.

 2. If the attribute is present but has no value (e.g., Port), the
 cookie MUST only be sent to the request-port it was received
 from.

 3. If the attribute has a port-list, the cookie MUST only be
 returned if the new request-port is one of those listed in
 port-list.

 Path Selection The request-URI MUST path-match the Path state
 attribute of the cookie.

 Max-Age Selection Cookies that have expired should have been
 discarded and thus are not forwarded to an origin server.

 HttpOnly Cookies with the HttpOnly attribute MUST NOT be returned to
 non-HTTP requestors, e.g. Javascript.

 If multiple cookies satisfy the criteria above, they are ordered in
 the Cookie header field such that those with more specific Path
 attributes precede those with less specific. Ordering with respect
 to other attributes (e.g., Domain) is unspecified.

 Note: For backward compatibility, the separator in the Cookie header
 field is semi-colon (;) everywhere. A server SHOULD also accept
 comma (",") as the separator between cookie-values for future
 compatibility.

 A client MAY split a Cookie header field into multiple Cookie header
 fields, but SHOULD NOT do this unless comma is used as the separator,
 and the receiving server is expected to handle a multi-header Cookie
 value.

3.3.5. Identifying What Version is Understood: Cookie2

 The Cookie2 request header field facilitates interoperation between
 clients and servers that understand different versions of the cookie
 specification. When the client sends one or more cookies to an

Pettersen Expires September 15, 2011 [Page 17]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 origin server, if at least one of those cookies contains a $Version
 attribute whose value is different from the version that the client
 understands, then the client MUST also send a Cookie2 request header
 field, the syntax for which is

 cookie2 = "Cookie2:" cookie-version

 Here the value for cookie-version is the highest version of cookie
 specification (currently 2) that the client understands. The client
 MUST only send at most one such request header field per request.

3.3.6. Sending Cookies in Unverifiable Transactions

 Users MUST have control over sessions in order to ensure privacy.
 (See PRIVACY section below.) To simplify implementation and to
 prevent an additional layer of complexity where adequate safeguards
 exist, however, this document distinguishes between transactions that
 are verifiable and those that are unverifiable. A transaction is
 verifiable if the user, or a user-designated agent, has the option to
 review the request-URI prior to its use in the transaction. A
 transaction is unverifiable if the user does not have that option.
 Unverifiable transactions typically arise when a user agent
 automatically requests inlined or embedded entities or when it
 resolves redirection (3xx) responses from an origin server.
 Typically the origin transaction, the transaction that the user
 initiates, is verifiable, and that transaction may directly or
 indirectly induce the user agent to make unverifiable transactions.

 An unverifiable transaction is to a third-party host if its request-
 host U does not domain-match the reach R of the request-host O in the
 origin transaction.

 When it makes an unverifiable transaction, a user agent MUST disable
 all cookie processing (i.e., MUST NOT send cookies, and MUST NOT
 accept any received cookies) if the transaction is to a third-party
 host.

 This restriction prevents a malicious service author from using
 unverifiable transactions to induce a user agent to start or continue
 a session with a server in a different domain. The starting or
 continuation of such sessions could be contrary to the privacy
 expectations of the user, and could also be a security problem.

 User agents MAY offer configurable options that allow the user agent,
 or any autonomous programs that the user agent executes, to ignore
 the above rule, so long as these override options default to "off".

 (NOTE: Mechanisms may be proposed that will automate overriding the

Pettersen Expires September 15, 2011 [Page 18]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 third-party restrictions under controlled conditions.)

 Many current user agents already provide a review option that would
 render many links verifiable. For instance, some user agents display
 the URL that would be referenced for a particular link when the mouse
 pointer is placed over that link. The user can therefore determine
 whether to visit that site before causing the browser to do so.
 (Though not implemented on current user agents, a similar technique
 could be used for a button used to submit a form -- the user agent
 could display the action to be taken if the user were to select that
 button.) However, even this would not make all links verifiable; for
 example, links to automatically loaded images would not normally be
 subject to "mouse pointer" verification.

 Many user agents also provide the option for a user to view the HTML
 source of a document, or to save the source to an external file where
 it can be viewed by another application. While such an option does
 provide a crude review mechanism, some users might not consider it
 acceptable for this purpose.

3.4. How an Origin Server Interprets the Cookie Header

 A user agent returns much of the information in the Set-Cookie2
 header field to the origin server when the request-URI path-matches
 the Path attribute of the cookie. When it receives a Cookie header
 field, the origin server SHOULD treat cookies with NAMEs whose prefix
 is $ specially, as an attribute for the cookie.

3.5. Caching Proxy Role

 One reason for separating state information from both a URL and
 document content is to facilitate the scaling that caching permits.
 To support cookies, a caching proxy MUST obey these rules already in
 the HTTP specification:

 o Honor requests from the cache, if possible, based on cache
 validity rules.

 o Pass along a Cookie request header field in any request that the
 proxy must make of another server.

 o Return the response to the client. Include any Set-Cookie2
 response header field.

 o Cache the received response subject to the control of the usual
 header fields, such as Expires,

 Cache-control: no-cache

Pettersen Expires September 15, 2011 [Page 19]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 and

 Cache-control: private

 o Cache the Set-Cookie2 subject to the control of the usual header
 field,

 Cache-control: no-cache="set-cookie2"
 (The Set-Cookie2 header field should usually not be cached.)

 Proxies MUST NOT introduce Set-Cookie2 (Cookie) header fields of
 their own in proxy responses (requests).

4. Examples

4.1. Example 1

 Most detail of request and response header fields has been omitted.
 Assume the user agent has no stored cookies, and that the hostname is
 www.example.com

 1. User Agent -> Server

 POST /acme/login HTTP/1.1
 [form data]

 User identifies self via a form.

 2. Server -> User Agent

 HTTP/1.1 200 OK
 Set-Cookie2: Customer="WILE_E_COYOTE"; Version="2";

 Cookie reflects user's identity.

 3. User Agent -> Server

 POST /acme/pickitem HTTP/1.1
 Cookie: $Version="2"; Customer="WILE_E_COYOTE";
 $Domain="www.example.com"; $Path="/acme/"
 [form data]

 User selects an item for "shopping basket".

 4. Server -> User Agent

 HTTP/1.1 200 OK

Pettersen Expires September 15, 2011 [Page 20]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 Set-Cookie2: Part_Number="Rocket_Launcher_0001"; Version="2"

 Shopping basket contains an item.

 5. User Agent -> Server

 POST /acme/shipping HTTP/1.1
 Cookie: $Version="2";
 Customer="WILE_E_COYOTE";
 $Domain="www.example.com"; $Path="/acme/";
 Part_Number="Rocket_Launcher_0001";
 $Domain="www.example.com"; $Path="/acme/"
 [form data]

 User selects shipping method from form.

 6. Server -> User Agent

 HTTP/1.1 200 OK
 Set-Cookie2: Shipping="FedEx"; Version="2"

 New cookie reflects shipping method.

 7. User Agent -> Server

 POST /acme/process HTTP/1.1
 Cookie: $Version="2";
 Customer="WILE_E_COYOTE";
 $Domain="www.example.com"; $Path="/acme/";
 Part_Number="Rocket_Launcher_0001";
 $Domain="www.example.com"; $Path="/acme/";
 Shipping="FedEx";
 $Domain="www.example.com"; $Path="/acme/"
 [form data]

 User chooses to process order.

 8. Server -> User Agent

 HTTP/1.1 200 OK

 Transaction is complete.

 The user agent makes a series of requests on the origin server, after
 each of which it receives a new cookie. All the cookies have the
 same Path attribute and (default) domain. Because the request-URIs
 all path-match /acme/, the Path attribute of each cookie, each
 request contains all the cookies received so far.

Pettersen Expires September 15, 2011 [Page 21]

Internet-Draft HTTP State Management Mechanism v2 March 2011

4.2. Example 2

 This example illustrates the effect of the Path attribute. All
 detail of request and response header fields has been omitted.
 Assume the user agent has no stored cookies.

 Imagine the user agent has received, in response to earlier requests,
 the response header fields

 Set-Cookie2: Part_Number="Rocket_Launcher_0001"; Version="2"

 and

 Set-Cookie2: Part_Number="Riding_Rocket_0023"; Version="2";
 SubPath="ammo"

 A subsequent request by the user agent to the (same) server for URLs
 of the form /acme/ammo/... would include the following request header
 field:

 Cookie: $Version="2";
 Part_Number="Riding_Rocket_0023";
 $Domain="www.example.com"; $Path="/acme/ammo";
 Part_Number="Rocket_Launcher_0001";
 $Domain="www.example.com"; $Path="/acme/"

 Note that the NAME=VALUE pair for the cookie with the more specific
 Path attribute, /acme/ammo, comes before the one with the less
 specific Path attribute, /acme. Further note that the same cookie
 name appears more than once.

 A subsequent request by the user agent to the (same) server for a URL
 of the form /acme/parts/ would include the following request header
 field:

 Cookie: $Version="2"; Part_Number="Rocket_Launcher_0001";
 $Domain="www.example.com"; $Path="/acme"

 Here, the second cookie's Path attribute /acme/ammo is not a prefix
 of the request URL, /acme/parts/, so the cookie does not get
 forwarded to the server.

5. Implementation Considerations

 Here we provide guidance on likely or desirable details for an origin
 server that implements state management.

Pettersen Expires September 15, 2011 [Page 22]

Internet-Draft HTTP State Management Mechanism v2 March 2011

5.1. Set-Cookie2 Content

 An origin server's content should probably be divided into disjoint
 application areas, some of which require the use of state
 information. The application areas can be distinguished by their
 request URLs. The Set-Cookie2 header field can incorporate
 information about the application areas by setting the Path attribute
 for each one.

 The session information can obviously be clear or encoded text that
 describes state. However, if it grows too large, it can become
 unwieldy. Therefore, an implementor might choose for the session
 information to be a key to a server-side resource. Of course, using
 a database creates some problems that this state management
 specification was meant to avoid, namely:

 1. keeping real state on the server side;

 2. how and when to garbage-collect the database entry, in case the
 user agent terminates the session by, for example, exiting.

5.2. Stateless Pages

 Caching benefits the scalability of WWW. Therefore it is important
 to reduce the number of documents that have state embedded in them
 inherently. For example, if a shopping-basket-style application
 always displays a user's current basket contents on each page, those
 pages cannot be cached, because each user's basket's contents would
 be different. On the other hand, if each page contains just a link
 that allows the user to "Look at My Shopping Basket", the page can be
 cached.

5.3. Implementation Limits

 Practical user agent implementations have limits on the number and
 size of cookies that they can store. In general, user agents' cookie
 support should have no fixed limits. They should strive to store as
 many frequently-used cookies as possible. Furthermore, general-use
 user agents SHOULD provide each of the following minimum capabilities
 individually, although not necessarily simultaneously:

 o at least 300 cookies

 o at least 4096 bytes per cookie (as measured by the characters that
 comprise the cookie non-terminal in the syntax description of the
 Set-Cookie2 header field, and as received in the Set-Cookie2
 header field)

Pettersen Expires September 15, 2011 [Page 23]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 o at least 20 cookies per unique host or domain name

 User agents created for specific purposes or for limited-capacity
 devices SHOULD provide at least 20 cookies of 4096 bytes, to ensure
 that the user can interact with a session-based origin server.

 The information in a Set-Cookie2 response header field MUST be
 retained in its entirety. If for some reason there is inadequate
 space to store the cookie, it MUST be discarded, not truncated.

 Applications should use as few and as small cookies as possible, and
 they should cope gracefully with the loss of a cookie.

5.3.1. Denial of Service Attacks

 User agents MAY choose to set an upper bound on the number of cookies
 to be stored from a given host or domain name or on the size of the
 cookie information. Otherwise a malicious server could attempt to
 flood a user agent with many cookies, or large cookies, on successive
 responses, which would force out cookies the user agent had received
 from other servers. However, the minima specified above SHOULD still
 be supported.

5.4. Backwards Compatibility

 Servers that send cookies according to this specification and that
 wish to send cookies with the same properties to a client following
 the RFC2965 specification MAY send Domain and Path attributes in the
 same header field as the version 2 arguments. Clients following this
 specification MUST ignore these attributes.

6. Privacy

 Informed consent should guide the design of systems that use cookies.
 A user should be able to find out how a web site plans to use
 information in a cookie and should be able to choose whether or not
 those policies are acceptable. Both the user agent and the origin
 server must assist informed consent.

6.1. User Agent Control

 An origin server could create a Set-Cookie2 header field to track the
 path of a user through the server. Users may object to this behavior
 as an intrusive accumulation of information, even if their identity
 is not evident. (Identity might become evident, for example, if a
 user subsequently fills out a form that contains identifying
 information.) This state management specification therefore requires

https://datatracker.ietf.org/doc/html/rfc2965

Pettersen Expires September 15, 2011 [Page 24]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 that a user agent give the user control over such a possible
 intrusion, although the interface through which the user is given
 this control is left unspecified. However, the control mechanisms
 provided SHALL at least allow the user

 o to completely disable the sending and saving of cookies.

 o to determine whether a stateful session is in progress.

 o to control the saving of a cookie on the basis of the cookie's
 Domain attribute.

 Such control could be provided, for example, by mechanisms

 o to notify the user when the user agent is about to send a cookie
 to the origin server, to offer the option not to begin a session.

 o to display a visual indication that a stateful session is in
 progress.

 o to let the user decide which cookies, if any, should be saved when
 the user concludes a window or user agent session.

 o to let the user examine and delete the contents of a cookie at any
 time.

 A user agent usually begins execution with no remembered state
 information. It SHOULD be possible to configure a user agent never
 to send a Cookie header field to an origin server, in which case it
 can never sustain state with an origin server. (The user agent would
 then behave like one that is unaware of how to handle Set-Cookie2
 response header fields.)

 When the user agent terminates execution, it SHOULD let the user
 discard all state information. Alternatively, the user agent MAY ask
 the user whether state information should be retained; the default
 should be "no". If the user chooses to retain state information, it
 would be restored the next time the user agent runs.

 NOTE: User agents should probably be cautious about using files to
 store cookies long-term. If a user runs more than one instance of
 the user agent, the cookies could be commingled or otherwise
 corrupted.

6.2. Origin Server Role

 An origin server SHOULD promote informed consent by adding CommentURL
 or Comment information to the cookies it sends. CommentURL is

Pettersen Expires September 15, 2011 [Page 25]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 preferred because of the opportunity to provide richer information in
 a multiplicity of languages.

6.3. Clear Text

 The information transmitted in the Set-Cookie2 and Cookie header
 fields is unprotected. As a consequence:

 1. Any sensitive information that is conveyed in them is exposed to
 intruders.

 2. A malicious intermediary could alter the header fields as they
 travel in either direction, with unpredictable results.

 These facts imply that information of a personal and/or financial
 nature should only be sent over a secure channel. For less sensitive
 information, or when the content of the header field is a database
 key, an origin server should be vigilant to prevent a bad Cookie
 value from causing failures.

 A user agent in a shared user environment poses a further risk.
 Using a cookie inspection interface, User B could examine the
 contents of cookies that were saved when User A used the machine.

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Security Considerations

8.1. Protocol Design

 The restrictions on the value of the Domain state attribute by using
 the SubDomain attribute, and the rules concerning unverifiable
 transactions, are meant to reduce the ways that cookies can "leak" to
 the "wrong" site. The intent is to restrict cookies to one host, or
 a closely related set of hosts. We consider it acceptable for hosts
 host1.foo.com and host2.foo.com to share cookies, but not a.com and
 b.com. Because of the many hierarchies used to organize domain
 names, it is not possible to define a small set of rules that can
 tell the client if a domain name is in fact similar to .com, or not.
 For that reason, this specification introduces the "Subdomain"
 attribute as a replacement of the "Domain" attribute defined by

Pettersen Expires September 15, 2011 [Page 26]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 [RFC2965], so that only hosts in the domain below the server
 top.example.com can receive the cookie.

 Similarly, a server can only share cookies with resource in
 subfolders of the default path derived from the request-URI.

8.2. Cookie Spoofing

 Proper application design can avoid spoofing attacks from related
 domains. Consider:

 1. User agent makes request to victim.cracker.edu, gets back cookie
 session_id="1234" and sets the default domain victim.cracker.edu.

 2. User agent makes request to cracker.edu, gets back cookie
 session-id="1111", with a SubDomain attribute.

 3. User agent makes request to victim.cracker.edu again, and passes

 Cookie: $Version="1"; session_id="1234";
 $Domain="victim.cracker.edu"; $Path="/example/" ,
 $Version="1"; session_id="1111";
 $Domain=".cracker.edu"; $Path="/"
 The server at victim.cracker.edu should detect that the second
 cookie was not one it originated by noticing that the Domain
 attribute is not for itself and ignore it.

8.3. Unexpected Cookie Sharing

 A user agent SHOULD make every attempt to prevent the sharing of
 session information between hosts that are in different domains.
 Embedded or inlined objects may cause particularly severe privacy
 problems if they can be used to share cookies between disparate
 hosts. For example, a malicious server could embed cookie
 information for host a.com in a URI for a CGI on host b.com. User
 agent implementors are strongly encouraged to prevent this sort of
 exchange whenever possible.

8.4. Cookies for Account Information

 While it is common practice to use them this way, cookies are not
 designed or intended to be used to hold authentication information,
 such as account names and passwords. Unless such cookies are
 exchanged over an encrypted path, the account information they
 contain is highly vulnerable to perusal and theft.

https://datatracker.ietf.org/doc/html/rfc2965

Pettersen Expires September 15, 2011 [Page 27]

Internet-Draft HTTP State Management Mechanism v2 March 2011

9. Historical

9.1. Compatibility with Existing Implementations

 Existing cookie implementations, based on the Netscape specification,
 use the Set-Cookie (not Set-Cookie2) header field. User agents that
 receive in the same response both a Set-Cookie and a Set-Cookie2
 response header field for the same cookie MUST discard the Set-Cookie
 information and use only the Set-Cookie2 information. Furthermore, a
 user agent MUST assume, if it received a Set-Cookie2 response header
 field, that the sending server complies with this document and will
 understand Cookie request header fields that also follow this
 specification.

 New cookies MUST replace both equivalent old- and new-style cookies.
 That is, if a user agent that follows both this specification and
 Netscape's original specification receives a Set-Cookie2 response
 header field, and the NAME and the Domain and Path state attributes
 match (per the Cookie Management section) a Netscape-style cookie,
 the Netscape-style cookie MUST be discarded, and the user agent MUST
 retain only the cookie adhering to this specification.

 Older user agents that do not understand this specification, but that
 do understand Netscape's original specification, will not recognize
 the Set-Cookie2 response header field and will receive and send
 cookies according to the older specification.

 A user agent that supports both this specification and Netscape-style
 cookies SHOULD still send a Cookie request header field that follows
 the format specified in this document, as the benefit of adding
 domain and path information to each cookie and thus providing even
 older server with the ability to detect incorrectly set cookies
 outweigh the potential problems unknown cookienames may cause.

 The client should also send this header field in requests to servers
 that receive cookies that are not of the version specified by this
 document

 Cookie2: $Version="2"

 The Cookie2 header field advises the server that the user agent
 understands new-style cookies. If the server understands new-style
 cookies, as well, it SHOULD continue the stateful session by sending
 a Set-Cookie2 response header field, rather than Set-Cookie. A
 server that does not understand new-style cookies will simply ignore
 the Cookie2 request header field.

Pettersen Expires September 15, 2011 [Page 28]

Internet-Draft HTTP State Management Mechanism v2 March 2011

9.2. Caching and HTTP/1.0

 Some caches, such as those conforming to HTTP/1.0, will inevitably
 cache the Set-Cookie2 and Set-Cookie header fields, because there was
 no mechanism to suppress caching of headers prior to HTTP/1.1. This
 caching can lead to security problems. Documents transmitted by an
 origin server along with Set-Cookie2 and Set-Cookie header fields
 usually either will be uncachable, or will be "pre-expired". As long
 as caches obey instructions not to cache documents (following
 Expires: <a date in the past> or Pragma: no-cache (HTTP/1.0), or
 Cache-control: no-cache (HTTP/1.1)) uncachable documents present no
 problem. However, pre-expired documents may be stored in caches.
 They require validation (a conditional GET) on each new request, but
 some cache operators loosen the rules for their caches, and sometimes
 serve expired documents without first validating them. This
 combination of factors can lead to cookies meant for one user later
 being sent to another user. The Set-Cookie2 and Set-Cookie header
 fields are stored in the cache, and, although the document is stale
 (expired), the cache returns the document in response to later
 requests, including cached header fields.

10. Acknowledgements

 This document is based on [RFC2965] by David Kristol and Lou Montulli
 and the collective efforts of the HTTP Working Group of the IETF and,
 particularly, the following people, in addition to the authors of RFC

2965: Roy Fielding, Yaron Goland, Marc Hedlund, Ted Hardie, Koen
 Holtman, Shel Kaphan, Rohit Khare, Foteos Macrides, David W. Morris.

 This document include some changes suggested by RFC 2965 errata
 drafts posted by Arne Thomassen [ERRATA1] and David Kristol
 [ERRATA2].

11. References

11.1. Normative References

 [I-D.ietf-httpstate-cookie]
 Barth, A., "HTTP State Management Mechanism",

draft-ietf-httpstate-cookie-23 (work in progress),
 March 2011.

 [Netscape]
 "Persistent Client State -- HTTP Cookies",
 <http://www.netscape.com/newsref/std/cookie_spec.html>.

https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/draft-ietf-httpstate-cookie-23
http://www.netscape.com/newsref/std/cookie_spec.html

Pettersen Expires September 15, 2011 [Page 29]

Internet-Draft HTTP State Management Mechanism v2 March 2011

 available at
 <http://www.netscape.com/newsref/std/cookie_spec.html>

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, October 2000.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

11.2. Non-normative References

 [ERRATA1] "RFC Errata: HTTP State Management Mechanism (draft)",
 October 2000,
 <http://retawq.sourceforge.net/cookies/

cookie-errata.html>.

 [ERRATA2] "[Draft of] Errata to RFC 2965", May 2003,
 <http://kristol.org/cookie/errata.html>.

Appendix A. Open issues

 o Should cookies with cookie-values with unquoted whitespace be
 rejected?

http://www.netscape.com/newsref/std/cookie_spec.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
http://retawq.sourceforge.net/cookies/cookie-errata.html
http://retawq.sourceforge.net/cookies/cookie-errata.html
https://datatracker.ietf.org/doc/html/rfc2965
http://kristol.org/cookie/errata.html

Pettersen Expires September 15, 2011 [Page 30]

Internet-Draft HTTP State Management Mechanism v2 March 2011

Author's Address

 Yngve N Pettersen
 Opera Software ASA
 Waldemar Thranes gate 98
 N-0175 OSLO,
 Norway

 Email: yngve@opera.com

Pettersen Expires September 15, 2011 [Page 31]

