
Workgroup: TODO Working Group

Internet-Draft:

draft-pfeairheller-cesr-proof-01

Published: 31 July 2023

Intended Status: Informational

Expires: 1 February 2024

Authors: P. Feairheller

GLEIF

CESR Proof Signatures

Abstract

CESR Proof Signatures are an extension to the Composable Event

Streaming Representation [CESR] that provide transposable

cryptographic signature attachments on self-addressing data (SAD)

[SAID]. Any SAD, such as an Authentic Chained Data Container (ACDC)

Verifiable Credential [ACDC] for example, may be signed with a CESR

Proof Signature and streamed along with any other CESR content. In

addition, a signed SAD can be embedded inside another SAD and the

CESR proof signature attachment can be transposed across envelope

boundaries and streamed without losing any cryptographic integrity.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/trustoverip/tswg-cesr-proof-specification.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 February 2024.

¶

¶

¶

¶

¶

¶

¶

https://github.com/trustoverip/tswg-cesr-proof-specification
https://github.com/trustoverip/tswg-cesr-proof-specification
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Streamable SADs

1.2. Nested Partial Signatures

1.3. Transposable Signature Attachments

2. CESR SAD Path Language

2.1. Description and Usage

2.2. CESR Encoding for SAD Path Language

2.3. SAD Path Examples

2.4. Alternative Pathing / Query Languages

3. CESR Attachments

3.1. Counter Four Character Codes

3.2. Variable Size Codes

3.3. CESR Signature Attachments

3.3.1. Signing SAD Content

3.3.2. Signatures with Non-Transferable Identifiers

3.3.3. Signatures with Transferable Identifiers

3.4. Additional Count Codes

3.4.1. SAD Path Signature Group

3.4.2. SAD Path Groups

3.5. Small Variable Raw Size SAD Path Code

4. Nested Partial Signatures

4.1. Signing Nested SADs

4.2. Signing SAIDs

5. Conventions and Definitions

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Author's Address

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

Composable Event Streaming Representation (CESR) is a dual text-

binary encoding format that has the unique property of text-binary

concatenation composability. The CESR specification not only

provides the definition of the streaming format but also the

attachment codes needed for differentiating the types of

cryptographic material (such as signatures) used as attachments on

all event types for the Key Event Receipt Infrastructure (KERI)

[KERI]. While all KERI event messages are self-addressing data

(SAD), there is a broad class of SADs that are not KERI events but

that require signature attachments. ACDC Verifiable credentials fit

into this class of SADs. With more complex data structures

represented as SADs, such as verifiable credentials, there is a need

to provide signature attachments on nested subsets of SADs. Similar

to indices in indexed controller signatures in KERI that specify the

location of the public key they represent, nested SAD signatures

need a path mechanism to specify the exact location of the nested

content that they are signing. CESR Proof Signatures provide this

mechanism with the CESR SAD Path Language and new CESR attachment

codes, detailed in this specification.

1.1. Streamable SADs

A primary goal of CESR Proof Signatures is to allow any signed self-

addressing data (SAD) to be streamed inline with any other CESR

content. In support of that goal, CESR Proof Signatures leverage

CESR attachments to define a signature scheme that can be attached

to any SAD content serialized as JSON [JSON], MessagePack [MGPK] or

CBOR [CBOR]. Using this capability, SADs signed with CESR Proof

Signatures can be streamed inline in either the text (T) or binary

(B) domain alongside any other KERI event message over, for example

TCP or UDP. In addition, signed SADs can be transported via HTTP as

a CESR HTTP Request (todo: reference needed).

1.2. Nested Partial Signatures

CESR Proof Signatures can be used to sign as many portions of a SAD

as needed, including the entire SAD. The signed subsets are either

SADs themselves or the self-addressing identifer (SAID) of a SAD

that will be provided out of band. A new CESR count code is included

with this specification to allow for multiple signatures on nested

portions of a SAD to be grouped together under one attachment. By

including a SAD Path in the new CESR attachment for grouping

signatures, the entire group of signatures can be transposed across

envelope boundaries by changing only the root path of the group

attachment code.

¶

¶

¶

1.3. Transposable Signature Attachments

There are several events in KERI that can contain context specific

embedded self-addressing data (SADs). Exchange events (exn) for

peer-to-peer communication and Replay events (rpy) for responding to

data requests as well as Expose events (exp) for providing anchored

data are all examples of KERI events that contain embedded SADs as

part of their payload. If the SAD payload for one of these event

types is signed with a CESR attachment, the resulting structure is

not embeddable in one of the serializations of map or dictionary

like data models. (JSON, CBOR, MessagePack) supported by CESR. To

solve this problem, CESR Proof Signatures are transposable across

envelope boundaries in that a single SAD signature or an entire

signature group on any given SAD can be transposed to attach to the

end of an enveloping SAD without losing its meaning. This unique

feature is provided by the SAD Path language used in either a SAD

signature or the root path designation in the outermost attachment

code of any SAD signature group. These paths can be updated to point

to the embedded location of the signed SAD inside the envelope.

Protocols for verifiable credential issuance and proof presentation

can be defined using this capability to embed the same verifiable

credential SAD at and location in an enveloping exn message as

appropriate for the protocol without having to define a unique

signature scheme for each protocol.

2. CESR SAD Path Language

CESR Proof Signatures defines a SAD Path Language to be used in

signature attachments for specifying the location of the SAD content

within the signed SAD that a signature attachment is verifying. This

path language has a more limited scope than alternatives like

JSONPtr [RFC6901] or JSONPath [JSONPath] and is therefore simpler

and more compact when encoding in CESR signature attachments. SADs

in CESR and therefore CESR Proof Signatures require static field

ordering of all maps. The SAD path language takes advantage of this

feature to allow for a Base64 compatible syntax into SADs even when

a SAD uses non-Base64 compatible characters for field labels.

2.1. Description and Usage

The SAD path language contains a single reserved character, the -

(dash) character. Similar to the / (forward slack) character in

URLs, the - in the SAD Path Language is the path separator between

components of the path. The - was selected because it is a one of

the valid Base64 characters.

The simplest path in the SAD Path Language is a single - character

representing the root path which specifies the top level of the SAD

content.

¶

¶

¶

¶

Root Path

After the root path, path components follow, delimited by the -

character. Path components may be integer indices into field labels

or arrays or may be full field labels. No wildcards are supported by

the SAD Path Language.

An example SAD Path using only labels that resolve to map contexts

follows:

In addition, integers can be specified and their meaning is

dependent on the context of the SAD.

The rules for a SAD Path Language processor are simple. If a path

consists of only a single -, it represents the root of the SAD and

therefore the entire SAD content. Following any - character is a

path component that points to a field if the current context is a

map in the SAD or is an index of an element if the current context

is an array. It is an error for any sub-path to resolve to a value

this is not a map or an array. Any trailing - character in a SAD

Path can be ignored.

The root context (after the initial -) is always a map. Therefore,

the first path component represents a field of that map. The SAD is

traversed following the path components as field labels or indexes

in arrays until the end of the path is reached. The value at the end

of the path is then returned as the resolution of the SAD Path. If

the current context is a map and the path component is an integer,

the path component represents an index into fields of the map. This

feature takes advantage of the static field ordering of SADs and is

used against any SAD that contains field labels that use non-Base64

compatible characters or the - character. Any combination of integer

and field label path components can be used when the current context

is a map. All path components MUST be an integer when the current

context is an array.

2.2. CESR Encoding for SAD Path Language

SAD Paths are variable raw size primitives that require CESR

variable size codes. We will use the A small variable size code for

SAD Paths which has 3 code entries being added to the Master Code

Table, 4A##, 5A## and 6A## for SAD Paths with 0 lead bytes, 1 lead

byte and 2 lead bytes respecively. This small variable size code is

reserved for text values that only contain valid Base64 characters.

¶

 -¶

¶

¶

-a-personal¶

¶

-1-12-personal-0¶

¶

¶

These codes are detailed in Table 2 below. The selector not only

encodes the table but also implicitly encodes the number of lead

bytes. The variable size is measured in quadlets of 4 characters

each in the T domain and equivalently in triplets of 3 bytes each in

the B domain. Thus computing the number of characters when parsing

or off-loading in the T domain means multiplying the variable size

by 4. Computing the number of bytes when parsing or off-loading in

the B domain means multiplying the variable size by 3. The two

Base64 size characters provide value lengths in quadlets/triplets

from 0 to 4095 (64**2 -1). This corresponds to path lengths of up to

16,380 characters (4095 * 4) or 12,285 bytes (4095 * 3).

2.3. SAD Path Examples

This section provides some more examples for SAD Path expressions.

The examples are based on Authentic Chained Data Containers (ACDCs)

representing verifiable credentials.

¶

¶

{

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": {

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "personal": {

 "legalName": "John Doe",

 "home-city": "Durham"

 }

 },

 "p": [

 {

 "qualifiedIssuerCredential": {

 "d": "EIl3MORH3dCdoFOLe71iheqcywJcnjtJtQIYPvAu6DZA",

 "i": "Et2DOOu4ivLsjpv89vgv6auPntSLx4CvOhGUxMhxPS24"

 }

 },

 {

 "certifiedLender": {

 "d": "EglG9JLG6UhkLrrv012NPuLEc1F3ne5vPH_sHGP_QPN0",

 "i": "E8YrUcVIqrMtDJHMHDde7LHsrBOpvN38PLKe_JCDzVrA"

 }

 }

]

}

¶

Figure 1. Example ACDC Credential SAD

The examples in Table 1 represent all the features of the SAD Path

language when referring to the SAD in Figure 1. along with the CESR

text encoding.

SAD Path Result
CESR T Domain

Encoding

- The root of the SAD 6AABAAA-

-a-personal
The personal map of the a

field
4AADA-a-personal

-4-5
The personal map of the a

field
4AAB-4-5

-4-5-legalName "John Doe" 5AAEAA-4-5-legalName

-a-personal-1 "Durham" 6AAEAAA-a-personal-1

-p-1
The second element in the

p array
4AAB-p-1

-a-LEI "254900OPPU84GM83MG36" 5AACAA-a-LEI

-p-0-0-d "EIl3MORH...6DZA" 4AAC-p-0-0-d

-p-0-

certifiedLender-i
"E8YrUcVI...zVrA"

5AAGAA-p-0-

certifiedLender-i

Table 1

2.4. Alternative Pathing / Query Languages

The SAD Path language was chosen over alternatives such as JSONPtr

and JSONPath in order to create a more compact representation of a

pathing language in the text domain. Many of the features of the

alternatives are not needed for CESR Proof Signatures. The only

token in the language (-) is Base64 compatible. The use of field

indices in SADs (which require staticly ordered fields) allows for

Base64 compatible pathing even when the field labels of the target

SAD are not Base64 compatible. The language accomplishes the goal of

uniquely locating any path in a SAD using minimally sufficient means

in a manner that allows it to be embedded in a CESR attachment as

Base64. Alternative syntaxes would need to be Base64 encoded to be

used in a CESR attachment in the text domain thus incurring the

additional bandwidth cost of such an encoding.

3. CESR Attachments

This specification adds 2 Counter Four Character Codes to the Master

Code Table and uses 1 Small Variable Raw Size Code Type and 1 Large

Variable Raw Size Code Type from the Master Code Table (each of

which have 3 code entries).

¶

¶

¶

¶

3.1. Counter Four Character Codes

The SAD Path Signature counter code is represented by the four

character code -J##. The first two characters reserve this code for

attaching the couplet (SAD Path, Signature Group). The second two

characters represent the count in hexidecimal of SAD path signatures

are in this attachment. The path is attached in the T domain using

the codes described in the next section. The signature group is from

either a transferable identifier or a non-transferable identifier

and therefore attached using the CESR codes -F## or -C##

respectively as described in the CESR Specification [CESR].

3.2. Variable Size Codes

The code A is reserved as a Small Variable Raw Size Code and AAA as

a Large Variable Raw Size Code for Base64 URL safe strings. SAD

Paths are Base64 URL safe strings and so leverage these codes when

encoded in the CESR T domain. To account for the variable nature of

path strings, the variable size types reserve 3 codes each with

prefix indicators of lead byte size used for adjusting the T domain

encoding to multiples of 4 characters and the B domain to multiples

of 3 bytes. For the Small codes the prefix indicators are 4, 5 and 6

representing 0, 1 and 2 lead bytes respectively and for Large codes

the prefix indicators are 7, 8, and 9 representing 0, 1 and 2 lead

bytes respectively. The resulting 6 code entries are displayed in

the table that follows.

The additions to the Master Code Table of CESR is shown below:

Code Description
Code

Length

Count or

Index

Length

Total

Length

Counter Four Character Codes

-J##

Count of attached qualified

Base64 SAD path sig groups

path+sig group (trans or non-

trans)

2 2 4

-K##
Count of attached qualified

Base64 SAD Path groups
2 2 4

Small Variable Raw Size Code

4A##
String Base64 Only with 0

Lead Bytes
2 2 4

5A##
String Base64 Only with 1

Lead Byte
2 2 4

6A##
String Base64 Only with 2

Lead Bytes
2 2 4

Large Variable Raw Size Code

7AAA####
String Base64 Only with 0

Lead Bytes
4 4 8

¶

¶

¶

Code Description
Code

Length

Count or

Index

Length

Total

Length

8AAA####
String Base64 Only with 1

Lead Byte
4 4 8

9AAA####
String Base64 Only with 2

Lead Bytes
4 4 8

Table 2

3.3. CESR Signature Attachments

CESR defines several counter codes for attaching signatures to

serialized CESR event messages. For KERI event messages, the

signatures in the attachments apply to the entire serialized content

of the KERI event message. As all KERI event messages are SADs, the

same rules for signing a KERI event message applies to signing SADs

for CESR Proof Signatures. A brief review of CESR signatures for

transferable and non-transferable identifiers follows. In addition,

signatures on nested content must be specified.

3.3.1. Signing SAD Content

Signatures on SAD content require signing the serialized encoding

format of the data ensuring that the signature applies to the data

over the wire. The serialization for any SAD is identified in the

version string which can be found in the v field of any KERI event

message or ACDC credential. An example version string follows:

where KERI is the identifier of KERI events followed by the

hexidecimal major and minor version code and then the serialized

encoding format of the event, JSON in this case. KERI and ACDC

support JSON, MessagePack and CBOR currently. Field ordering is

important when apply cryptographic signatures and all serialized

encoding formats must support static field ordering. Serializing a

SAD starts with reading the version string from the SAD field (v for

KERI and ACDC events message) to determine the serialized encoding

format of the message. The serialized encoding format is used to

generate the SAID at creation and can not be changed. The event map

is serialized using a library that ensures the static field order

perserved across serialization and deserialization and the private

keys are used to generate the qualified cryptographic material that

represents the signatures over the SAD content.

The same serialized encoding format must be used when nesting a SAD

in another SAD. For example, an ACDC credential that was issued

¶

¶

 {

 "v": "KERI10JSON00011c_"

 }

¶

¶

using JSON can only be embedded and presented in a KERI exn

presentation event message that uses JSON as its serialized encoding

format. That same credential can not be transmitted using CBOR or

MessagePack. Controllers can rely on this restriction when verifying

signatures of embedded SADs. When processing the signature

attachments and resolving the data at a given SAD path, the

serialization of the outter most SAD can be used at any depth of the

traversal. New verison string processing does not need to occur at

nested paths. However, if credential signature verification is

pipelined and processed in parallel to the event message such that

the event message is not avaiable, the version string of the nested

SAD will still be valid and can be used if needed.

Each attached signature is accompanied by a SAD Path that indicates

the content that is signed. The path must resolve within the

enveloping SAD to either a nested SAD (map) or a SAID (string) of an

externally provided SAD. This of course, includes a root path that

resolves to the enveloping SAD itself.

3.3.2. Signatures with Non-Transferable Identifiers

Non-transferable identifiers only ever have one public key. In

addition, the identifier prefix is identical to the qualified

cryptographic material of the public key and therefore no KEL is

required to validate the signature of a non-transferable identifier

[KERI]. The attachment code for witness receipt couplets, used for

CESR Proof Signatures, takes this into account. The four character

couner code -C## is used for non-transferable identifiers and

contains the signing identfier prefix and the signature [CESR].

Since the verification key can be extracted from the identifier

prefix and the identifier can not be rotated, all that is required

to validate the signature is the identifier prefix, the data signed

and the signature.

3.3.3. Signatures with Transferable Identifiers

Transferable identifiers require full KEL resolution and verfication

to determine the correct public key used to sign some content

[KERI]. In addition, the attachment code used for transferable

identifiers, -F## must specify the location in the KEL at which

point the signature was generated [CESR]. To accomplish this, this

counter code includes the identifier prefix, the sequence number of

the event in the KEL, the digest of the event in the KEL and the

indexed signatures (transferable identifiers support multiple

public/private keys and require index signatures). Using all the

values, one can verify the signature(s) by retrieving the KEL of the

identifier prefix and determine the key state at the sequence number

along with validating the digest of the event against the actual

¶

¶

¶

event. Then using the key(s) at the determined key state, validate

the signature(s).

3.4. Additional Count Codes

This specification adds two Counter Four Character Codes to the CESR

Master Code Table for attaching and grouping transposable signatures

on SAD and nested SAD content. The first code (-J##) is reserved for

attaching a SAD path and the associated signatures on the content at

the resolution of the SAD Path (either a SAD or its associated

SAID). The second reserved code (-K##) is for grouping all SAD Path

signature groups under a root path for a given SAD. The root path in

the second grouping code provides signature attachment

transposability for embedding SAD content in other messages.

3.4.1. SAD Path Signature Group

The SAD Path Signature Group provides a four character counter code,

-J##, for attaching an encoded variable length SAD Path along with

either a transferable index signature group or non-transferable

identifer receipt couplets. The SAD Path identifies the content that

this attachment is signing. The path must resolve to either a nested

SAD (map) or a SAID (string) of an externally provided SAD within

the context of the SAD and root path against which this attachment

is applied. Using the following ACDC SAD embedded in a KERI exn

message:

¶

¶

¶

the following signature applies to the nested credential SAD signed

by a transferable identifier using the transferable index signature

group. The example is annotated with spaces and line feeds for

clarity and an accompanied table is provided with comments.

code description

-JAB

SAD path signature group

counter code 1 following the

group

6AAEAAA-a-credential encoded SAD path designation

-FAB
Trans Indexed Sig Groups

counter code 1 following group

{

 "v": "KERI10JSON00011c_",

 "t": "exn",

 "dt": "2020-08-22T17:50:12.988921+00:00",

 "r": "/credential/offer",

 "a": {

 "credential": { // SIGNATURE TARGET OF TRANSPOSED SAD PATH GROUP

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": {

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "personal": {

 "legalName": "John Doe",

 "home": "Durham"

 }

 }

 }

 }

}

¶

¶

-JAB

6AAEAAA-a-credential

-FAB

E_T2_p83_gRSuAYvGhqV3S0JzYEF2dIa-OCPLbIhBO7Y

-EAB0AAAAAAAAAAAAAAAAAAAAAAB

EwmQtlcszNoEIDfqD-Zih3N6o5B3humRKvBBln2juTEM

-AAD

AA5267UlFg1jHee4Dauht77SzGl8WUC_0oimYG5If3SdIOSzWM8Qs9SFajAilQcozXJVnbkY5stG_K4NbKdNB4AQ

ABBgeqntZW3Gu4HL0h3odYz6LaZ_SMfmITL-Btoq_7OZFe3L16jmOe49Ur108wH7mnBaq2E_0U0N0c5vgrJtDpAQ

ACTD7NDX93ZGTkZBBuSeSGsAQ7u0hngpNTZTK_Um7rUZGnLRNJvo5oOnnC1J2iBQHuxoq8PyjdT3BHS2LiPrs2Cg

¶

code description

E_T2_p83_gRSuAYvGhqV3S0JzYEF2dIa-

OCPLbIhBO7Y

trans prefix of signer for

sigs

-EAB0AAAAAAAAAAAAAAAAAAAAAAB

sequence number of est event

of signer's public keys for

sigs

EwmQtlcszNoEIDfqD-

Zih3N6o5B3humRKvBBln2juTEM

digest of est event of

signer's public keys for sigs

-AAD
Controller Indexed Sigs

counter code 3 following sigs

AA5267...4AQ sig 0

ABBgeq...pAQ sig 1

ACTD7N...2Cg sig 2

Table 3

The next example demostrates the use of a non-transferable

identifier to sign SAD content. In this example, the entire nested

SAD located at the a field is signed by the non-transferable

identfier:

code description

-JAB

SAD path signature

group counter code 1

following the group

5AABAA-a
encoded SAD path

designation

-CAB
NonTrans witness

receipt couplet

BmMfUwIOywRkyc5GyQXfgDA4UOAMvjvnXcaK9G939ArM
non-trans prefix of

signer of sig

0BT7b5... aBg sig

Table 4

3.4.2. SAD Path Groups

The SAD Path Group provides a four character counter code, -K##, for

attaching encoded variable length root SAD Path along with 1 or more

SAD Path Signature Groups. The root SAD Path identifies the root

context against which the paths in all included SAD Path Signature

Groups are resolved. When parsing a SAD Path Group, if the root path

is the single - character, all SAD paths are treated as absolute

paths. Otherwise, the root path is prepended to the SAD paths in

¶

-JAB

5AABAA-a

-CAB

BmMfUwIOywRkyc5GyQXfgDA4UOAMvjvnXcaK9G939ArM

0BT7b5PzUBmts-lblgOBzdThIQjKCbq8gMinhymgr4_dD0JyfN6CjZhsOqqUYFmRhABQ-vPywggLATxBDnqQ3aBg

¶

each of the SAD Path Signature Groups. Given the following snippet

of a SAD Path Group:

The root path is the single - character meaning that all subsequent

SAD Paths are absolute and therefore the first path is resolved as

the a field of the root map of the SAD as seen in the following

example:

3.4.2.1. Transposable Signature Attachments

To support nesting of signed SAD content in other SAD content the

root path of SAD Path Groups or the path of a SAD Path Signature

Group provides transposability of CESR SAD signatures such that a

single SAD Path Signature Group or an entire SAD Path Group

attachment can be transposed across envelope boundaries by updating

the single path or root path to indicate the new location. Extending

the example above, the SAD content is now embedded in a KERI exn

event message as follows:

¶

-KAB6AABAAA--JAB5AABAA-a...¶

¶

{

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": { // SIGNATURE TARGET OF SAD PATH GROUP

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "personal": {

 "legalName": "John Doe",

 "city": "Durham"

 }

 }

}

¶

¶

The same signature gets transposed to the outer exn SAD by updating

the root path of the -K## attachment:

Now the SAD Path of the first signed SAD content resolves to the a

field of the a field of the streamed exn message

3.5. Small Variable Raw Size SAD Path Code

The small variable raw side code reserved for SAD Path encoding is A

which results in the addition of 3 entries (4A##, 5A## and 6A##) in

the Master Code Table for each lead byte configuration. These codes

and their use are discussed in detail in CESR Encoding for SAD Path

Language.

4. Nested Partial Signatures

Additional signatures on nested content can be included in a SAD

Path Group and are applied to the serialized data at the resolution

of a SAD path in a SAD. Signatures can be applied to the SAID or an

entire nested SAD. When verifying a CESR Proof Signature, the

content at the resolution of the SAD path is the data that was

signed. The choice to sign a SAID or the full SAD effects how the

{

 "v": "KERI10JSON00011c_",

 "t": "exn",

 "dt": "2020-08-22T17:50:12.988921+00:00"

 "r": "/credential/offer"

 "a": {

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": { // SIGNATURE TARGET OF TRANSPOSED SAD PATH GROUP

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "personal": {

 "legalName": "John Doe",

 "city": "Durham"

 }

 }

 }

}

¶

¶

-KAB5AABAA-a-JAB5AABAA-a...¶

¶

¶

data may be used in presentations and the rules for verifying the

signature.

4.1. Signing Nested SADs

When signing nested SAD content, the serialization used at the time

of signing is the only serialization that can be used when

presenting the signed data. When transposing the signatures and

nesting the signed data, the enveloping SAD must use the same

serialization that was used to create the signatures. This is to

ensure that all signatures apply to the data over the wire and not a

transformation of that data. The serialization can be determined

from the version field (v) of the nested SAD or any parent of the

nested SAD as they are guaranteed to be identical. Consider the

following ACDC Credential SAD:

To sign the SAD located at the path -a, JSON serialization would be

used because the SAD at that path does not have a version field so

the version field of its parent is used. The serialization rules

(spacing, field ordering, etc) for a SAD would be used for the SAD

and the serialization encoding format and the signature would be

applied to the bytes of the JSON for that map. Any presentation of

the signed data must always include the fully nested SAD. The only

valid nesting of this credential would be as follows:

¶

¶

{

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": { // SIGNATURE TARGET OF SAD PATH GROUP

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "personal": {

 "d": "E2X8OLaLnM0XRQEYgM5UV3bZmWg3UUn7CP4SoKkvsl-s",

 "first": "John",

 "last": "Doe"

 }

 }

}

¶

¶

4.2. Signing SAIDs

Applying signatures to a SAD with SAIDs in place of fully expanded

nested SAD content enables compact credentials for domains with

bandwidth restrictions such as IoT. Consider the following fully

expanded credential:

{

 "v": "KERI10JSON00011c_",

 "t": "exn",

 "dt": "2020-08-22T17:50:12.988921+00:00"

 "r": "/credential/apply"

 "a": {

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": { // FULL SAD MUST BE PRESENT

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "legalName": {

 "d": "E2X8OLaLnM0XRQEYgM5UV3bZmWg3UUn7CP4SoKkvsl-s",

 "first": "John",

 "last": "Doe"

 }

 }

 }

}

¶

¶

The three nested blocks of the a block legalName, address and phone

are SADs with a SAID in the d field and are candidates for SAID

replacement in an issued credential. A compact credential can be

created and signed by replacing those three nested blocks with the

SAID of each nested SAD. The schema for this verifiable credential

would need to specify conditional subschema for the field labels at

each nesting location that requires the full schema of the nested

SAD or a string for the SAID. The commitment to a SAID in place of a

SAD contains nearly the same cryptographic integrity as a commitment

to the SAD itself since the SAID is the qualified cryptographic

material of a digest of the SAD. The same credential could be

{

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": {

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "legalName": {

 "d": "E2X8OLaLnM0XRQEYgM5UV3bZmWg3UUn7CP4SoKkvsl-s",

 "n": "sKHtYSiCdlibuLDS2PTJg1AZXtPhaySZ9O3DoKrRXWY",

 "first": "John

 "middle": "William"

 "last": "Doe"

 },

 "address": {

 "d": "E-0luqYSg6cPcMFmhiAz8VBQObZLmTQPrgsr7Z1j6CA4",

 "n": "XiSoVDNvqV8ldofPyTVqQ-EtVPlkIIQTln9Ai0yI05M",

 "street": "123 Main St",

 "city": "Salt Lake City",

 "state": "Utah",

 "zipcode": "84157"

 },

 "phone": {

 "d": "E6lty8H2sA_1acq8zg89_kqF194DbF1cDpwA7UPtwjPQ",

 "n": "_XKNVntbcIjp12DmsAGhv-R7JRwuzjD6KCHC7Fw3zvU"

 "mobile": "555-121-3434",

 "home": "555-121-3435",

 "work": "555-121-3436",

 "fax": "555-121-3437"

 }

 }

 }

}

¶

converted to a compact credential containing the SAIDs of each

nested block and signed as follows:

It is important to note that if this version of the credential is

the one issued to the holder and the signature over the entire

credential is on the serialized data of this version of the

credential it is the only version that can be presented. The full

SAD data of the three nested blocks would be delivered out of band

from the signed credential. The top level schema would describe the

blocks with conditional subschema for each section. The credential

signature becomes a cryptographic commitment to the contents of the

overall credential as well as the content of each of the blocks and

will still validate the presented credential with significantly less

bandwidth.

With this approach, credential presentation request and exchange

protocols can be created that modify the schema with the conditional

subschema, removing the conditions that allow for SAIDs in place of

the required (or presented) nested blocks. The modified schema can

be used in such a protocol to indicate the required sections to be

delivered out of bounds or as a commitment to provide the nested

blocks after the crendential presentation has occurred.

5. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

{

 "v": "ACDC10JSON00011c_",

 "d": "EBdXt3gIXOf2BBWNHdSXCJnFJL5OuQPyM5K0neuniccM",

 "i": "EmkPreYpZfFk66jpf3uFv7vklXKhzBrAqjsKAn2EDIPM",

 "s": "E46jrVPTzlSkUPqGGeIZ8a8FWS7a6s4reAXRZOkogZ2A",

 "a": {

 "d": "EgveY4-9XgOcLxUderzwLIr9Bf7V_NHwY1lkFrn9y2PY",

 "i": "EQzFVaMasUf4cZZBKA0pUbRc9T8yUXRFLyM1JDASYqAA",

 "dt": "2021-06-09T17:35:54.169967+00:00",

 "ri": "EymRy7xMwsxUelUauaXtMxTfPAMPAI6FkekwlOjkggt",

 "LEI": "254900OPPU84GM83MG36",

 "legalName": "E2X8OLaLnM0XRQEYgM5UV3bZmWg3UUn7CP4SoKkvsl-s",

 "address": "E-0luqYSg6cPcMFmhiAz8VBQObZLmTQPrgsr7Z1j6CA4",

 "phone": "E6lty8H2sA_1acq8zg89_kqF194DbF1cDpwA7UPtwjPQ"

 }

}

¶

¶

¶

¶

[ACDC]

[CESR]

[RFC2119]

[RFC8174]

[SAID]

6. Security Considerations

TODO Security

7. IANA Considerations

The Internet Assigned Numbers Authority (IANA) is a standards

organization that oversees global IP address allocation, autonomous

system number allocation, root zone management in the Domain Name

System (DNS), media types, and other Internet Protocol-related

symbols and Internet numbers.

This document has no IANA actions.

8. References

8.1. Normative References

Smith, S., "Authentic Data Chained Containers", 2021,

<https://datatracker.ietf.org/doc/draft-ssmith-acdc/>.

Smith, S., "Composable Event Streaming Representation

(CESR)", 2021, <https://datatracker.ietf.org/doc/draft-

ssmith-cesr/>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Smith, S., "Self-Addressing IDentifier (SAID)", 2021,

<https://datatracker.ietf.org/doc/draft-ssmith-said/>.

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ssmith-acdc/
https://datatracker.ietf.org/doc/draft-ssmith-cesr/
https://datatracker.ietf.org/doc/draft-ssmith-cesr/
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/draft-ssmith-said/

[CBOR]

[JSON]

[JSONPath]

[KERI]

[MGPK]

[RFC6901]

[RFC8949]

8.2. Informative References

"CBOR Mapping Object Codes", n.d., <https://

en.wikipedia.org/wiki/CBOR>.

"JavaScript Object Notation Delimeters", n.d., <https://

www.json.org/json-en.html>.

Gössner, S., Normington, G., and C. Bormann, "JSONPath -

Query expressions for JSON", 25 October 2021, <https://

datatracker.ietf.org/doc/draft-ietf-jsonpath-base/>.

Smith, S., "Key Event Receipt Infrastructure (KERI)",

2021, <https://arxiv.org/abs/1907.02143>.

"Msgpack Mapping Object Codes", n.d., <https://

github.com/msgpack/msgpack/blob/master/spec.md>.

Bryan, P. C., Zyp, K., and M. Nottingham, "JavaScript

Object Notation (JSON) Pointer", 2003, <https://

datatracker.ietf.org/doc/html/rfc6901>.

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", 4 December 2020, <https://

datatracker.ietf.org/doc/rfc8949/>.

Acknowledgments

Dr Sam Smith, Kevin Griffin and the Global Legal Entity Identifier

Foundation (GLEIF)

Author's Address

Phil Feairheller

GLEIF

Email: Philip.Feairheller@gleif.org

¶

https://en.wikipedia.org/wiki/CBOR
https://en.wikipedia.org/wiki/CBOR
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
https://datatracker.ietf.org/doc/draft-ietf-jsonpath-base/
https://arxiv.org/abs/1907.02143
https://github.com/msgpack/msgpack/blob/master/spec.md
https://github.com/msgpack/msgpack/blob/master/spec.md
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/rfc8949/
https://datatracker.ietf.org/doc/rfc8949/
mailto:Philip.Feairheller@gleif.org

	CESR Proof Signatures
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Streamable SADs
	1.2. Nested Partial Signatures
	1.3. Transposable Signature Attachments

	2. CESR SAD Path Language
	2.1. Description and Usage
	2.2. CESR Encoding for SAD Path Language
	2.3. SAD Path Examples
	2.4. Alternative Pathing / Query Languages

	3. CESR Attachments
	3.1. Counter Four Character Codes
	3.2. Variable Size Codes
	3.3. CESR Signature Attachments
	3.3.1. Signing SAD Content
	3.3.2. Signatures with Non-Transferable Identifiers
	3.3.3. Signatures with Transferable Identifiers

	3.4. Additional Count Codes
	3.4.1. SAD Path Signature Group
	3.4.2. SAD Path Groups
	3.4.2.1. Transposable Signature Attachments

	3.5. Small Variable Raw Size SAD Path Code

	4. Nested Partial Signatures
	4.1. Signing Nested SADs
	4.2. Signing SAIDs

	5. Conventions and Definitions
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Author's Address

