
Workgroup: QUIC Working Group

Internet-Draft: draft-piraux-quic-plugins-00

Published: 9 March 2020

Intended Status: Experimental

Expires: 10 September 2020

Authors: M. Piraux

UCLouvain

Q. De Coninck

UCLouvain

F. Michel

UCLouvain

F. Rochet

UCLouvain

O. Bonaventure

UCLouvain

QUIC Plugins

Abstract

The extensibility of Internet protocols is a key factor to their

success. Yet, their implementations are often not designed with

agility in mind. In this document, we leverage the features of the

QUIC protocol and propose a solution to dynamically extend QUIC

implementations. Our solution relies on QUIC Plugins that allow

tuning and extending the QUIC protocol on a per-connection basis.

These platform-independent plugins are executed inside a sandboxed

environment which can be included in QUIC implementations. We

describe how such plugins can be used in different use cases.

This document is a straw-man proposal. It aims at sparking

discussions on the proposed approach.

Note to Readers

Discussion of this document takes place on the QUIC Working Group

mailing list (quic@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/quic/.

Source for this draft and an issue tracker can be found at https://

github.com/mpiraux/draft-piraux-quic-plugins.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/quic/
https://mailarchive.ietf.org/arch/browse/quic/
https://github.com/mpiraux/draft-piraux-quic-plugins
https://github.com/mpiraux/draft-piraux-quic-plugins
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 10 September 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Dynamically extensible protocol implementations

2.1. Requirements

3. Pluginizing QUIC

4. Exchanging QUIC Plugins

5. Examples of use-cases

5.1. Tunable acknowledgments policy

5.2. Pluggable congestion controller

5.3. Application-driven stream scheduling

5.4. More advanced QUIC extensions

6. QUIC Plugins Authenticity

6.1. Central Authorities

6.2. Plugin Transparency

6.3. Comparing Certificate Transparency and Plugin Transparency

7. Security Considerations

8. IANA Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

9. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

Internet hosts rely on protocols to efficiently exchange

information. Most protocols are designed assuming a layered model.

In such a layered protocol model, a protocol implementation is often

represented as a black-box that uses the service provided by the

underlying layer to offer an enhanced Application Programming

Interface (API) to the upper layer. This is illustrated in Figure 1.

Figure 1: A protocol implementation exposes an API to the upper layer

Different protocols expose different APIs. In the transport layer,

the socket API is the most popular one. It was originally defined

with the TCP and UDP protocols in mind, but has been extended to

support SCTP [RFC6458] and Multipath TCP [RFC6897]. The TAPS working

group is currently defining new APIs for the transport services [I-

D.ietf-taps-interface].

An important benefit of having standardized APIs is that if two

implementations expose the same API, it is possible to replace one

by the other without changing anything in the upper layers.

Besides exposing an API to the layer above, many protocol

implementations also expose an API to management protocols such as

SNMP, IPFIX or NETCONF. For example, a TCP implementation exposes

the variables and tables defined in the TCP part of the MIB-2

[RFC1213][RFC4022]. There is ongoing work in developing a YANG model

for TCP implementations [I-D.scharf-tcpm-yang-tcp]. This is

illustrated in the left part of Figure 1.

¶

¶

¶

¶

Layer N+1

---------- +----------- API -----------+

Management | |

Protocol | |

<--------->| Protocol implementation |

 | |

 +---------------------------+

 || /\

 \/ ||

Layer N-1

¶

¶

¶

These management APIs expose abstract configuration parameters and

statistics about the key operations performed by a protocol

implementation to offer more control to the upper layer. They have

been useful in configuring and operating a wide range of protocol

implementations. As different implementations expose the same

abstraction, it becomes possible for operators to configure and

manage different implementations by using the same tool in a unified

manner.

A protocol implementation exchanges messages with other

implementations by leveraging the service provided by the underlying

layer. For example, a TCP implementation interacts through the

socket API and exchanges TCP segments with remote hosts through the

underlying IP protocol. Protocol designers usually define transport

and application protocols in two parts:

a series of messages that are encoded using a specific format.

a Finite State Machine that defines how hosts react to commands

from the layer above or to the reception of a specific message.

This model has been used to represent a wide range of Internet

protocols. Typically, the Finite State Machine and the syntax of the

messages are described in a single or a series of documents that are

heavily discussed within IETF working groups before reaching a

consensus and getting a final specification. The ongoing work on the

finalization of the first version of the QUIC specification is a

recent example of such efforts [I-D.ietf-quic-transport].

Once the first stable version of the specification of a protocol has

been approved, IETF working groups typically observe the deployment

of the protocol and improve it based on the received feedback. If

the protocol is successful, it often triggers suggestions for

extensions or improvements. These extensions are important for these

successful protocols, but they often take a lot of time to be

deployed. Experience with TCP shows that extensions, such as

selective acknowledgments [RFC2018], support for large windows and

timestamps [RFC7323] or more recently Multipath TCP [RFC6824] took

more than a decade to be widely deployed. There are several

considerations that can explain the difficulty of deploying TCP

extensions, ranging from the fact that TCP is often part of

operating system kernels, which evolve at a slower pace than

applications, to middlebox interference.

Looking at other IETF protocols, we rarely observe successful

protocols that have not been extended over the years. Thus, the need

for extensibility could be seen as an invariant for a successful

Internet protocol. In addition to the extensions that were accepted

by the IETF and eventually deployed, there are many other extensions

¶

¶

* ¶

*

¶

¶

¶

that correspond to specific applications or more restricted use

cases. These extensions would be very valuable in specific

environments, but their proponents never managed to convince the

relevant IETF working group and implementers of their benefits.

Besides the protocol extensions, we also observe that there are some

protocol behaviors that can be difficult to precisely express using

a set of parameters that are exchanged inside a message. Here are

two recent examples that illustrate this difficulty.

A first example is the transmission of acknowledgments in reliable

transport protocols. There is a trade-off between the feedback

provided by the acknowledgments and the resources (bandwidth and

CPU) required to generate and process them. Various heuristics have

been proposed in TCP to generate these ACKs [RFC1122],[RFC5681],

[RFC3449],[RFC5690]. These heuristics are deployed independently on

receivers, but for some of them the senders need to adapt by at

least taking into account the fact that some acknowledgments were

delayed while measuring the round-trip-time. A similar discussion

has started for QUIC. Given the flexibility of QUIC, researchers

have proposed to define an acknowledgment strategy as a set of

parameters that are exchanged in a new QUIC frame over each

connection [I-D.fairhurst-quic-ack-scaling],[I-D.iyengar-quic-

delayed-ack]. This brings more flexibility than in TCP where the

limited size of the header made it impossible to exchange such

information.

A second example in the application layer is the support for stream

priorities in HTTP/2 [RFC7540]. Since HTTP/2 provides parallel

streams, some application developers have expressed their need for

prioritizing some streams over others. The HTTP/2 protocol defines

such priorities, but they are not widely used and some have proposed

to deprecate them [I-D.peon-httpbis-h2-priority-one-less]. In spite

of this, a proposal for stream prioritization for HTTP/3 already

exists [I-D.kazuho-httpbis-priority]. [LNBIP2020] evaluates stream

scheduling for HTTP/3 and claims that performances are heavily

impacted by the adopted stream scheduling.

These examples illustrate the difficulty of precisely expressing

complex behaviors in a few parameters that are exchanged inside

packets.

In this document, we propose a different approach to specify and

implement protocols to better address the extensibility requirement.

We focus on the QUIC protocol in this document, but similar ideas

could be applied to other IETF protocols or networking systems. We

leverage the recent results in extending operating system kernels

[eBPF] or web-browsers [WebAssembly] with virtual machines that

execute bytecodes to propose a new approach to define complex

¶

¶

¶

¶

¶

behaviors inside protocols. We first describe the general

architecture of the proposed approach in Section 2. We then provide

a few examples showing how such an approach could be applied to the

next version of the QUIC protocol in Section 3.

2. Dynamically extensible protocol implementations

Experience with successful Internet protocols shows that once a

protocol gets (widely) deployed, it attracts new use cases and

proposals to extend and improve it. Most of the key Internet

protocols, including IP, TCP, HTTP, DNS, BGP, OSPF, IS-IS, ... have

been improved over the years. Today, the developer of an

implementation of any of these protocols need to consult dozens of

RFCs to find their complete specification.

Despite the importance of extensions to those key Internet

protocols, we still do not design them under the assumption that

they will evolve over decades and that their implementations should

be made agile. In this document, we propose a new organization for

protocol implementations. Instead of trying to pack as many features

as possible inside a protocol implementation that is considered as a

blackbox, we consider a protocol implementation as an open system

which can be extended to support new features in a safe and agile

manner. Our vision is that such an implementation exposes an

internal Plugin API which can be leveraged by code extensions that

we call Plugins in this document. This is illustrated in Figure 2.

Figure 2: A pluginized protocol implementation exposes a Plugin API

that enables plugins to dynamically extend its operation

These Plugins extend the protocol by modifying its messages or its

Finite State Machine. Consider Figure 3 as an example which

illustrates a simple receiver with three states, i.e. Receiving,

Data rcvd and Ack needed. This receiver waits until either two data

packets have been received or 10 milliseconds have passed after

receiving a data packet before sending an acknowledgment. Its

¶

¶

¶

Layer N+1

---------- +----------- API -----------+

Management | () () (x)<------ Plugin_A

Protocol | |

<--------->| Protocol implementation |

 | () (x)<--------- Plugin_B

 +---------------------------+

 || /\

 \/ || Legend:

--------------------------------------- () Part of the Plugin API

Layer N-1 (x) Plugin injected

implementation consists of three actions, receive(), send_ack() and

wait().

An application using this receiver could benefit from tuning this

acknowledgment policy. For instance, another state could be chained

between Data rcvd and Ack needed, so that acknowledgments can be

batched for more than two data packets. Similarly, a more advanced

heuristic could be added to generate acknowledgments, e.g. taking

into account the size of data packets to detect transmission tails.

Figure 3: Finite State Machine of a simple receiver

Using this Plugin API, a protocol can be extended to add new

messages and to modify its Finite State Machine, i.e. modify its

states and transitions. This document defines such protocol as a

pluginized protocol. Figure 4 illustrates how this simple receiver

could be extended. In this example a new state is added so that a

single acknowledgment can be sent for three received data packets.

Figure 4: Extended Finite State Machine of a pluginized receiver

¶

¶

+-----------+ receive() +-----------+

| Receiving |>----------->| Data rcvd |

+-----------+ +-v-------v-+

 ^ | |

 | wait(10) | | receive()

 | | |

 | | |

 | send_ack() +--v-------v-+

 \-------------<| Ack needed |

 +------------+

¶

+-----------+ receive() +-----------+ receive() *+++++++++++++*

| Receiving |>----------->| Data rcvd |>+++++++++++>| Data rcvd 2 |

+-----------+ +-v---------+ *+v+++++++++v+*

 ^ | ! !

 | wait(10) | wait(5) ! !

 | | /+++++++++++++++++/ !

 | | ! !

 | send_ack() +--v-------v-+ receive() !

 \-------------<| Ack needed |<++++++++++++++++++++++++/

 +------------+

Legend:

 >+++> Transition added by a Plugin

 +++

 | S | State added by a Plugin

 +++

REQ1:

REQ2:

REQ3:

REQ4:

REQ5:

Due to space constraints, the case of adding a new action is not

depicted in Figure 4. In this example, a new action data_not_full()

could be added by a Plugin. This action could be taken whenever the

last received data packet is not full, indicating the end of a

series of packets. Transitions from the states Data rcvd and Data

rcvd 2 to the state Ack needed with this action could be added by

this Plugin.

2.1. Requirements

There are different ways of implementing the idea of dynamically

extending protocols by using plugins. We list here some requirements

that any solution should support:

Different implementations should expose the same Plugin API,

e.g. as different implementations expose the same SNMP MIB.

It should be possible to dynamically attach a plugin to one

instance of an implementation. For instance, for a connection-

oriented protocol, it should be possible to associate a plugin to

a given connection. Different connections could have different

sets of plugins.

It should be possible to execute the same plugin on different

interoperable implementations of the same protocol.

It should be possible for a protocol implementation to

restrict the operations that a given plugin can execute.

Plugins should be sandboxed and the application should be

safe using them, for instance regarding memory corruption and

runtime traps.

One possible way to realize this new architecture is to include a

virtual machine inside each protocol implementation and expose a

small Plugin API accessible through the virtual machine. Several

efficient virtual machines have been proposed and used in related

environments [eBPF] [WebAssembly]. They provide a sandbox

controlling the operations a plugin can execute and the memory that

it can access. Since the same virtual machine can be provided on

different platforms, it becomes possible to execute the same plugin

on different implementations of a given protocol exposing the same

Plugin API.

The idea of extending protocols through plugins can be applied to

different Internet protocols. In this document, we focus on adding

plugins to QUIC since it is a recent and flexible protocol that

includes useful security features. A similar approach has been

applied to OSPF and BGP [ICNP] and partially to TCP [TCP-Options-

BPF]. Other networking systems, such as the Tor network [FAN] or

¶

¶

¶

¶

¶

¶

¶

¶

Cryptocurrency networks, may also benefit from extending their

protocols through plugins. In some cases, the extensibility through

plugins may help to solve fundamental security issues [DROPPING]

linked to both compliance to the Postel principle and slow

deployment processes.

3. Pluginizing QUIC

Conceptually, we break down a QUIC implementation execution flow

into generic subroutines. These are specified functions called

protocol operations. These protocol operations implement a given

part of the QUIC protocol, for example the acknowledgment generation

or the computation of the round-trip-time. Some are generic and

depend on a parameter, for instance parsing a QUIC frame is a

generic operation that depends on the type of QUIC frame. This

version of the document does not elaborate exhaustively on the

protocol operations composing a Pluginized QUIC implementation. The

next versions of this document will work on defining a set of

protocol operations.

A QUIC Plugin consists of platform-independent bytecode which

modifies or extends the behavior of a QUIC implementation. Adding

the functionality of a QUIC Plugin consists in adding or replacing a

set of protocol operations implemented by this bytecode. This action

of adding a QUIC Plugin to a QUIC connection is referred to as

injecting a QUIC Plugin. Injecting a plugin is limited to a given

QUIC connection.

Its bytecode is run inside a sandboxed execution environment. It has

restricted access to the state of a QUIC connection through the

Plugin API.

The scope of a QUIC Plugin is restricted by both the limitations of

this execution environment, e.g. in terms of instruction set and

quantity, and by the surface exposed by the Plugin API, e.g. the

quantity of state that can be read from or written to by a plugin.

The Plugin API also defines a set of protocol operations to which

QUIC Plugins can be injected. For instance, a QUIC implementation

might restrict QUIC Plugins injection to its acknowledgment

generation policy, e.g. the protocol operation deciding whether

sending an ACK frame is needed.

A QUIC Plugin can be injected by several means. The application can

inject plugins to tune its underlying QUIC connection. QUIC peers

can exchange and inject plugins over a QUIC connection, as described

in Section 4. Users can set a default configuration injecting

plugins on their devices.

¶

¶

¶

¶

¶

¶

Considering again Figure 3 applied to QUIC Plugins, the actions are

the protocol operations. The states of the FSM are defined by the

QUIC connection state, which can be modified and extended during the

execution of a protocol operation through the Plugin API. The

transitions are calls to protocol operations.

4. Exchanging QUIC Plugins

Injecting QUIC Plugins locally allows the application to tune the

underlying QUIC implementation to its needs. But some use-cases

requires adapting the peer behavior. In those cases, being able to

exchange plugins helps to fill this gap.

QUIC offers both data multiplexing and encryption. Using those

mechanisms, the QUIC Plugins used for a given connection could be

safely transferred over this connection in a new dedicated stream,

akin to the crypto stream. This does not impact the application data

transfer, as illustrated in Figure 5. In this example, an HTTP/3

request is interleaved with the transfer from the server to the

client of a QUIC Plugin controlling the acknowledgment policy.

Figure 5: Interleaving a QUIC Plugin transfer over a QUIC connection

A local policy could restrict the type of plugins that can be

exchanged and injected, e.g. in terms of connection state accessed

and in terms of protocol operations affected. This version of

document does not describe further how the negotiation of QUIC

Plugins takes place.

QUIC Plugins could also be transferred out of band. The application

using QUIC can then inject these plugins locally.

¶

¶

¶

 Client Server

 | (QUIC connection handshake) |

 | |

 | STREAM[0, "HTTP/3 GET"] |

 |------------------------------------>|

 | |

 | STREAM[0, "200 OK..."] |

 |<------------------------------------|

 | |

 | PLUGIN["ack_delay", bytecode] |

 |<------------------------------------|

 | |

 | STREAM[0, "...", FIN] |

 |<------------------------------------|

¶

¶

5. Examples of use-cases

There exist several cases in which being able to modify the behavior

of a QUIC peer, either locally or remotely, is beneficial. This

first version of the document focus on enabling the extension of

simple QUIC mechanisms. Three of them are documented in this

section. Contributions to this document regarding new uses-cases are

welcomed.

5.1. Tunable acknowledgments policy

The large diversity of Internet paths also counts networks involving

a significant path asymmetry. Those paths require the receiver to

adapt its feedback rate to the sender. The performance of transport

protocols such as TCP on those paths has been studied in depth and

reported in [RFC3449]. A method for controlling the rate of receiver

feedback of TCP, i.e. the rate of ACKs, has been proposed in

[RFC5690].

Proposals for controlling the acknowledgment policy of QUIC already

exist. [I-D.fairhurst-quic-ack-scaling] proposes a change to the

default policy for asymmetric paths. [I-D.iyengar-quic-delayed-ack]

describes a QUIC extension enabling a QUIC endpoint to control the

acknowledgment policy of its peer. For that purpose, they model the

acknowledgment policy depending on a few parameters and introduce a

new QUIC frame to signal new values for those parameters.

A QUIC Plugin could allow implementing a new acknowledgment with a

fine granularity. For example, in the case of an application that

generates bursty traffic, such as a real-time video streaming

application, a QUIC Plugin allows embedding application knowledge,

i.e. the characteristics of such bursts, inside the acknowledgment

generation policy. Exchanging and injecting this plugin allows

controlling the other peer behavior.

5.2. Pluggable congestion controller

There exists many congestion control algorithms. Each of them has

been designed for a given context, i.e. a range of applications and

a range of Internet paths. For instance, NewReno [RFC6582] has been

designed for optimizing the web use-case on common Internet paths.

Westwood [Westwood] is a modification of NewReno to better

accommodate Internet paths with a high bandwidth-delay product, such

as satellite links.

Efforts to restructure congestion controllers within a common

framework have been presented in past works such as [CCP]. Such a

framework eases the development and maintenance of those algorithms.

It also enables rapid prototyping and A/B testing.

¶

¶

¶

¶

¶

¶

[TCP-Options-BPF] proposes a new TCP Option, leveraging the TCP-BPF

framework, to negotiate the congestion controller to use. The QUIC

specification does not specify a similar mechanism. Negotiating the

congestion controller used allows one endpoint to tune the other,

provided that it implements the algorithm. QUIC Plugins could allow

the application to directly plug the required congestion controller

and to exchange it with the other peer. This flexibility allows the

application to choose the best congestion controller for its

requirements.

5.3. Application-driven stream scheduling

QUIC streams allow the application to multiplex several bytestreams

over a single QUIC connection. Yet, the QUIC specification does not

provide a mechanism for exchanging prioritization information nor

for indicating the relative priority of streams. As described in

Section 2.3 of [I-D.ietf-quic-transport], "A QUIC implementation

should provide ways in which an application can indicate the

relative priority of streams". A QUIC implementation could allow

QUIC Plugins to extend or override its stream scheduler.

For other applications using QUIC with a broad range of

requirements, a flexible approach for defining the stream scheduling

policy is key to best fit their needs. QUIC Plugin offer a flexible

way to embed application knowledge inside the QUIC implementation.

5.4. More advanced QUIC extensions

Exposing more protocol operations through the API proposed to

plugins by the QUIC implementation allows implementing more advanced

QUIC Plugins. Each protocol operation offers flexibility over the

QUIC implementation. [PQUIC] demonstrates how this approach can be

used to implement Multipath QUIC [I-D.deconinck-quic-multipath] and

[QUIC-FEC] entirely using plugins.

6. QUIC Plugins Authenticity

When exchanging and injecting QUIC Plugins, guaranteeing there

authenticity and safety is important. This section describes two

possible approaches for this purpose, the first guarantees the

authenticity of the QUIC Plugins, the second guarantee both their

authenticity and an open set of security properties with regard to

QUIC Plugins.

6.1. Central Authorities

This first approach leverages the central authorities commonly used

to secure HTTPS. In this approach, each QUIC Plugin could be

associated to some level of trust regarding its origin. A QUIC

Plugin may be authenticated using a certificate, itself certified by

¶

¶

¶

¶

¶

a central authority. Consequently, a QUIC implementation supporting

QUIC plugins may restrict their exchange and only accept plugins

authenticated using the same certificate used for establishing the

QUIC connection. This approach only guarantees the authenticity of a

QUIC Plugin.

6.2. Plugin Transparency

This second approach is presented in the [PQUIC] research paper, and

suggests going beyond the restrictive approach of a centralized

trust model. The centralized trust model obliges the server to

update manually their list of supported plugins. It also prevents

the client from injecting a plugin that the server has not marked as

supported, e.g. because the server is unaware of its existence, or

because its list has not been updated.

The suggested design, called Plugin Transparency, proposes a

methodology to transparently distribute plugins created by

independent developers and verified by freely selected plugin

validators. Those validators endorse verifying some publicly known

safety or security properties. A QUIC endpoint can announce a set of

conditions to accept a plugin as a first order logic formula bound

to plugin validators. Whenever the other peer is willing to inject a

plugin, it sends a (unforgeable) proof fulfilling the requirements

expressed by this logic formula. If the requirements are met, then

the endpoint may safely accept the plugin and could update its list

of supported plugin. Compared to the central authority approach,

supported plugins are updated as part of the protocol design or as a

consequence of any change to the default logic formula bound to

plugin acceptance.

6.3. Comparing Certificate Transparency and Plugin Transparency

Certificate Transparency (CT) [RFC6962] is an attempt to address the

structural issues hidden within the central trust assumption and

prevent mistakes, rogue certificates and rogue authorities from

weakening the system. Plugin Transparency bears similarities to

Certificate Transparency. First, its motivations are drawn from the

same conclusions regarding the danger of central trust models.

Second, similar to CT, it is based on distributing trust assumptions

to secure the system. However, Plugin Transparency offers stronger

properties and eliminates the independent monitoring entities which

hold the resource endowment to continuously monitor the CT log on

the behalf of certificate owners. Indeed, our design offers the

independent developers checking for spurious plugins in O(log(N))

with N the size of the log (instead of O(N) in CT's design). Our

design also offers secure human-readable plugin names that

unambiguously authenticate them and non-equivocation from rogue

plugin validators. Our design is more resilient to failure by

¶

¶

¶

[PQUIC]

[I-D.kazuho-httpbis-priority]

[LNBIP2020]

[CCP]

[I-D.ietf-quic-transport]

[RFC1122]

offering several validators that can be trusted within the logic

formula. For example, a QUIC peer may request a proof bound to any

combination of plugin validators. The detail of Plugin Transparency,

including performance considerations and security proofs are

available in [PQUIC].

7. Security Considerations

The next versions of this document will elaborate on security

considerations following the guidelines of [RFC3552]. Moreover, this

document will consider privacy as part of those considerations.

8. IANA Considerations

This document has no IANA actions.

9. Informative References

De Coninck, Q., Michel, F., Piraux, M., Rochet, F.,

Given-Wilson, T., Legay, A., Pereira, O., and O.

Bonaventure, "Pluginizing QUIC", Proceedings of

SIGCOMM'19 , August 2019, <https://pquic.org>.

Oku, K. and L. Pardue, "Extensible Prioritization Scheme

for HTTP", Work in Progress, Internet-Draft, draft-

kazuho-httpbis-priority-04, 20 November 2019, <http://

www.ietf.org/internet-drafts/draft-kazuho-httpbis-

priority-04.txt>.

Marx, R., De Decker, T., Quax, P., and W. Lamotte,

"Resource Multiplexing and Prioritization in HTTP/2 over

TCP versus HTTP/3 over QUIC", 2020.

Narayan, A., Cangialosi, F., Raghavan, D., Goyal, P.,

Narayana, S., Mittal, R., Alizadeh, M., and H.

Balakrishnan, "Restructuring Endpoint Congestion

Control", Proc. SIGCOMM 2018 , August 2018.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-27, 21 February

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-27.txt>.

Braden, R., Ed., "Requirements for Internet Hosts -

Communication Layers", STD 3, RFC 1122, DOI 10.17487/

RFC1122, October 1989, <https://www.rfc-editor.org/info/

rfc1122>.

¶

¶

¶

https://pquic.org
http://www.ietf.org/internet-drafts/draft-kazuho-httpbis-priority-04.txt
http://www.ietf.org/internet-drafts/draft-kazuho-httpbis-priority-04.txt
http://www.ietf.org/internet-drafts/draft-kazuho-httpbis-priority-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-27.txt
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122

[RFC1213]

[RFC4022]

[RFC5681]

[RFC3449]

[RFC5690]

[RFC6962]

[RFC7540]

[RFC6897]

[RFC6824]

[RFC7323]

McCloghrie, K. and M. Rose, "Management Information Base

for Network Management of TCP/IP-based internets: MIB-

II", STD 17, RFC 1213, DOI 10.17487/RFC1213, March 1991,

<https://www.rfc-editor.org/info/rfc1213>.

Raghunarayan, R., Ed., "Management Information Base for

the Transmission Control Protocol (TCP)", RFC 4022, DOI

10.17487/RFC4022, March 2005, <https://www.rfc-

editor.org/info/rfc4022>.

Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

<https://www.rfc-editor.org/info/rfc5681>.

Balakrishnan, H., Padmanabhan, V., Fairhurst, G., and M.

Sooriyabandara, "TCP Performance Implications of Network

Path Asymmetry", BCP 69, RFC 3449, DOI 10.17487/RFC3449,

December 2002, <https://www.rfc-editor.org/info/rfc3449>.

Floyd, S., Arcia, A., Ros, D., and J. Iyengar, "Adding

Acknowledgement Congestion Control to TCP", RFC 5690, DOI

10.17487/RFC5690, February 2010, <https://www.rfc-

editor.org/info/rfc5690>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://www.rfc-editor.org/info/rfc6962>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Scharf, M. and A. Ford, "Multipath TCP (MPTCP)

Application Interface Considerations", RFC 6897, DOI

10.17487/RFC6897, March 2013, <https://www.rfc-

editor.org/info/rfc6897>.

Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,

"TCP Extensions for Multipath Operation with Multiple

Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,

<https://www.rfc-editor.org/info/rfc6824>.

Borman, D., Braden, B., Jacobson, V., and R.

Scheffenegger, Ed., "TCP Extensions for High

https://www.rfc-editor.org/info/rfc1213
https://www.rfc-editor.org/info/rfc4022
https://www.rfc-editor.org/info/rfc4022
https://www.rfc-editor.org/info/rfc5681
https://www.rfc-editor.org/info/rfc3449
https://www.rfc-editor.org/info/rfc5690
https://www.rfc-editor.org/info/rfc5690
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc6897
https://www.rfc-editor.org/info/rfc6897
https://www.rfc-editor.org/info/rfc6824

[RFC2018]

[RFC6458]

[RFC6582]

[RFC3552]

[I-D.fairhurst-quic-ack-scaling]

[I-D.iyengar-quic-delayed-ack]

[I-D.deconinck-quic-multipath]

[I-D.peon-httpbis-h2-priority-one-less]

Performance", RFC 7323, DOI 10.17487/RFC7323, September

2014, <https://www.rfc-editor.org/info/rfc7323>.

Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP

Selective Acknowledgment Options", RFC 2018, DOI

10.17487/RFC2018, October 1996, <https://www.rfc-

editor.org/info/rfc2018>.

Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.

Yasevich, "Sockets API Extensions for the Stream Control

Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011, <https://www.rfc-editor.org/info/

rfc6458>.

Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida,

"The NewReno Modification to TCP's Fast Recovery

Algorithm", RFC 6582, DOI 10.17487/RFC6582, April 2012,

<https://www.rfc-editor.org/info/rfc6582>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

info/rfc3552>.

Fairhurst, G., Custura, A., and T. Jones, "Changing the

Default QUIC ACK Policy", Work in Progress, Internet-

Draft, draft-fairhurst-quic-ack-scaling-01, 5 March 2020,

<http://www.ietf.org/internet-drafts/draft-fairhurst-

quic-ack-scaling-01.txt>.

Iyengar, J. and I. Swett, "Sender Control of

Acknowledgement Delays in QUIC", Work in Progress,

Internet-Draft, draft-iyengar-quic-delayed-ack-00, 23

January 2020, <http://www.ietf.org/internet-drafts/draft-

iyengar-quic-delayed-ack-00.txt>.

Coninck, Q. and O. Bonaventure, "Multipath Extensions for

QUIC (MP-QUIC)", Work in Progress, Internet-Draft, draft-

deconinck-quic-multipath-04, 5 March 2020, <http://

www.ietf.org/internet-drafts/draft-deconinck-quic-

multipath-04.txt>.

Thomson, M. and R. Peon, "Deprecation of HTTP/2 Priority

Signaling Hints", Work in Progress, Internet-Draft,

draft-peon-httpbis-h2-priority-one-less-00, 25 July 2019,

https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc2018
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6458
https://www.rfc-editor.org/info/rfc6582
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
http://www.ietf.org/internet-drafts/draft-fairhurst-quic-ack-scaling-01.txt
http://www.ietf.org/internet-drafts/draft-fairhurst-quic-ack-scaling-01.txt
http://www.ietf.org/internet-drafts/draft-iyengar-quic-delayed-ack-00.txt
http://www.ietf.org/internet-drafts/draft-iyengar-quic-delayed-ack-00.txt
http://www.ietf.org/internet-drafts/draft-deconinck-quic-multipath-04.txt
http://www.ietf.org/internet-drafts/draft-deconinck-quic-multipath-04.txt
http://www.ietf.org/internet-drafts/draft-deconinck-quic-multipath-04.txt

[I-D.ietf-taps-interface]

[I-D.scharf-tcpm-yang-tcp]

[QUIC-FEC]

[TCP-Options-BPF]

[eBPF]

[Westwood]

[WebAssembly]

[ICNP]

[FAN]

<http://www.ietf.org/internet-drafts/draft-peon-httpbis-

h2-priority-one-less-00.txt>.

Trammell, B., Welzl, M., Enghardt, T., Fairhurst, G.,

Kuehlewind, M., Perkins, C., Tiesel, P., Wood, C., and T.

Pauly, "An Abstract Application Layer Interface to

Transport Services", Work in Progress, Internet-Draft,

draft-ietf-taps-interface-05, 4 November 2019, <http://

www.ietf.org/internet-drafts/draft-ietf-taps-

interface-05.txt>.

Scharf, M., Murgai, V., and M. Jethanandani, "YANG Model

for Transmission Control Protocol (TCP) Configuration",

Work in Progress, Internet-Draft, draft-scharf-tcpm-yang-

tcp-04, 24 February 2020, <http://www.ietf.org/internet-

drafts/draft-scharf-tcpm-yang-tcp-04.txt>.

Michel, F., De Coninck, Q., and O. Bonaventure, "QUIC-

FEC: Bringing the benefits of Forward Erasure Correction

to QUIC", IFIP Networking 2019 , May 2019.

Tran, VH. and O. Bonaventure, "Beyond socket

options: making the Linux TCP stack truly extensible",

IFIP Networking 2019 , May 2019.

Matt Fleming, ., "A thorough introduction to eBPF", Linux

Weekly News , December 2017, <https://old.lwn.net/

Articles/740157/>.

Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., and

R. Wang, "TCP Westwood: End-to-End Congestion Control for

Wired/Wireless Networks", Wireless Networks 8 , 2002.

Haas, A., Rossberg, A., Schuff, D.L., Titzer, B.L.,

Holman, M., Gohman, D., Wagner, L., Zakai, A., and J.F.

Bastien, "Bringing the web up to speed with WebAssembly",

Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation , June

2017.

Wirtgen, T., Denos, C., De Coninck, Q., Jadin, M., and O.

Bonaventure, "The Case for Pluginized Routing Protocols",

2019 IEEE 27th International Conference on Network

Protocols (ICNP) , October 2019.

Rochet, F., Bonaventure, O., and O. Pereira, "Flexible

Anonymous Network", HotPETs , July 2019.

http://www.ietf.org/internet-drafts/draft-peon-httpbis-h2-priority-one-less-00.txt
http://www.ietf.org/internet-drafts/draft-peon-httpbis-h2-priority-one-less-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-taps-interface-05.txt
http://www.ietf.org/internet-drafts/draft-scharf-tcpm-yang-tcp-04.txt
http://www.ietf.org/internet-drafts/draft-scharf-tcpm-yang-tcp-04.txt
https://old.lwn.net/Articles/740157/
https://old.lwn.net/Articles/740157/

[DROPPING]
Rochet, F. and O. Pereira, "Dropping on the Edge:

Flexibility and Traffic Confirmation in Onion Routing

Protocols", Proceedings on Privacy Enhancing Technologies

, July 2018.

Acknowledgments

The authors of Pluginizing QUIC are thanked again for their work

that initiated this proposal. This work was partially supported by

the MQUIC project.

Authors' Addresses

Maxime Piraux

UCLouvain

Email: maxime.piraux@uclouvain.be

Quentin De Coninck

UCLouvain

Email: quentin.deconinck@uclouvain.be

Francois Michel

UCLouvain

Email: francois.michel@uclouvain.be

Florentin Rochet

UCLouvain

Email: florentin.rochet@uclouvain.be

Olivier Bonaventure

UCLouvain

Email: olivier.bonaventure@uclouvain.be

¶

mailto:maxime.piraux@uclouvain.be
mailto:quentin.deconinck@uclouvain.be
mailto:francois.michel@uclouvain.be
mailto:florentin.rochet@uclouvain.be
mailto:olivier.bonaventure@uclouvain.be

	QUIC Plugins
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Dynamically extensible protocol implementations
	2.1. Requirements

	3. Pluginizing QUIC
	4. Exchanging QUIC Plugins
	5. Examples of use-cases
	5.1. Tunable acknowledgments policy
	5.2. Pluggable congestion controller
	5.3. Application-driven stream scheduling
	5.4. More advanced QUIC extensions

	6. QUIC Plugins Authenticity
	6.1. Central Authorities
	6.2. Plugin Transparency
	6.3. Comparing Certificate Transparency and Plugin Transparency

	7. Security Considerations
	8. IANA Considerations
	9. Informative References
	Acknowledgments
	Authors' Addresses

