
INTERNET-DRAFT PICS
<draft-pics-labels-00.txt> MIT/W3C
Expires May 21, 1996 November 21, 1995

Label Syntax and Communication Protocols

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

 Comments on this draft should be sent to
 "pics-spec-comments@w3.org".

1. Introduction

 This document has been prepared for the technical subcommittee of
 PICS (Platform for Internet Content Selection). It defines a
 general format for labels that permits them to be embedded in

RFC-822-style headers. It defines three methods by which PICS
 labels may be transmitted:

 In a document
 One or more labels may be embedded in a document. We specify the
 format and note in particular how to use a META tag to embed
 labels in HTML documents.
 With a document
 An HTTP client can request that labels be sent along with a
 document. An HTTP server can satisfy the request, by sending the
 labels in RFC-822-style headers.
 Separately
 A client can request labels from a "label bureau" that runs the
 HTTP protocol. The labels may refer to items available through
 protocols other than HTTP, such as ftp, gopher, or netnews. The
 simplest implementation of a label bureau is an off-the-shelf

https://datatracker.ietf.org/doc/html/draft-pics-labels-00.txt
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 HTTP server running a special CGI script.

2. General Format

 A label consists of a _service identifier_, _label options_, and a
 rating. The service identifier is the URL chosen by the rating
 service (see [1], "Rating Services and Rating Systems") as its
 unique identifier. Label options give additional properties of the
 document being rated as well as the rating itself, such as the time
 the document was rated. The rating itself is a set of
 attribute-value pairs that describe a document along one or more
 dimensions. One or more labels may be distributed together as a
 list. The general form for a label list (formatted for
 presentation, and not showing error status codes) is:

 (PICS-1.0
 <service url> [option...]
 labels [option...] ratings (<category> <value> ...)
 [option...] ratings (<category> <value> ...)
 ...
 <service url> [option...]
 labels [option...] ratings (<category> <value> ...)
 [option...] ratings (<category> <value> ...)
 ...
 ...)

 Label options are as follows (some options can be abbreviated, as
 shown):

 at _quoted-ISO-date_
 The last modification date of the item to which this rating
 applies, at the time the rating was assigned. This can serve as
 a less expensive, but less reliable, alternative to the message
 integrity check (MIC) options.
 by _quotedname_
 An identifier for the person or entity within the rating service
 who is responsible for this particular label.
 comment _quotedname_
 Information for humans who may see the label; no associated
 semantics.
 complete-label _quotedURL_
 full _quotedURL_
 Dereferencing this URL returns a complete label that can be used
 in place of the current one. The complete label has values for
 as many attributes as possible. This is used when a short label
 is transmitted for performance purposes but additional
 information is also available. When the URL is dereferenced it
 returns an item of type application/pics-labels that contains a
 labellist with exactly the one label.
 extension (optional _quotedURL_ _data_*)

 extension (mandatory _quotedURL_ _data_*)
 Future extension mechanism. To avoid duplication of extension
 names, each extension is identified by a _quotedURL_. The URL
 can be dereferenced to get a human-readable description of the
 extension. If the extension is *optional* then software which
 does not understand the extension can simply ignore it; if the
 extension is *mandatory* then software which does not understand
 the extension should act as though no label had been supplied.
 Each item of _data_ must be one of a fixed set of simple-to-parse
 data types as specified in the detailed syntax below.
 for _quotedURL_
 The URL of the item to which this rating applies.
 generic _boolean_
 gen _boolean_
 This label can be applied to any URL starting with the prefix
 given in the *for* option. This is used to supply ratings for
 entire sites or directories.
 MIC-md5 "_Base64-string_"
 md5 "_Base64-string_"
 A message integrity check (MIC) of the item being rated. The MD5
 Message Digest Algorithm is used to compute the MIC. See [2],
 "RFC 1321".
 on _quoted-ISO-date_
 The date on which this rating was issued.
 signature-PKCS "_Base64-string_"
 An RSA digital signature encompassing the label as transmitted,
 signed by the rating service that issued the label. See section

14, "MICs and Digital Signatures".
 until _quoted-ISO-date_
 exp _quoted-ISO-date_
 The date on which this rating expires.

3. Example

 For example, a label that uses the example rating system from the
 document [1] "Rating Services and Rating Systems" might be as
 follows:

 (PICS-1.0 "http://www.gcf.org"
 labels on "1994.11.05T08:15-0500"
 until "1995.12.31T23:59-0000"
 for "http://www.gcf.org/index.html"
 by "John Patrick"
 ratings (suds 0.5 density 0 color/hue 1))

 The same label may be transmitted more compactly by converting all
 of the line breaks and subsequent indentation characters into a
 single space, and by replacing the word "labels" with "l", "ratings"
 with "r" and long option names with their abbreviations. It may be
 compressed for transmission purposes even further by removing all of
 the optional information to a separate document and referencing that

https://datatracker.ietf.org/doc/html/rfc1321

 document by a URL:

 (PICS-1.0 "http://www.gcf.org" l
 full "http://www.gcf.org/labels/13242123"
 r (suds 0.5 density 0 color/hue 1))

 Finally, the optional information may be omitted entirely, reducing
 the information content of the label but making the transmission
 even smaller. The resulting label would then be:

 (PICS-1.0 "http://www.gcf.org" l r (suds 0.5 density 0 color/hue 1))

4. Detailed Syntax

 The following grammar, in modified BNF, describes the syntax of
 labels. The methods by which labels are embedded in specific
 protocols are detailed below.

 Notes:

 1. Whitespace is ignored except in quoted strings.
 2. The string in a _transmit-name_ is case insensitive. All
 other strings are case sensitive.
 3. Option names ("on", "until", "at", etc.) are case insensitive.
 4. This specification requires the use of US-ASCII. Note that
 the document [1] "Rating Services and Rating Systems"
 describes how a service can map the US-ASCII transmit-names to
 descriptive strings using other character sets.
 5. An option that appears in the _service-info_ applies to all
 labels in that _service-info_ unless overridden by an option
 in a specific _label_. That is, a _label_ is effectively
 lexically nested within the enclosing _service-info_ for the
 purpose of understanding the applicable options. This is most
 likely to be useful in the case of the "at", "by", "generic",
 "until" and experimental or future options.
 6. Numbers in PICS labels may be integers or fractions with no
 greater range or precision than that provided by IEEE
 single-precision floating point numbers.
 7. The _multi-value_ syntax *must* be used when the value on a
 particular (multi-valued) scale has either zero or more than
 one value. It *may* be used for a single-valued or
 multi-valued field when there is exactly one value, but the
 more compact version may also be used in that case.
 8. The only options that may occur more than once in a single
 label are "comment" and "extension"; if the "extension"
 option is supplied more than once, the _quotedURL_s defining
 the extensions must be distinct.

 labellist :: '(' 'PICS-1.0' _service-info_+ ')'
 service-info :: 'error' '(no-ratings' _explanation_* ')'

 | _serviceID_ _service-error_
 | _serviceID_ _option_* _labelword_ _label_*
 serviceID :: _quotedURL_
 labelword :: 'labels' | 'l'
 label :: _label-error_ | _single-label_ | '(' _single-label_* ')'
 single-label :: _option_* _ratingword_ '(' _rating_+ ')'
 ratingword :: 'ratings' | 'r'
 quotedURL :: '"' _URL_ '"' as described and extended in [1] "Rating
 Services and Rating Systems.
 option :: 'at' _quoted-ISO-date_
 | 'by' _quotedname_
 | 'comment' _quotedname_
 | 'complete-label' _quotedURL_ | 'full' _quotedURL_
 | 'extension' '(' _mand/opt_ _quotedURL_ _data_* ')'
 | 'generic' _boolean_ | 'gen' _boolean_
 | 'for' _quotedURL_
 | 'MIC-md5' "_base64-string_" | 'md5' "_base64-string_"
 | 'on' _quoted-ISO-date_
 | 'signature-PKCS' "_base64-string_"
 | 'until' _quoted-ISO-date_ | 'exp' _quoted-ISO-date_
 mand/opt :: 'optional' | 'mandatory'
 data :: _quoted-ISO-date_ | _quotedURL_ | _number_ | _quotedname_
 | '(' _data_* ')'
 quoted-ISO-date :: '"'YYYY'.'MM'.'DD'T'hh':'mmStz'"'
 based on the ISO 8601:1988 date and time standard, restricted
 to the specific form described here:
 YYYY :: four-digit year
 MM :: two-digit month (01=January, etc.)
 DD :: two-digit day of month (01 through 31)
 hh :: two digits of hour (00 through 23) (am/pm NOT allowed)
 mm :: two digits of minute (00 through 59)
 S :: sign of time zone offset from UTC ('+' or '-')
 tz :: four digit amount of offset from UTC
 (e.g., 1512 means 15 hours and 12 minutes)
 For example, "1994.11.05T08:15-0500" is a valid _quoted-ISO-date_
 denoting November 5, 1994, 8:15 am, US Eastern Standard Time.
 Note: The ISO standard allows considerably greater flexibility
 than that described here. PICS requires *precisely* the syntax
 described here -- neither the time nor the time zone may be
 omitted, none of the alternate formats are permitted, and the
 punctuation must be as specified here.
 rating :: _transmit-name_ _number_ | _transmit-name_ '(' _multi-value_* ')'
 multi-value :: _number_ | _number_ ':' _number_
 transmit-name :: [1*n]_alphanumpm_ ['/' _transmit-name_]
 number :: [_sign_]_unsignedint_['.' [_unsignedint_]]
 sign :: '+' | '-'
 unsignedint :: [1*n][0-9]
 quotedname :: ' " ' [1*n]_extendedalphanum_ ' " '
 alphanumpm :: 'A' | ... | 'Z' | 'a' | ... | 'z' | '+' | '-'
 extendedalphanum :: _alphanumpm_ | '.' | ' ' | ',' | ';' | ':'
 | '&' | '=' | '?' | '!' | '*' | '~' | '@' | '#'

 base64-string :: as defined in [3] "RFC 1521".
 service-error :: 'error' '(' 'request-denied' _explanation_* ')'
 | 'error' 'service-unavailable'
 label-error :: 'error' '(' request-denied' [_quotedURL_
 explanation*] ')'
 | 'error' '(' not-labeled' _quotedURL_* ')'
 explanation :: _quotedname_

5. Semantics of PICS Labels and Label Lists

 A _labellist_ is used to transmit a set of PICS labels. The format
 specified here is intended to be registered with IANA as the MIME
 type "application/pics-labels." It allows for transmission of both
 labels and reasons why labels are not available, and is the format
 used when labels must be conveyed in a document, along with a
 document, or from a PICS label bureau. The _labellist_ will always
 be surrounded by parentheses and begin with the PICS version number
 (1.0 in this specification).

 A label list either specifies that there are no labels available at
 all ("error (no-ratings ...)") or is separated into sections of
 labels, one section for each rating service. The URL of each
 service must be specified (the _serviceID_). This is either
 followed by an error message indicating why no labels are available
 from that service (_service-error_) or an overall set of optional
 information (_option_*) followed by the keyword "labels" (or "l")
 and the _label_s from the service. The optional information
 provided here applies to every label from the service, unless
 overridden in the specific label itself.

 A _label_ encompasses three separate cases. The first is an error
 that applies to retrieving the label for a particular URL
 (_label-error_). The second, and most common, is a _single-label_
 consisting of options (which override those specified with the
 service), the marker word "ratings" (or "r") and the ratings
 themselves (a list of category names and values). Finally, in the
 special case where the ratings for an entire tree of documents have
 been requested, any number of _single-label_s can be transmitted,
 enclosed in parentheses. This case is described in more detail in
 the section on "Requesting Labels Separately".

 A label may apply to a specific URL, or it may be generic. A
 generic label implicitly rates every URL for which the specified one
 is a prefix. For example, a generic label for the URL
 "http://www.gcf.org" implicitly rates every document available at
 that site. A regular (non-generic) label for the same URL,
 "http://www.gcf.org", does not give any implicit ratings: it merely
 rates the organization's home page that is fetched by the command
 "GET / " sent by HTTP to the host "www.gcf.org". A generic label
 must include the "for" option specifying the URL to which it

https://datatracker.ietf.org/doc/html/rfc1521

 applies.

 When a _multi-value_ is provided, any combination of numbers and
 ranges of numbers may be specified, with the endpoints of a range
 separated by a ":". Thus, in the labellist

 (PICS-1.0 "http://www.gcf.org" l
 r (suds 0.5 density 0 color/hue 1 subject (0.5:2.5 3)))

 all subject values between 0.5 and 2.5 (including both endpoints)
 apply to the item, as does the subject value 3. Given the example
 service description in [1], Rating Services and Rating Systems", all
 three document subjects apply, "soap", "water", and "soapdish".

6. RFC 822 Headers

 Many protocols, such as Internet electronic mail, the HyperText
 Transfer Protocol, and USENET News, use ASCII headers as described
 in RFC 822. For use in such protocols, we define a new header,
 PICS-Label, used to contain the labels described in this document.
 The syntax is:

 PICS-Label: <labellist>

 where _labellist_ is described according to the syntax above.
 Continuation lines beginning with whitespace may be used following
 the specification given in RFC 822.

7. Embedding Labels in HyperText Markup Language (HTML)

 Labels may be embedded in HTML files as meta-information, using the
 META element defined in the HTML specification. This embedding uses
 the HTTP header equivalency mechanism:

 <META http-equiv="PICS-Label" content='_labellist_'>

 (Note that the content attribute uses single quotes, because the
 PICS label syntax uses double quotes. Any of the following
 characters appearing within the content must be escaped using SGML
 entities:

 ' ' /* single quote */
 & & /* ampersand */
 > > /* greater than */

 See [4], the "HTML 2.0 Proposed Standard".

8. Sending Labels With A Document

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

 When an HTTP server sends a document to a client, it sends
 additional headers as well. We specify how the client can request
 that one or more labels be included in a header. HTTP servers
 should include PICS label headers only if requested to do so by the
 client, and should only include the labels from services requested
 by the client.

 Example:

 Client sends to HTTP server www.greatdocs.com:

 GET foo.html HTTP/1.0
 Accept-Protocol:
 {PICS-1.0 {params full
 {services "http://www.gcf.org/ratings"}}}

 Server responds to client:

 HTTP/1.0 200 OK
 Date: Thursday, 30-Jun-95 17:51:47 GMT
 MIME-version: 1.0
 Last-modified: Thursday, 29-Jun-95 17:51:47 GMT
 Protocol: {PICS-1.0 {headers PICS-Label}}
 PICS-Label:
 (PICS-1.0 "http://www.gcf.org" labels
 on "1994.11.05T08:15-0500"
 exp "1995.12.31T23:59-0000"
 for "http://www.gcf.org/index.html"
 by "George Sanderson, Jr."
 ratings (suds 0.5 density 0 color/hue 1))
 Content-type: text/html
 ...contents of foo.html...

 Explanation of example:

 The client requests the document foo.html. In addition, the client
 requests the full label of the document from the rating service
 "http://www.gcf.org/ratings". The server responds by sending back
 the label, in the PICS-Label header, as well as the document. The
 format of the PICS-Label header field (a _labellist_) allows the
 server to respond either with a label or an explanation of why the
 label is not available, since it would be inappropriate for the
 server to generate an HTTP error status if the document is available
 but (some of) the labels are not.

 Following the usual HTTP distinction between HEAD and GET, a client
 that wishes to examine a rating before retrieving the full document
 can substitute the word HEAD for GET in the request. The server
 responds with exactly the headers shown above, but does not send
 back the document "foo.html".

9. Detailed Syntax of HTTP Requests for Labels With Document

 The following grammar, in modified BNF, describes the syntax of the
 additional header line to be included in an HTTP request for a
 document and associated labels.

 accept-header ::
 'Accept-Protocol: {PICS-1.0 {params ' [_completeness_]
 extension* _services_ '}}'
 completeness :: 'minimal' | 'short' | 'full' | 'signed'
 extension :: '{' _token-or-quoted-string_+ '}'
 where the first _token-or-quoted-string_ is not 'services'.
 token-or-quoted-string :: _token_ | _quotedname_
 token :: [1*n]_alphanumpm_
 services :: '{' 'services' _quotedURL_+ '}'

 A request for a *minimal* label asks that all options be omitted,
 unless a generic label is returned, in which case the "generic" and
 "for" options must also be included in the label. A *short* label
 includes everything that is included in a minimal label, plus
 additional options that the server deems appropriate. A request for
 a *full* label asks that as much information as possible should be
 sent back in the label, either directly or through the use of a
 "complete-label" (or "full") option, but no "signature-PKCS" option
 is needed.

 A request for *signed* labels asks that all the information in a
 "full" label should be sent, along with a digital signature on the
 label itself. In a signed label the information must be transmitted
 directly as part of the label (and included in the computation of
 the signature); the "complete-label" (or "full") option may be sent,
 but it would be redundant. Details of signing labels are included
 in section 14, "MICs and Digital Signatures".

 It is acceptable for a server to ignore the _completeness_, either
 by delivering more or fewer options than requested. If the
 completeness is omitted, it should be treated as though "minimal"
 had been supplied. For future extensibility, any alphanumeric
 string may be used for a value of the _completeness_ option.
 Servers which receive a value of _completeness_ that they do not
 recognize must treat it as though "minimal" had been specified.

 The _extension_s are for future extensions to the protocol; any
 extensions which are not understood by the server must be ignored by
 it. It is recommended that experimental extensions use a URL, which
 dereferences to a description of the extension, as the initial
 token-or-quoted-string.

 Each _service_ specifies a rating service from which the client is
 requesting a label for the document. There may be as many
 repetitions of the _service_ part of the query as desired.

10. Detailed Syntax For HTTP Response Headers for Labels With Document

 Two additional headers are specified:

 protocol-header :: 'Protocol: {PICS-1.0 {headers PICS-Label}}'
 label-header :: 'PICS-Label: ' _labellist_

11. Requesting Labels Separately

 PICS labels can also be retrieved separately from the documents to
 which they refer. To request labels in this way, a client contacts
 a *label bureau*. A label bureau is an HTTP server that understands
 a particular query syntax, defined below. It can provide labels for
 documents that reside on other servers, and, indeed, for documents
 available through protocols other than HTTP. It is anticipated that
 there will be "well-known" label bureaus which dispense (possibly
 for a fee) labels created by many rating services.

 Rating services are also encouraged to act as label bureaus,
 providing on-line access to their own labels. By default, the URL
 that identifies a rating service also identifies its label bureau.
 If a client requests the URL that identifies a rating service, a
 human-readable description of the service is returned, as specified
 in [1], "Rating Services and Rating Systems". If, on the other
 hand, a client requests the same URL and includes query parameters
 as defined below, it should be interpreted as a request for labels.
 A rating service, however, is not required to act as a label bureau,
 and it may choose a different URL (perhaps even on a different HTTP
 server) to act as its label bureau.

 Sample Query:

 Imagine a rating service, identified by the URL
 "http://www.labels.org/Ratings", which decides to run a label bureau
 to dispense (at least) its own labels for documents. The following
 sample request, made to the HTTP server "www.labels.org", is
 illustrative (line breaks are inserted for presentation purposes
 only):

 GET /Ratings?opt=generic&
 u="http%3A%2F%2Fwww.questionable.org%2Fimages"&
 s="http%3A%2F%2Fwww.gcf.org%2Fratings"&
 HTTP/1.0

 The query asks the label bureau "http://www.labels.org/Ratings" to
 send a single label that applies to everything in the images
 directory at site "www.questionable.org". The desired label should
 have been created by the service "http://www.gcf.org/ratings".
 Notice the use of %3A to represent a ":" and %2F for "/". This is

 required for encoding characters within a URL. See [5], "RFC 1738".

 The label bureau responds by sending back a document of type
 "application/pics-labels." The labels should be as complete as
 possible, either by including as many options as possible or by
 supplying the "complete-label" (or "full") option.

12. Detailed Syntax and Semantics of HTTP Query for Labels Separate
 From Documents

 The following grammar, in modified BNF, describes the syntax of the
 GET request to a label bureau:

 get :: 'get' _url-fragment_ '?' [_opt_] [_format_] _extension_*
 url+ _service_+
 url-fragment :: the part of the original URL after the host name, as
 specified in HTTP 1.0.
 opt :: 'opt=' _option_
 option :: 'generic' | 'normal' | 'tree' | 'generic+tree'
 format :: [and] 'format=' _form_
 form :: 'minimal' | 'short' | 'full' | 'signed'
 extension :: _token_ '=' _token-or-quoted-string_
 where the _token_ is not one of "opt", "format", "u", or "s"; and
 token-or-quoted-string follows the quoting conventions
 specified in [5], "RFC 1738".
 token-or-quoted-string :: _token_ | _quotedname_
 token :: [1*n]_alphanumpm_
 url :: [and] 'u=' encodedURL
 service :: [and] 's=' encodedURL
 boolean :: 't' | 'f' | 'true' | 'false'
 and :: '&' this must be included unless it immediately follows the ?
 in the query.
 encodedURL :: a URL, with quotation as required for inclusion within
 another URL. According to [5], "RFC 1738", quotation is done using
 "%xx" notation. Alphabetic characters, digits, and the special
 characters $_-.+!*'(), need not be quoted, but other characters must
 be. This *does* imply that the colon (:) must be encoded as %3A and
 slash (/) as %2F.

 Notes:

 1. "opt=generic" requests generic labels. For each requested
 URL, the desired response is a generic label that implicitly
 applies to all URLs matching it. This is useful for
 requesting a rating of a site or directory.
 2. "opt=tree" requests a tree of labels. For each requested
 URL, the desired response is all labels for URLS that match
 it. This is a way to request all the labels for items in a
 directory or a site. In the response, everywhere a _label_
 would normally be expected in the response, a set of

https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738

 _simple-label_s will be returned, surrounded by parentheses.
 3. "opt=generic+tree" requests all generic labels that apply to
 matching URLs. This is a way to request generic labels for
 all of the directories at a site. In the response,
 everywhere a _label_ would normally be expected in the
 response, a set of _simple-label_s will be returned,
 surrounded by parentheses.
 4. "opt=normal", or omitting the "opt" completely, requests
 specific labels for the URLs specified.
 5. It is permitted to include more than one URL in the request.
 6. The "format=" specifies the optional information that should
 be transmitted with the labels. It is treated precisely as
 the similar keywords would be when sent to a document server
 as the "completeness" (see section 9), except that the
 default is "full" (rather than "minimal"). Servers which
 receive a value of "completeness" that they do not recognize
 must treat it as though the default, "full" had been
 specified.

13. Detailed Syntax and Semantics of Response to Query for Labels
 Separate From Documents

 The label bureau responds by sending back a document of type
 "application/pics-labels". Unless the document indicates an overall
 error, there should be one _service-info_ for each rating service
 requested in the query. Each _service-info_ should have an error
 message or a label (or list of labels, in the case of a "tree"
 query) for each requested URL.

 The query's ordering must be preserved in the response. That is, the
 information from the rating services must be presented in the same
 order the rating services appear in the query, and the labels from
 each service must be presented in the same order the URLs appear in
 the query. If a rating service or label is not provided, the error
 message should appear in the same position that the _service-info_
 or label would appear. Because order is preserved, it is acceptable
 to omit from the labels the "for" option which indicates the URL
 being rated (*unless* the label is "generic" in which case, as
 always for generic labels, the "for" is required). The client
 should match the label positionally with the URL for which it
 requested a rating.

 In response to a request for a generic label, only a generic label
 may be returned. In response to a request for a regular label, a
 generic label for a URL that is a prefix of the requested URL may be
 returned. For example, in response to a label request for URL
 "http://www.gcf.org/index.html" a generic label for the URL
 "http://www.gcf.org" may be returned. In this case, it is required
 that the "for" and "generic" options be included in the label, to
 specify exactly what rating is being returned.

 For a tree request, all the labels sent in response to a particular
 URL are enclosed in parentheses, so the client can match them
 positionally with the single request URL. The "for" option must be
 included in such labels to specify exactly which URLs the labels
 apply to.

14. MICs and Digital Signatures

 This section remains to be specified. There are three particular
 difficulties that must be addressed:

 1. On what data is the MIC included in the _mic-md5_ (or
 md5) option computed? In particular, if the URL
 "ftp://www.somewhere.com/Pictures/Interesting/Look.gif"
 refers to a compressed GIF image, is the MIC computed on the
 compressed or uncompressed form? Does it depend on the
 content-transfer-encoding? The MIME type?
 2. How is the label canonicalized before computing the digital
 signature? Because header lines can be folded by various
 transports, it is important that a canonical form be
 carefully defined. Clearly, it should not include the
 signature itself, but does it include all of the other
 optional fields? Does a signed label necessarily imply a
 full label (hence the distinction should be dropped)?
 3. How are the public keys for rating services distributed? Can
 it be done using a variant on the same technique used for
 communicating with a label bureau or is a full certificate
 authority required? What authority should be used or can
 multiple be used? Is the service's URL a satisfactory
 distinguished name for use with a certificate authority?

15. Security Considerations

 Security considerations will be addressed in future revisions of
 this draft.

16. Glossary

 application/pics-service
 A new MIME data type used to describe a _rating service_,
 defined in [1], "Rating Services and Rating Systems".
 application/pics-labels
 A new MIME data type used to transmit one or more _labels_,
 defined in this document.
 BNF
 Backus-Naur Form (or Backus Normal Form). A notation for
 describing a formal syntax, used extensively in describing

 programming languages and computer-readable data formats.
 category
 The part of a rating system which describes a particular
 criterion used for rating. For example, a rating system might
 have three categories named "sexual material," "violence," and
 "vocabulary." Also called a _dimension_.
 content label
 A data structure containing information about a given document's
 contents. Also called a _rating_ or _content rating_. The
 content label may accompany the document it is about or be
 available separately.
 content rating
 See _content label_.
 dimension
 See _category_.
 HTML
 HyperText Markup Language. A means of representing _hypertext_
 documents. Based on _SGML_. See [4], the "HTML 2.0 Proposed
 Standard".
 HTTP
 HyperText Transfer Protocol. Used for retrieving document
 contents and/or descriptive header information.
 hypertext
 Text, graphics, and other media connected through links.
 label
 See _content label_.
 MD5
 An algorithm, see [2], "RFC 1321", that can be used to compute a
 MIC. PICS specifies this particular algorithm for use in PICS
 labels.
 MIC
 Message Integrity Check. Also known as a "cryptographic
 checksum." For PICS, the importance of a MIC is that a rating
 service can compute the MIC of a piece of information when the
 label is created and that MIC can be put into the label itself.
 A client can retrieve the label and the information to which it
 is supposed to be attached, recompute the MIC and compare it to
 the one in the label. If they match, for all practical purposes,
 it is a proof that the label really belongs to the information
 that has been retrieved. The particular algorithm specified by
 PICS to compute the MIC is MD5.
 MIME
 Multimedia Internet Message Extension. A technique for sending
 arbitrary data through electronic mail on the Internet. See [3],
 "RFC 1521".
 PICS
 Platform for Internet Content Selection, the name for both the
 suite of specification documents of which this is a part, and for
 the organization writing the documents. For more information,
 see the PICS home page on the World Wide Web at:
 "http://www.w3.org/PICS".

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1521

 rating
 See _content label_.
 label bureau
 A computer system which supplies, via a computer network, ratings
 of documents. It may or may not provide the documents
 themselves.
 rating server
 See _label bureau_.
 rating service
 An individual or organization that assigns labels according to
 some rating system, and then distributes them, perhaps via a
 label bureau or via CD-ROM.
 rating system
 A method for rating information. A rating system consists of one
 or more _categories_.
 scale
 The range of permissible values for a category.
 SGML
 Standard Generalized Markup Language. See ISO 8879.
 transmission name
 (of a _category_) The short name intended for use over a
 network to refer to the category. This is distinct from the
 category name in as much as the transmission name must be
 language-independent, encoded in ASCII, and as short as
 reasonably possible. Within a single _rating system_ the
 transmission names of all categories must be distinct.
 URL
 Uniform Resource Locator. Described in [5], "RFC 1738". A URL
 describes the location and means of retrieval for a single
 document. It consists of three components: the "scheme"
 (protocol used to retrieve a document, like "http" or "ftp"), a
 host name, and a hierarchical document name within that host.
 For example "http://www.w3.org/PICS" is the URL of the PICS home
 page. The scheme for retrieving it is "http," the host is
 "www.w3.org" and the name within that host is "PICS".

17. References

 [1] PICS, "Rating Services and Rating Systems", Internet Draft,
 "draft-pics-services-00.txt", 11/21/95.
 [2] R. Rivest, "The MD5 Message-Digest Algorithm", RFC 1321,
 04/16/1992.
 [3] N. Borenstein, N. Freed, "MIME (Multipurpose Internet Mail
 Extensions) Part One: Mechanisms for Specifying and Describing
 the Format of Internet Message Bodies", RFC 1521, 09/23/1993.
 [4] T. Berners-Lee, D. Connolly, "Hypertext Markup Language - 2.0",

RFC 1866, 11/03/1995.
 [5] T. Berners-Lee, L. Masinter, M. McCahill, "Uniform Resource
 Locators (URLs)", RFC 1738, 12/20/94.

https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/draft-pics-services-00.txt
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc1866
https://datatracker.ietf.org/doc/html/rfc1738

18. Acknowledgments

 Primary authors of this document:

 Tim Krauskopf, Spyglass
 Jim Miller, W3C
 Paul Resnick, AT&T
 G. Winfield Treese, OpenMarket

 Additional contributors:

 Brenda Baker, AT&T
 Tim Berners-Lee, W3C
 Roxana Bradescu, AT&T
 Daniel W. Connolly, W3C
 Roy Fielding, W3C
 Jay Friedland, SurfWatch
 Michael Gordon, Prodigy
 Wayne Gramlich, Sun
 Woodson Hobbs, NewView
 Rohit Khare, W3C
 Charlie Kim, Apple
 John C. Klensin, MCI
 Ann McCurdy, Microsoft
 Rich Petke, CompuServe
 Dave Raggett, W3C
 Bob Schloss, IBM
 David Singer, IBM
 Michael Smith, Prodigy
 Marcy Swenson, Providence Systems
 Jason Thomas, MIT

19. Author's Address

 PICS Technical Committee
 World Wide Web Consortium
 545 Technology Square
 Cambridge, MA 02139
 Phone: 617-253-3194
 EMail: pics-spec-comments@w3.org

Temporary Appendix A: Why HTTP For Label Bureaus

 This section is not expected to be contained in future versions of
 this document.

 Instead of extending HTTP, we considered proposals for
 special-purpose label transport protocols. Before making a final
 decision, we constructed the following lists of pros and cons.

 Advantages of Using HTTP

 o An existing HTTP server can be used as a PICS label bureau. This
 is particularly useful in the short term. CGI scripts at the
 HTTP server can handle the special header fields of a request for
 labels.
 o A label returned from a label bureau and a label returned along
 with a document from an HTTP server can use identical label
 formats.
 o Client programs that already support HTTP will have much less new
 code to implement.
 o Client programs that do not support HTTP will have to support a
 new protocol in any case. It may be easier to support HTTP than
 a newly defined label transport protocol, because of available
 software libraries.
 o Several protocol elements are already fully specified by HTTP
 that would be required in any PICS protocol.

 o Date and time formats.
 o Content encoding types.
 o Character set and Internationalization issues.
 o Error/result conditions. Both result categories (extensible),
 as well as a sample set of messages are specified.
 o Handling of expiration dates for each URL queried.

 o HTTP is quite stable, has not diverged, and is well accepted.
 o Security and payment systems either exist or are being developed
 for HTTP. A binary format may also be developed for speed. PICS
 need not reinvent such systems.
 o Firewalls tend to allow HTTP headers to be transmitted already.
 A new protocol would take much longer to be accepted.
 o A reliable connection (initially TCP based), ASCII-based protocol
 seems desirable initially.
 o Current extensibility already defines how extensions to PICS
 itself should be accomplished.

 Advantages of Creating a New Protocol Instead of Using HTTP

 o A new protocol would avoid any HTTP protocol wars.
 o Label bureaus and clients would not need to be updated to
 accommodate HTTP changes.
 o RFC 822 and other precedents could still be used in the design of
 a new protocol.
 o A binary format could be considered initially for speed.
 o UDP or other datagram lookups could be considered.

Temporary Appendix B: FAQ - Frequently Asked Questions

 This section is not expected to be contained in future versions of

https://datatracker.ietf.org/doc/html/rfc822

 this document.

 Why is there no ftp, gopher, or netnews protocol for requesting
 labels along with a document?

 Labels can be sent as additional headers in any protocol that
 employs RFC 822 style headers. We have not yet determined,
 however, convenient extensions to protocols other than HTTP to
 permit requests that ask for labels created by specific services.
 We may specify such extensions in the future.

 How do you get labels for items on FTP, Gopher, or netnews servers?
 Are we forcing all FTP implementations to implement all of HTTP as
 well?

 FTP, Gopher, and netnews servers need not distribute PICS labels.
 Labels for items on such servers can be retrieved from an
 HTTP-based label bureau.

 The PICS premise is that all compliant clients will have to
 implement some new protocol. The subset of HTTP which would be
 required for obtaining a PICS label can be minimal. HTTP will be
 no more difficult to implement in an FTP (or other) client than a
 brand-new protocol that provides similar features.

 Can existing HTTP servers be used as PICS label bureaus?

 Using CGI scripts, or with a small amount of added code in the
 HTTP server, an existing HTTP server can be configured to access
 a database of labels and return that information coded as
 additional HTTP Headers. Most of the work is in the lookup and
 formatting of the labels themselves, not the modifications to
 HTTP.

 How do I design a really fast PICS label bureau? Won't the overhead
 be too much?

 HTTP already explicitly defines the minimum fields required and
 then what rules must be followed when additional information is
 useful to the transaction. For example, HTTP does not require
 that clients provide "Accept:" headers to indicate preferred MIME
 types for the content, but if they are provided, servers can
 match up available formats with the client's request. An HTTP
 server may be designed to optimize throughput or to optimize the
 appearance of the result, or to adjust to the client software's
 preference.

 If you minimize the server's response to one line, plus the label
 information, you are already dealing with the minimum amount of
 data transfer possible to obtain a label. In addition, most
 performance issues for PICS will probably be addressed with
 caching, not by reducing lookup time for a single label. Caching

https://datatracker.ietf.org/doc/html/rfc822

 optimization requires meta-data which can be easily encoded
 within HTTP headers.

 How can we keep the PICS extensions from getting tied up in HTTP
 standardization?

 The management of header extensions for HTTP has been an issue of
 discussion and work by the HTTP group for some time. The HTTP
 specification lays down specific rules for the handling of
 extensions which guarantee that those extensions will not be made
 invalid by any revisions of HTTP itself. In addition, the W3C is
 working on a system (PEP) for managing and negotiating HTTP
 extensions even more intelligently.

 The worst risk seems to be that HTTP could be upgraded to a new
 revision level forcing some HTTP implementations to support
 multiple versions (1.0 and 2.0, for example) or forcing some PICS
 bureaus to update their protocol as well. Hopefully a major
 update in HTTP would bring enough benefits for PICS to make any
 update worthwhile.

 What is PEP and Why is PICS Using It?

 The Protocol Extension Proposal from the World Wide Web
 Consortium uses a trio of header fields (Protocol,
 Accept-Protocol, and Content-Encoding) to allow a HTTP client and
 server to do sophisticated negotiation about the set of header
 fields and their meanings. It is being proposed for use in HTTP
 1.2 and HTTP-ng, and is currently under careful scrutiny by the
 W3C Security Editorial Board to make sure that it contains the
 features necessary to provide security for general document
 transmission as well as electronic payments.

 PICS faces many of the same problems that face the security and
 electronic payment community. In PICS the issue revolves around
 the ability for the client to tell the server from which rating
 services it would like to have labels. This is a simple
 negotiation problem of the kind PEP was designed to solve.
 Rather than invent an orthogonal mechanism it seemed best to use
 one that is already being proposed and investigated.

 What if PEP Does Not Catch On?

 If the general extension mechanism specified by PEP does not
 become a generic feature of HTTP servers, PICS label bureaus will
 need to look for the specific header line beginning
 Accept-Protocol: PICS/1.0 and process it to determine the rating
 request. PICS clients will need to look for and process the
 specific header lines PICS-Label and PICS-Status. We will also
 have to hope that no other group tries to extend HTTP in a way
 that uses headers named PICS-Label or PICS-Status.

This Internet Draft Expires on May 21, 1996

