
Workgroup: Network Working Group

Internet-Draft: draft-piraux-tcpls-03

Published: 21 October 2022

Intended Status: Experimental

Expires: 24 April 2023

Authors: M. Piraux

UCLouvain

F. Rochet

University of Namur

O. Bonaventure

UCLouvain

TCPLS: Modern Transport Services with TCP and TLS

Abstract

This document specifies a protocol leveraging TCP and TLS to provide

modern transport services such as multiplexing, connection migration

and multipath in a secure manner.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/mpiraux/draft-piraux-tcpls.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/mpiraux/draft-piraux-tcpls
https://github.com/mpiraux/draft-piraux-tcpls
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

2.1. Notational conventions

3. Modern Transport Services

4. TCPLS Overview

4.1. Multiple Streams

4.2. Multiple TCP connections

4.2.1. Joining TCP connections

4.2.2. Robust session establishment

4.2.3. Failover

4.2.4. Migration

4.2.5. Multipath

4.3. Record protection

4.4. Closing a TCPLS session

4.5. Zero-Copy Receive Path

5. TCPLS Protocol

5.1. TCPLS TLS Extensions

5.1.1. TCPLS

5.1.2. TCPLS Join

5.1.3. TCPLS Token

5.2. TCPLS Frames

5.2.1. Padding frame

5.2.2. Ping frame

5.2.3. Stream frame

5.2.4. ACK frame

5.2.5. New Token frame

5.2.6. Connection Reset frame

5.2.7. New Address frame

5.2.8. Remove Address frame

5.2.9. Stream Change frame

6. Security Considerations

7. IANA Considerations

7.1. TCPLS TLS Extensions

7.2. TCPLS Frames

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Alternative Designs

A.1. Securing new TCP connections with New Session Tickets

Acknowledgments

Change log

Since draft-piraux-tcpls-02

¶

Since draft-piraux-tcpls-01

Since draft-piraux-tcpls-00

Authors' Addresses

1. Introduction

The TCP/IP protocol stack continuously evolves. In the early days,

most applications were interacting with the transport layer (mainly

TCP, but also UDP) using the socket API. This is illustrated in

Figure 1.

Figure 1: The classical TCP/IP protocol stack

The TCP/IP stack has slowly evolved and the figure above does not

anymore describe current Internet applications. IPv6 is now widely

deployed next to IPv4 in the network layer. In the transport layer,

protocols such as SCTP [RFC4960] or DCCP [RFC6335] and TCP

extensions including Multipath TCP [RFC8684] or tcpcrypt [RFC8548]

have been specified. The security aspects of the TCP/IP protocol

suite are much more important today than in the past [RFC7258]. Many

applications rely on TLS [RFC8446] and their stack is similar to the

one shown in Figure 2.

Figure 2: Today's TCP/IP protocol stack

Recently, the IETF went one step further in improving the transport

layer with the QUIC protocol [RFC9000]. QUIC is a new secure

transport protocol primarily designed for HTTP/3. It includes the

reliability and congestion control features that are part of TCP and

integrates the security features of TLS 1.3 [RFC8446]. This close

¶

+------------------------------+

| Application |

+------------------------------+

| TCP/UDP |

+------------------------------+

| IPv4 |

+------------------------------+

¶

+------------------------------+

| Application |

+------------------------------+

| TLS |

+------------------------------+

| TCP |

+------------------------------+

| IPv4/IPv6 |

+------------------------------+

integration between the reliability and security features brings a

lot of benefits in QUIC. QUIC runs above UDP to be able to pass

through most middleboxes and to be implementable in user space.

While QUIC reuses TLS, it does not strictly layer TLS on top of UDP

as DTLS [I-D.ietf-tls-dtls13]. This organization, illustrated in

Figure 3 provides much more flexibility than simply layering TLS

above UDP. For example, the QUIC migration capabilities enable an

application to migrate an existing QUIC session from an IPv4 path to

an IPv6 one.

Figure 3: QUIC protocol stack

In this document, we revisit how TCP and TLS 1.3 can be used to

provide modern transport services to applications. We apply a

similar principle and combine TCP and TLS 1.3 in a protocol that we

call TCPLS. TCPLS leverages the security features of TLS 1.3 like

QUIC, but without begin simply layered above a single TCP

connection. In addition, TCPLS reuses the existing TCP stacks and

TCP's wider support in current networks. A preliminary version of

the TCPLS protocol is described in [CONEXT21].

Figure 4: TCPLS in the TCP/IP protocol stack

In this document, we use the term TLS/TCP to refer to the TLS 1.3

protocol running over one TCP connection. We reserve the word TCPLS

for the protocol proposed in this document.

¶

+------------------------------+

| Application |

+------------------------------+

|.......... |

| TLS | QUIC |

|.......... | UDP |

+------------------------------+

| IPv4/IPv6 |

+------------------------------+

¶

+------------------------------+

| Application |

+------------------------------+

|.......... |

| TLS | TCPLS |

|.......... | TCP |

+------------------------------+

| IPv4/IPv6 |

+------------------------------+

¶

This document is organized as follows. First, Section 3 summarizes

the different types of services that modern transports expose to

application. Section 4 gives an overview of TCPLS and how it

supports these services. Finally, Section 5 describes the TCPLS in

more details and the TLS Extensions introduced in this document.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2.1. Notational conventions

This document uses the same conventions as defined in Section 1.3 of

[RFC9000].

This document uses network byte order (that is, big endian) values.

Fields are placed starting from the high-order bits of each byte.

3. Modern Transport Services

Application requirements and the devices they run on evolve over

time. In the early days, most applications involved single-file

transfer and ran on single-homed computers with a fixed-line

network. Today, web-based applications require exchanging multiple

objects, with different priorities, on devices that can move from

one access network to another and that often have multiple access

networks available. Security is also a key requirement of

applications that evolved from only guaranteeing the confidentiality

and integrity of application messages to also preventing pervasive

monitoring.

With TCP and TLS/TCP, applications use a single connection that

supports a single bytestream in each direction. Some TCP

applications such as HTTP/2 [RFC7540] use multiple streams, but

these are mapped to a single TCP connection which leads to Head-of-

Line (HoL) blocking when packet losses occur. SCTP [RFC4960]

supports multiple truly-concurrent streams and QUIC adopted a

similar approach to prevent HoL blocking.

Modern transport services also changed the utilization of the

underlying network. With TCP, when a host creates a connection, it

is bound to the IP addresses used by the client and the server

during the handshake. When the client moves and receives a different

IP address, it has to reestablish all TCP connections bound to the

previous address. When the client and the server are dual-stack,

they cannot easily switch from one address family to another. Happy

¶

¶

¶

¶

¶

¶

Eyeballs [RFC8305] provides a partial answer to this problem for web

applications with heuristics that clients can use to probe TCP

connections with different address families. With Multipath TCP, the

client and the server can learn other addresses of the remote host

and combine several TCP connections within a single Multipath TCP

connection that is exposed to the application. This supports various

use cases [RFC8041]. QUIC [RFC9000] enables applications to migrate

from one network path to another, but not to simultaneously use

different paths.

4. TCPLS Overview

In order for TCPLS to be widely compatible with middleboxes that

inspect TCP segments and TLS records, TCPLS does not modify the TCP

connection establishment and only adds a TLS extension to the TLS

handshake. Figure 5 illustrates the opening of a TCPLS session which

starts with the TCP 3-way handshake, followed by the TLS handshake.

In the Extensions of the ClientHello and in the server

EncryptedExtensions, the tcpls TLS Extension is introduced to

announce the support of TCPLS.

Figure 5: Starting a TCPLS session

TCP/TLS offers a single encrypted bytestream service to the

application. To achieve this, TLS records are used to encrypt and

secure chunks of the application bytestream and are then sent

through the TCP bytestream. TCPLS leverages TLS records differently.

TCPLS defines its own framing that allows encoding application data

and control information. A TCPLS frame is the basic unit of

information for TCPLS. A TCPLS frame always fits in a single record.

One or more TCPLS frames can be encoded in a TLS record. This TLS

record is then reliably transported by a TCP connection. Figure 6

illustrates the relationship between TCPLS frames and TLS records.

¶

¶

Client Server

 | SYN |

 |-->|

 | SYN+ACK |

 |<--|

 | ACK, TLS ClientHello + tcpls |

 |-->|

 | TLS ServerHello, TLS EncryptedExtensions |

 | + tcpls, ... |

 |<--|

 | TLS Finished |

 |-->|

 | |

¶

Figure 6: The first TLS record contains two TCPLS frames

4.1. Multiple Streams

TCPLS extends the service provided by TCP with streams. Streams are

independent bidirectional bytestreams that can be used by

applications to concurrently convey several objects over a TCPLS

session. Streams can be opened by the client and by the server.

Streams are identified by a 32-bit unsigned integer. The parity of

this number indicates the initiator of the stream. The client opens

even-numbered streams while the server opens odd-numbered streams.

Streams are opened in sequence, e.g. a client that has opened stream

0 will use stream 2 as the next one.

Data is exchanged using Stream frames whose format is described in

Section 5.2.3. Each Stream frame carries a chunk of data of a given

stream. Applications can mark the end of a stream to close it.

TCPLS enables the receiver to decrypt and process TLS records in

zero copy similarly to TLS 1.3 under circumstances discussed in

Section 4.5.

Similarly to HTTP/2 [RFC7540], conveying several streams on a single

TCP connection introduces Head-of-Line (HoL) blocking between the

streams. To alleviate this, TCPLS provides means to the application

to choose the degree of HoL blocking resilience it needs for its

application objects by spreading streams among different underlying

TCP connections.

4.2. Multiple TCP connections

TCPLS is not restricted to using a single TCP connection to exchange

frames. A TCPLS session starts with the TCP connection that was used

to transport the TLS handshake. After this handshake, other TCP

 TCPLS Data TCP Control TCPLS Data

 abcdef 0010010 mnopq...

 <---------> <-----------> <------------>

 / /

/ /

| /

| /

| /

| /

| /

| /

+----------------+ +-----------------+

| TLS record n | | TLS record n+1 |

+----------------+ +-----------------+

¶

¶

¶

¶

¶

connections can be added to a TCPLS session, either to spread the

load or for failover. TCPLS manages the utilization of the

underlying TCP connections within a TCPLS session.

Multipath TCP enables both the client and the server to establish

additional TCP connections. However, experience has shown that

additional subflows are only established by the clients. TCPLS

focuses on this deployment and only allows clients to create

additional TCP connections.

Using Multipath TCP, a client can try establishing a new TCP

connection at any time. If a server wishes to restrict the number of

TCP connections that correspond to one Multipath TCP connection, it

has to respond with RST to the in excess connection attempts.

TCPLS takes another approach. To control the number of connections

that a client can establish, a TCPLS server supplies unique tokens.

A client includes one of the server supplied tokens when it attaches

a new TCP connection to a TCPLS session. Each token can only be used

once, hence limiting the amount of additional TCP connections.

TCPLS endpoints can advertise their local addresses, allowing new

TCP connections for a given TCPLS session to be established between

new pairs of addresses. When an endpoint is no more willing new TCP

connections to use one of its advertised addresses, it can remove

this address from the TCPLS session.

4.2.1. Joining TCP connections

The TCPLS server provides tokens to the client in order to join new

TCP connections to the TCPLS session. Figure 7 illustrates a client

and server first establishing a new TCPLS session as described in

Section 4. Then the server sends a token over this connection using

the New Token frame. Each token has a sequence number (e.g. 1) and a

value (e.g. "abc"). The client uses this token to open a new TCP

connection and initiates the TCPLS handshake. It adds the token

inside the TCPLS Join TLS extension in the ClientHello.

¶

¶

¶

¶

¶

¶

 <-1.TCPLS Handshake->

 .----------------------------------.

 | <-2.New Token(1,abc) |

 v v

+--------+ +--------+

| Client | | Server |

+--------+ +--------+

 ^ ^

 | 3.TCPLS Hsh. + tcpls_join(abc)-> | Legend:

 .----------------------------------. --- TCP connection

Figure 7: Joining a new TCP connection

When receiving a TCPLS Join Extension, the server validates the

token and associates the TCP connection to the TCPLS session.

Each TCP connection that is part of a TCPLS session is identified by

a 32-bit unsigned integer called its Connection ID. The first TCP

connection of a session corresponds to Connection ID 0. When joining

a new connection, the sequence number of the token, i.e. 1 in our

example, becomes the Connection ID of the connection. The Connection

ID enables the Client and the Server to identify a specific TCP

connection within a given TCPLS session.

4.2.2. Robust session establishment

The TCPLS protocol also supports robust session establishment, where

a multihomed or dual-stack client can establish a TCPLS session when

at least one network path to the server can be established. This

guarantees robustness against network failures and lowers the

overall latency of a session establishment.

Figure 8 illustrates a dual-homed client that robustly establish a

TCPLS session over two local addresses. In this example, the path

from IP b towards the server exhibits a higher delay.

Figure 8: Robust session establishment example

The client starts by opening a TCP connection on from each of its

local addresses. The TCP connection from IP "a" towards the server

completes faster than the other. The client then starts a TCPLS

Handshake on this connection. When the other connection is

established, the client waits for receiving a TCPLS token allowing

to join it to the session being established. In addition to the New

Token frame, the TCPLS protocol enables the server to provide one

¶

¶

¶

¶

Client @ IP a Server Client @ IP b

 | SYN | SYN |

 |----------------------------->| /--------------|

 | SYN+ACK |<-------------/ |

 |<-----------------------------| SYN+ACK |

 | ACK, TLS CH + tcpls |--------------\ |

 |----------------------------->| \------------->|

 | TLS SH, EE + tcpls, | ACK |

 | tcpls_token(abc), ... |<-----------------------------|

 |<-----------------------------|TLS CH + tcpls,tcpls_join(abc)|

 | TLS Finished |<-----------------------------|

 |----------------------------->| |

 | TCPLS session established and 2nd connection can be joined. |

 ...

such token during the handshake using the TCPLS Token TLS extension.

The server uses this extension when sending its EncryptedExtensions

over the faster connection to provide the TCPLS token "abc". As soon

as the client has received this token, it uses it over the other

connection to join it to the session. When the TLS handshake

completes over the fastest connection, the TCPLS session is

established and the other connection can be joined to the session.

4.2.3. Failover

TCPLS supports two types of failover. In make-before-break, the

client creates a TCP connection using the procedure described in

Section 4.2.1 but only uses it once the initial connection fails.

In break-before-make, the client creates the initial TCP connection

and uses it for the TCPLS handshake and the data. The server

advertises one or more tokens over this connection. Upon failure of

the initial TCP connection, the client initiates a second TCP

connection using the server-provided token.

In both cases, some records sent by the client or the server might

be in transit when the failure occurs. Some of these records could

have been partially received but not yet delivered to the TCPLS

layer when the underlying TCP connection fails. Other records could

have already been received, decrypted and data of their frames could

have been delivered to the application. To prevent data losses and

duplication, TCPLS includes its own acknowledgments.

A TCPLS receiver acknowledges the received records using the ACK

frame. Records are acknowledged after the record protection has been

successfully removed. This enables the sender to know which records

have been received. TCPLS enables the endpoint to send

acknowledgments for a TCP connection over any connections, e.g. not

only the receiving connection.

4.2.4. Migration

To migrate from a given TCP connection, an endpoint stops

transmitting over this TCP connection and sends the following frames

on other TCP connections. It leverages the acknowledgments to

retransmit the frames of TLS records that have not been yet

acknowledged.

When an endpoint abortfully closes a TCP connection, its peer

leverages the acknowlegments to retransmit the TLS records that were

not acknowlegded.

¶

¶

¶

¶

¶

¶

¶

4.2.5. Multipath

TCPLS also supports the utilization of different TCP connections,

over different paths or interfaces, to improve throughput or spread

stream frames over different TCP connections. When the endpoints

have opened several TCP connections, they can send frames over the

connections. TCPLS can send all the stream frames belonging to a

given stream over one or more underlying TCP connections. The latter

enables bandwidth aggregation by using TCP connections established

over different network paths.

4.3. Record protection

When adding new TCP connections to a TCPLS session, an endpoint does

not complete the TLS handshake. TCPLS provides a nonce construction

for TLS record protection that is used for all connections of a

session. This reduces the cryptographic cost of adding connections.

The endpoints SHOULD send TLS messages to form an apparent complete

TLS handshake to middleboxes.

In order to use the TLS session over multiple connections, TCPLS

adds a record sequence number space per connection that is

maintained independently at both sides. Each record sent over a

TCPLS session is identified by the Connection ID of its connection

and its record sequence number. Each record nonce is constructed as

defined in Figure 9.

Figure 9: TCPLS TLS record nonce construction

This construction guarantees that every TLS record sent over the TLS

session is protected with a unique nonce. As in TLS 1.3, the per-

connection record sequence is implicit.

4.4. Closing a TCPLS session

Endpoints notify their peers that they do not intend to send more

data over a given TCPLS session by sending a TLS Alert

"close_notify". The alert can be sent over one or more TCP

connections of the session. The alert MUST be sent before closing

¶

¶

¶

N N-32 64 0

+---+

| client/server_write_iv |

+---+

 XOR XOR

+-------------------+ +--------------------+

| Connection ID | | Conn. record sequ. |

+-------------------+ +--------------------+

¶

the last TCP connection of the TCPLS session. The endpoint MAY close

its side of the TCP connections after sending the alert.

When all TCP connections of a session are closed and the TLS Alert

"close_notify" was exchanged in both directions, the TCPLS session

is considered as closed.

We leave defining an abortful and idle session closure mechanisms

for future versions of this document.

4.5. Zero-Copy Receive Path

TCPLS enables the receiver to process TLS records in a zero-copy

manner under several conditions. When they are met, the application

data carried in TCPLS frames can be decrypted at the right place in

the application buffers.

First, zero-copy can be achieved when Stream frames of a given

stream arrive in order. When using several TCP connections, out-of-

order Stream frames cannot be processed in zero copy. A Multipath

scheduling algorithm may target the minimization of out-of-order

packets.

Second, the composition of TCPLS frames in a TLS record is

impactful. The sender SHOULD encode a single Stream Data frame as

the first frame of the record, followed by control-related frames if

needed. When the sender encodes several Stream frames, the frame at

the start of the record SHOULD be the largest, in order to maximise

the use of zero copy. When several Stream frames are included in a

record, they SHOULD belong to different streams.

5. TCPLS Protocol

5.1. TCPLS TLS Extensions

This document specifies three TLS extensions used by TCPLS. The

first, "tcpls", is used to announce the support of TCPLS. The

second, "tcpls_join", is used to join a TCP connection to a TCPLS

session. The third, "tcpls_token", is used to provide a token to the

client before the handshake completes. Their types are defined as

follows.

¶

¶

¶

¶

¶

¶

¶

enum {

 tcpls(TBD1),

 tcpls_join(TBD2),

 tcpls_token(TBD3),

 (65535)

} ExtensionType;

¶

The table below indicates the TLS messages where these extensions

can appear. "CH" indicates ClientHello while "EE" indicates

EncryptedExtensions.

Extension Allowed TLS messages

tcpls CH, EE

tcpls_join CH

tcpls_token EE

Table 1: TLS messages allowed to

carry TCPLS TLS Extensions

5.1.1. TCPLS

The "tcpls" extension is used by the client and the server to

announce their support of TCPLS. The extension contains no value.

When it is present in both the ClientHello and the

EncryptedExtensions, the endpoints MUST use TCPLS after completing

the TLS handshake.

5.1.2. TCPLS Join

The "tcpls_join" extension is used by the client to join the TCP

connection on which it is sent to a TCPLS session. The extension

contains a token provided by the server. The client MUST NOT send

more than one "tcpls_join" extension in its ClientHello. When

receiving a ClientHello with this extension, the server checks that

the token is valid and joins the TCP connection to the corresponding

TCPLS session. When the token is not valid, the server MUST abort

the handshake with an illegal_parameter alert.

5.1.3. TCPLS Token

The "tcpls_token" extension is used by the server to provide a token

to the client during the TLS handshake. When receiving this

extension, the client associates the token value as the first token

of the TCPLS session, i.e. with a sequence number of 1. The server

MUST NOT send this extension when the corresponding ClientHello

contains a "tcpls_join" extension.

¶

¶

struct {

 opaque token<32>;

} TCPLSJoin;

¶

¶

struct {

 opaque token<32>;

} TCPLSToken;

¶

¶

N:

5.2. TCPLS Frames

TCPLS uses TLS Application Data records to exchange TCPLS frames.

After decryption, the record payload consists of a sequence of TCPLS

frames. Figure 10 illustrates the manner in which TCPLS frames are

parsed from a decrypted TLS record. The receiver processes the

frames starting from the last one to the first one. The fields of

each frames are also parsed from the end towards the beginning of

the TLS Application Data content. The parsing of a frame starts with

the last byte indicating the frame type and then with type-specific

fields preceeding it, forming a Type-Value unit. Such ordering

enables a zero-copy processing of the type-specific fields as

explained in Section 4.5.

Figure 10: Parsing TCPLS frames inside a TLS record starts from the

end.

Table 2 lists the frames specified in this document.

Type value Frame name Rules Definition

0x00 Padding N Section 5.2.1

0x01 Ping Section 5.2.2

0x02-0x03 Stream Section 5.2.3

0x04 ACK N Section 5.2.4

0x05 New Token S Section 5.2.5

0x06 Connection Reset Section 5.2.6

0x07 New Address Section 5.2.7

0x08 Remove Address Section 5.2.8

0x09 Stream Change Cs Section 5.2.9

Table 2: TCPLS frames

The "Rules" column in Table 2 indicates special requirements

regarding certain frames.

Non-ack-eliciting. Receiving this frame does not elicit the

sending of a TCPLS acknowledgment.

¶

 First frame start

 |

0 First frame end | n

+---------------------|------------|-+

| v v |

| *------------* *------------* |

| | Value |Type| | Value |Type| |

| *------------* *------------* |

+------------------------------------+

 Decrypted TLS record

¶

¶

¶

S:

Cs:

Server only. This frame MUST NOT be sent by the client.

Connection-specific semantics. This frame is not idempotent and

has specific semantics based on the TCP connection over which it

is exchanged.

5.2.1. Padding frame

This frame has no semantic value. It can be used to mitigate traffic

analysis on the TLS records of a TCPLS session. The Padding frame

has no content.

Figure 11: Padding frame format

5.2.2. Ping frame

This frame is used to elicit an acknowledgment from its peer. It has

no content. When an endpoint receives a Ping frame, it acknowledges

the TLS record that contains this frame. This frame can be used by

an endpoint to check that its peer can receive TLS records over a

particular TCP connection.

Figure 12: Ping frame format

5.2.3. Stream frame

This frame is used to carry chunks of data of a given stream.

Figure 13: Stream frame format

¶

¶

¶

Padding frame {

 Type (8) = 0x00,

}

¶

Ping frame {

 Type (8) = 0x01,

}

¶

Stream frame {

 Stream Data (...),

 Length (16),

 Offset (64),

 Stream ID (32),

 FIN (1),

 Type (7) = 0x01,

}

FIN:

Stream ID:

Offset:

Length:

Connection ID:

Highest Record Sequence Received:

The last bit of the frame type bit indicates that this Stream

frame ends the stream when its value is 1. The last byte of the

stream is at the sum of the Offset and Length fields of this

frame.

A 32-bit unsigned integer indicating the ID of the

stream this frame relates to.

A 64-bit unsigned integer indicating the offset in bytes of

the carried data in the stream.

A 16-bit unsigned integer indicating the length of the

Stream Data field.

5.2.4. ACK frame

This frame is sent by the receiver to acknowledge the receipt of TLS

records on a particular TCP connection of the TCPLS session.

Although the reliability of the data exchange on a connection is

handled by TCP, there are situations such as the failure of a TCP

connection where a sender does not know whether the TLS frames that

it sent have been correctly received by the peer. The ACK frame

allows a TCPLS receiver to indicate the highest TLS record sequence

number received on a specific connection. The ACK frame can be sent

over any TCP connection of a TCPLS session.

Figure 14: ACK frame format

A 32-bit unsigned integer indicating the TCP

connection for which the acknowledgment was sent.

A 64-bit unsigned integer

indicating the highest TLS record sequence number received on the

connection indicated by the Connection ID.

5.2.5. New Token frame

This frame is used by the server to provide tokens to the client.

Each token can be used to join a new TCP connection to the TCPLS

session, as described in Section 4.2.1. Clients MUST NOT send New

Token frames.

¶

¶

¶

¶

¶

ACK frame {

 Highest Record Sequence Received (64),

 Connection ID (32),

 Type (8) = 0x04,

}

¶

¶

¶

Sequence:

Token:

Connection ID:

Figure 15: New Token frame format

A 8-bit unsigned integer indicating the sequence number

of this token

A 32-byte opaque value that can be used as a token by the

client.

By controlling the amount of tokens given to the client, the server

can control the number of active TCP connections of a TCPLS session.

The server SHOULD replenish the tokens when TCP connections are

removed from the TCPLS session.

5.2.6. Connection Reset frame

This frame is used by the receiver to inform the sender that a TCP

connection has been reset.

Figure 16: Connection Reset format

A 32-bit unsigned integer indicating the ID of the

connection that failed.

5.2.7. New Address frame

This frame is used by an endpoint to add a new local address to the

TCPLS session. This address can then be used to establish new TCP

connections. The server advertises addresses that the client can use

as destination when adding TCP connections. The client advertises

address that it can use as source when adding TCP connections.

New Token frame {

 Token (256),

 Sequence (8),

 Type (8) = 0x05,

}

¶

¶

¶

¶

Connection Reset frame {

 Connection ID (32)

 Type (8) = 0x06,

}

¶

¶

Address ID:

Address Version:

Address:

Port:

Address ID:

Figure 17: New Address format

A 8-bit identifier for this address. For a given

Address ID, an endpoint receiving a frame with a content that

differs from previously received frames MUST ignore the frame. An

endpoint receiving a frame for an Address ID that was previously

removed MUST ignore the frame.

A 8-bit value identifying the Internet address

version of this address. The number 4 indicates IPv4 while 6

indicates IPv6.

The address value. Its size depends on its version. IPv4

addresses are 32-bit long while IPv6 addresses are 128-bit long.

A 16-bit value indicating the TCP port used with this

address.

5.2.8. Remove Address frame

This frame is used by an endpoint to announce that it is not willing

to use a given address to establish new TCP connections. After

receiving this frame, a client MUST NOT establish new TCP

connections to the given address. After receiving this frame, an

endpoint MUST close all TCP connections using the given address.

Figure 18: Remove Address format

A 8-bit identifier for the address to remove. An

endpoint receiving a frame for an address that was nonexistent or

already removed MUST ignore the frame.

5.2.9. Stream Change frame

This frame is used by a sender to announce the Stream ID and Offset

of the next record over a given TCP connection. It can be used to

New Address frame {

 Port (16),

 Address (..),

 Address Version (8),

 Address ID (8),

 Type (8) = 0x07,

}

¶

¶

¶

¶

¶

Remove Address frame {

 Address ID (8),

 Type (8) = 0x08,

}

¶

Next Record Stream ID:

Next Offset:

make explicit a change in stream scheduling over a connection to the

receiver, enabling a zero-copy receive path as explained in

Section 4.5. The hint contained in this frame relates to the

connection over which it was exchanged.

Figure 19: Stream Change format

A 32-bit unsigned integer indicating the

Stream ID of the Stream frame in the next record .

A 64-bit unsigned integer indicating the Offset of the

Stream frame in the next record.

6. Security Considerations

When issuing tokens to the client as presented in Section 4.2.1, the

server SHOULD ensure that their values appear as random to observers

and cannot be correlated together for a given TCPLS session.

The security considerations for TLS apply to TCPLS. The next

versions of this document will elaborate on other security

considerations following the guidelines of [RFC3552].

7. IANA Considerations

IANA is requested to create a new "TCPLS" heading for the new

registry described in Section 5.2. New registrations in TCPLS

registries follow the "Specification Required" policy of [RFC8126].

7.1. TCPLS TLS Extensions

IANA is requested to add the following entries to the existing "TLS

ExtensionType Values" registry.

Value Extension Name TLS 1.3 Recommended Reference

TBD1 tcpls CH, EE N This document

TBD2 tcpls_join CH N This document

TBD3 tcpls_token EE N This document

Table 3

Note that "Recommended" is set to N as these extensions are intended

for uses as described in this document.

¶

Stream Change frame {

 Type (8) = 0x09,

 Next Offset (64),

 Next Record Stream ID (32),

}

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8126]

[RFC8174]

[RFC8446]

[CONEXT21]

[I-D.ietf-tls-dtls13]

[RFC3552]

7.2. TCPLS Frames

IANA is requested to create a new registry "TCPLS Frames Types"

under the "TCPLS" heading.

The registry governs an 8-bit space. Entries in this registry must

include a "Frame name" field containing a short mnemonic for the

frame type. The initial content of the registry is present in

Table 2, without the "Rules" column.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

8.2. Informative References

Rochet, F., Assogba, E., Piraux, M., Edeline, K., Donnet,

B., and O. Bonaventure, "TCPLS - Modern Transport

Services with TCP and TLS", Proceedings of the 17th

International Conference on emerging Networking

EXperiments and Technologies (CoNEXT'21) , December 2021.

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43>.

Rescorla, E. and B. Korver, "Guidelines for Writing RFC

Text on Security Considerations", BCP 72, RFC 3552, DOI

10.17487/RFC3552, July 2003, <https://www.rfc-editor.org/

rfc/rfc3552>.

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8446
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://www.rfc-editor.org/rfc/rfc3552
https://www.rfc-editor.org/rfc/rfc3552

[RFC4960]

[RFC6335]

[RFC7258]

[RFC7540]

[RFC8041]

[RFC8305]

[RFC8548]

[RFC8684]

[RFC9000]

Stewart, R., Ed., "Stream Control Transmission Protocol",

RFC 4960, DOI 10.17487/RFC4960, September 2007, <https://

www.rfc-editor.org/rfc/rfc4960>.

Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.

Cheshire, "Internet Assigned Numbers Authority (IANA)

Procedures for the Management of the Service Name and

Transport Protocol Port Number Registry", BCP 165, RFC

6335, DOI 10.17487/RFC6335, August 2011, <https://

www.rfc-editor.org/rfc/rfc6335>.

Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is

an Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

2014, <https://www.rfc-editor.org/rfc/rfc7258>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

rfc/rfc7540>.

Bonaventure, O., Paasch, C., and G. Detal, "Use Cases and

Operational Experience with Multipath TCP", RFC 8041, DOI

10.17487/RFC8041, January 2017, <https://www.rfc-

editor.org/rfc/rfc8041>.

Schinazi, D. and T. Pauly, "Happy Eyeballs Version 2:

Better Connectivity Using Concurrency", RFC 8305, DOI

10.17487/RFC8305, December 2017, <https://www.rfc-

editor.org/rfc/rfc8305>.

Bittau, A., Giffin, D., Handley, M., Mazieres, D., Slack,

Q., and E. Smith, "Cryptographic Protection of TCP

Streams (tcpcrypt)", RFC 8548, DOI 10.17487/RFC8548, May

2019, <https://www.rfc-editor.org/rfc/rfc8548>.

Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and

C. Paasch, "TCP Extensions for Multipath Operation with

Multiple Addresses", RFC 8684, DOI 10.17487/RFC8684,

March 2020, <https://www.rfc-editor.org/rfc/rfc8684>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Appendix A. Alternative Designs

In this section, we discuss alternatives to mechanisms defined in

this document.¶

https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc4960
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc6335
https://www.rfc-editor.org/rfc/rfc7258
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc7540
https://www.rfc-editor.org/rfc/rfc8041
https://www.rfc-editor.org/rfc/rfc8041
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8305
https://www.rfc-editor.org/rfc/rfc8548
https://www.rfc-editor.org/rfc/rfc8684
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000

A.1. Securing new TCP connections with New Session Tickets

When adding a new TCP connection to a TCPLS session, endpoints

derive a Initial Vector based on the technique presented in

Section 4.3. An alternative is to use New Session Tickets to derive

separate cryptographic protection materials based on a pre-shared

key sent by the server. In this mode of operation, the server

provides New Session Tickets to control the amount of additional TCP

connections that can be opened by the client. The server could

encode the Connection ID in the ticket value.

Using this mechanism differs from our proposal in several ways.

While it enables to use an existing TLS mechanism for this purpose,

it has a number of differences. First, it requires the server to

compute pre-shared keys which could be more costly than computing

the TCPLS tokens defined in Section 4.2.1. Second, when used to

establish a TLS session, additional TLS messages must be computed

and exchanged to complete the handshake, which the current mechanism

does not require. Third, TLS New Session Tickets have a lifetime

that is separated from the session they are exchanged over. This is

unneeded in the context of TCPLS and may require additional protocol

specification and guidance to implementers.

Acknowledgments

This work has been partially supported by the ``Programme de

recherche d'interet general WALINNOV - MQUIC project (convention

number 1810018)'' and European Union through the NGI Pointer

programme for the TCPLS project (Horizon 2020 Framework Programme,

Grant agreement number 871528). The authors thank Quentin De Coninck

and Louis Navarre for their comments on the first version of this

draft.

Change log

Since draft-piraux-tcpls-02

Adds the TCPLS Token TLS extension to enable fast robust session

establishment.

Since draft-piraux-tcpls-01

Change frames and fields order to enable zero-copy receiver.

Since draft-piraux-tcpls-00

Added the addresses exchange mechanism with New Address and

Remove Address frames.

¶

¶

¶

*

¶

* ¶

*

¶

Authors' Addresses

Maxime Piraux

UCLouvain

Email: maxime.piraux@uclouvain.be

Florentin Rochet

University of Namur

Email: florentin.rochet@unamur.be

Olivier Bonaventure

UCLouvain

Email: olivier.bonaventure@uclouvain.be

mailto:maxime.piraux@uclouvain.be
mailto:florentin.rochet@unamur.be
mailto:olivier.bonaventure@uclouvain.be

	TCPLS: Modern Transport Services with TCP and TLS
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	2.1. Notational conventions

	3. Modern Transport Services
	4. TCPLS Overview
	4.1. Multiple Streams
	4.2. Multiple TCP connections
	4.2.1. Joining TCP connections
	4.2.2. Robust session establishment
	4.2.3. Failover
	4.2.4. Migration
	4.2.5. Multipath

	4.3. Record protection
	4.4. Closing a TCPLS session
	4.5. Zero-Copy Receive Path

	5. TCPLS Protocol
	5.1. TCPLS TLS Extensions
	5.1.1. TCPLS
	5.1.2. TCPLS Join
	5.1.3. TCPLS Token

	5.2. TCPLS Frames
	5.2.1. Padding frame
	5.2.2. Ping frame
	5.2.3. Stream frame
	5.2.4. ACK frame
	5.2.5. New Token frame
	5.2.6. Connection Reset frame
	5.2.7. New Address frame
	5.2.8. Remove Address frame
	5.2.9. Stream Change frame

	6. Security Considerations
	7. IANA Considerations
	7.1. TCPLS TLS Extensions
	7.2. TCPLS Frames

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Alternative Designs
	A.1. Securing new TCP connections with New Session Tickets

	Acknowledgments
	Change log
	Since draft-piraux-tcpls-02
	Since draft-piraux-tcpls-01
	Since draft-piraux-tcpls-00

	Authors' Addresses

