
Network Working Group A. Pironti
Internet-Draft INRIA Paris-Rocquencourt
Expires: March 15, 2014 N. Mavrogiannopoulos
 Independent
 September 11, 2013

Length Hiding Padding for the Transport Layer Security Protocol
draft-pironti-tls-length-hiding-02

Abstract

 This memo proposes length hiding methods of operation for the TLS
 protocol. It defines a TLS extension to allow arbitrary amount of
 padding in any TLS ciphersuite, and it presents guidelines and a
 reference implementation of record fragmentation and padding so that
 the length of the exchanged messages is effectively concealed within
 a given range of lengths. The latter guidelines also apply to the
 standard TLS padding allowed by the TLS block ciphers.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 15, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 4
3. TLS Extension: Extended Record Padding 5
3.1. Extension Negotiation 5
3.2. Record Payload . 5

4. A Length Hiding Mechanism for TLS 8
4.1. Range Splitting . 8
4.1.1. Fragmenting Plaintext into Records 10
4.1.2. Adding the Length Hiding Padding 11
4.1.3. A Length Hiding API 11

4.2. Applicability . 12
5. Security Considerations 13
5.1. Length Hiding with extended record padding 13
5.2. Length Hiding with standard TLS block ciphers 13
5.3. Mitigating Denial of Service 14

6. IANA Considerations . 15
7. Normative References . 16
Appendix A. Acknowledgements 17

 Authors' Addresses . 18

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 2]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

1. Introduction

 When using CBC block ciphers, the TLS protocol [RFC5246] provides
 means to frustrate attacks based on analysis of the length of
 exchanged messages, by adding extra pad to TLS records. However, the
 TLS specification does not define a length hiding (LH) method for
 applications that require it. In fact, current implementations of
 eager fragmentation strategies or random padding strategies have been
 showed to be ineffective against this kind of traffic analysis
 [LH-PADDING].

 By design, in the standard TLS block cipher mode, only a limited
 amount of extra padding can be carried with each record fragment, and
 this can potentially require extra fragmentation to carry all
 required padding. Moreover, no LH can be implemented for stream
 ciphers. To overcome these limitations, the TLS extension proposed
 in this document enables efficient LH both for block and stream
 ciphers.

 In addition, it presents guidelines and a reference implementation of
 record fragmentation and padding so that the length of the exchanged
 messages is effectively concealed within a range of lengths provided
 by the user of the TLS record protocol.

 The proposed extension also eliminates padding oracles (both in
 errors and timing) that have been plaguing standard TLS block ciphers
 [CBCTIME] [DTLS-ATTACK].

 The goals of LH for TLS are the following:

 1. Length-Hiding: use message fragmentation and the allowed extra
 padding for block ciphers to conceal the real length of the
 exchanged message within a range of lengths chosen by the user of
 the TLS record protocol. All messages sent with the same range
 use the same network bandwidth, regardless of the real size of
 the message itself.

 2. Efficiency: the minimum required amount of extra padding is used,
 and the minimum number of required fragments is sent.

 To maximize interoperability, this document also includes guidelines
 to implement LH by using the limited amount of padding provided by
 existing block ciphers. This variant of LH is backward compatible,
 in that an implementation sending length-hidden messages correctly
 interoperates with non LH-aware implementations of TLS, but leads to
 a less efficient LH implementation.

https://datatracker.ietf.org/doc/html/rfc5246

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 3]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

2. Terminology

 This document uses the same notation and terminology used in the TLS
 Protocol specification [RFC5246].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 4]

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

3. TLS Extension: Extended Record Padding

 The TLS extended record padding is a variant of the TLS record
 protocol where every record can be padded up to 2^14 bytes,
 regardless of the cipher being used.

3.1. Extension Negotiation

 In order to indicate the support of the extended record padding,
 clients MUST include an extension of type "extended_record_padding"
 to the extended client hello message. The "extended_record_padding"
 TLS extension is assigned the value of TDB-BY-IANA from the TLS
 ExtensionType registry. This value is used as the extension number
 for the extensions in both the client hello message and the server
 hello message. The hello extension mechanism is described in
 [RFC5246].

 This extension carries no payload and indicates support for the
 extended record padding. The "extension_data" field of this
 extension are of zero length in both the client and the server.

 The negotiated record padding applies for the duration of the
 session, including session resumption. A client wishing to resume a
 session where the extended record padding was negotiated SHOULD
 include the "extended_record_padding" extension in the client hello.

3.2. Record Payload

 The translation of the TLSCompressed structure into TLSCiphertext
 remains the same as in [RFC5246]. When the cipher is
 BulkCipherAlgorithm.null, the 'fragment' structure of TLSCiphertext
 also remains unchanged. That is, for the TLS_NULL_WITH_NULL_NULL
 ciphersuite and for MAC-only ciphersuites this extension has no
 effect. For all other ciphersuites, the 'fragment' structure of
 TLSCiphertext is modified as follows.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 5]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 stream-ciphered struct {
 opaque pad<0..2^14>;
 opaque content[TLSCompressed.length];
 opaque MAC[SecurityParameters.mac_length];
 } GenericStreamCipher;

 struct {
 opaque IV[SecurityParameters.record_iv_length];
 block-ciphered ciphered struct {
 opaque pad<0..2^14>;
 opaque content[TLSCompressed.length];
 opaque MAC[CipherSpec.hash_size];
 };
 } GenericBlockCipher;

 struct {
 opaque nonce_explicit[SecurityParameters.record_iv_length];
 aead-ciphered struct {
 opaque pad<0..2^14>;
 opaque content[TLSCompressed.length];
 };
 } GenericAEADCipher;

 The padding can be filled with arbitrary data, and it is
 authenticated as part of the MAC. For block ciphers, the length of
 the pad MUST be such that the total length (i.e., the pad, the
 content and the MAC) are a multiple of the block size.

 For the various ciphers the data are authenticated as follows.

 Standard Stream Ciphers:

 MAC(MAC_write_key, seq_num +
 TLSCompressed.type +
 TLSCompressed.version +
 length +
 TLSCiphertext.fragment.GenericStreamCipher.pad +
 TLSCompressed.fragment);

 Block Ciphers:

 MAC(MAC_write_key, seq_num +
 TLSCompressed.type +
 TLSCompressed.version +
 length +
 TLSCiphertext.fragment.GenericBlockCipher.pad +
 TLSCompressed.fragment);

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 6]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 AEAD Ciphers:

 additional_data = seq_num + TLSCompressed.type +
 TLSCompressed.version + length;

 AEADEncrypted = AEAD-Encrypt(write_key, nonce,
 pad + plaintext,
 additional_data);

 length
 For all the above cases, a uint16 containing the sum of the
 padding length and the content length.

 Implementation note: With block and stream ciphers, in order to avoid
 padding oracles, decryption, MAC verification and payload decoding
 MUST be executed in the following order.

 1. Decrypt TLSCiphertext.fragment.

 2. Verify the MAC.

 3. Split plaintext from pad.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 7]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

4. A Length Hiding Mechanism for TLS

 In order to send length-hidden messages, a user of a LH-TLS
 implementation provides the plaintext to be sent together with a
 range (low,high), meaning that an attacker can at most learn that the
 real plaintext length is between low and high.

 The LH mechanism described in the rest of this document applies both
 to standard TLS block ciphers and the extended record padding of

Section 3.

4.1. Range Splitting

 Not all user-provided ranges can be conveyed in a singe TLS record
 fragment. A LH-TLS implementation uses a fragmentation algorithm
 that takes a message with a desired length range (low,high) and
 breaks it up into n suitably sized ranges each of which can be
 conveyed in a single TLS record fragment. The Range and
 FragmentRange are defined as follows.

 struct {
 uint32 low;
 unit32 high;
 } Range;

 struct {
 uint16 low;
 unit16 high;
 } FragmentRange;

 If the difference between Range.high and Range.low is greater than
 the maximum allowed padding size for a single fragment, or if their
 value is greater than the maximum fragment size, the given range must
 be split into multiple smaller FragmentRange structures each of which
 can be conveyed into a single TLS record.

 Range.low MUST be less or equal to Range.high. Declaring Range.low
 and Range.high as uint32 allows to send messages of length up to
 2^32: TLS implementations MAY use larger data types for these fields.
 A FragmentRange, that can be conveyed in one record, MUST have both
 values of FragmentRange.low and FragmentRange.high not exceeding 2^14
 (or the negotiated maximum value of TLSPlaintext.length [RFC6066]).

 A TLS implementation applies the range splitting algorithm starting
 from the user-provided Range structure, resulting into a sequence of
 FragmentRange structures. For each FragmentRange structure, it
 transmits a TLS record adhering into the limits of the corresponding
 FragmentRange. When a block cipher is in use, on each record the

https://datatracker.ietf.org/doc/html/rfc6066

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 8]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 implementation computes n bytes of minimal padding (the minimum
 amount of padding required to get block alignment) pretending the
 length of the plaintext is FragmentRange.high. The total padding
 added to the current fragment is finally n plus the difference
 between Range.high and the real plaintext length.

 This document does not mandate any specific algorithm to split a
 Range into multiple FragmentRange ranges. The only constraint is
 that the sum of the obtained sequence of ranges equals the range
 given as input. Implementations may use non-deterministic splitting
 algorithms to change the shape of the traffic each time messages with
 the same range are exchanged.

 A reference range splitting algorithm is provided in the following.

 // The maximum allowed TLSPlaintext.length
 uint16 FS = 2^14;
 // Maximum padding size:
 // p = 255 for standard TLS block ciphers;
 // p = 2^14 for extended record padding
 uint16 PS = p;
 // Length of the padlen:
 // pl = 1 for standard TLS block ciphers;
 // pl = 2 for extended record padding
 uint8 PL = pl;
 // Note: Block size is 0 for stream ciphers
 uint8 BS = SecurityParameters.block_length;
 // MAC size
 uint8 MS = SecurityParameters.mac_length;

 /* Returns the maximum pad that can be added for a fragment,
 * given that at least 'len' bytes of plaintext will be
 * transferred.
 */
 uint16 max_lh_pad(uint16 len)
 {
 uint16 this_pad = min(PS,FS-len);
 if (BS == 0) {
 return this_pad;
 } else {
 uint8 overflow = (len + this_pad + MS + PL) % BS;
 if (overflow > this_pad) {
 return this_pad;
 } else {
 return this_pad - overflow;
 }
 }
 }

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 9]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 FragmentRange split_range(Range *total)
 {
 FragmentRange f;

 if (total.high == total.low) {
 // "Point" range, no real LH to do:
 // just implement standard fragmentation.
 uint16 len = min(total.high,FS);
 f.low = len;
 f.high = len;
 total->low -= len;
 total->high -= len;
 } else if (total.low >= FS) {
 // More bytes to send than a fragment can handle:
 // send as many bytes as possible.
 f.low = FS;
 f.high = FS;
 total->low -= FS;
 total->high -= FS;
 } else {
 // We are LH: add as much padding as necessary
 // in the current fragment.
 uint16 all_pad = max_lh_pad(total->low);
 all_pad = min(all_pad, total->high - total->low);
 f.low = total->low;
 f.high = total->low + all_pad;
 total->low = 0;
 total->high -= total->low + all_pad;
 }

 return f;
 }

 If invoked multiple times, this algorithm creates a list of
 FragmentRange structures, carrying all the payload up to Range.low,
 followed by a sequence of fragments carrying either padding or the
 remaining part of the message that exceeds Range.low.

4.1.1. Fragmenting Plaintext into Records

 There are many ways to fragment the message content across a sequence
 of FragmentRanges. This document does not mandate any fragmentation
 algorithm. In the following, a fragmentation algorithm that tries to
 put as many bytes as possible in the first fragments is provided.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 10]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 /* len: The total real plaintext length to be sent.
 * r0: a range that can be conveyed in one fragment,
 * as returned by split_range.
 * r1: the remaining range used to send the remaining data
 * Returns: the number of bytes of plaintext to be sent
 * in the next fragment with range r0.
 uint16 fragment(uint32 len, FragmentRange r0, Range r1)
 {
 return min(r0.high, len - r1.low);
 }

4.1.2. Adding the Length Hiding Padding

 If 'len' is the real plaintext length to be sent in a record fragment
 with range FragmentRange, a LH-TLS implementation MUST add at least
 FragmentRange.high - len bytes of padding to that record fragment
 (plus, if needed, some additional padding required to get block
 alignment).

 If the split_range and fragment functions above are used, then the
 difference FragmentRange.high - len is always smaller than the
 maximum available padding size (including further block alignment
 padding).

4.1.3. A Length Hiding API

 Finally, a LH-aware TLS implementation MAY use the algorithms
 described in Section 4.1 and Section 4.1.1 to offer a LH TLS API
 similar to the following, where it is assumed that a TLS_send(data,
 len, target_length) function sends a single TLS record fragment
 adding the necessary padding to match the target_length, as explained
 in Section 4.1.2.

 uint32 message_send(opaque data, Range total)
 {
 FragmentRange current;
 uint16 current_len, sent = 0;

 while (total.high != 0) {
 current = split_range(&total);
 next_len = fragment(data.length - sent, current, total);
 sent += TLS_send(&data[sent], next_len, current.high);
 }

 return sent;
 }

 This interface requires the TLS implementation to internally buffer

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 11]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 the entire application message. Alternatively, a LH TLS
 implementation MAY directly expose the split_range and fragment
 functions to the user, to avoid internal buffering. Note that it is
 only necessary to know the desired plaintext range to execute the
 split_range function, not the real plaintext size nor its content.

4.2. Applicability

 If a TLS-LH mechanism is used in a TLS session, then TLS record
 protocol compression MUST be disabled. Compression is known to leak
 substantial information about the plaintext, including its length
 [COMPLEAK], which defeats the purpose of LH. Moreover, since in TLS
 compression happens after fragmentation, and the compression ratio is
 not known a priori, it is impossible to define a precise
 fragmentation strategy when compression is in place.

 Length hiding can only work when some padding can be added before
 encryption, so that an attacker cannot distinguish whether the
 encrypted data are padding or application data. Hence, LH can only
 be used with block ciphers in standard TLS, and with any cipher when
 the extended record padding is used. In any case, length hiding MUST
 NOT be used with TLS_NULL_WITH_NULL_NULL or MAC-only ciphersuites.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 12]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

5. Security Considerations

 The LH scheme described in this document is effective in hiding the
 length of the exchanged messages, when an attacker observes the total
 bandwidth exchanged by a client and server using TLS. Crucially, the
 split_range algorithm, which determines the traffic shape and total
 bandwidth, MUST NOT depend on the real message length, but only on
 the Range.low and Range.high values, which are public.

 Similarly, only the application knows when the recipient of the
 message is expected to react, upon receiving the message. For
 example, a web browser may start loading a hyperlink contained in an
 HTML file, as soon as the hyperlink is received, before the HTML file
 has been fully parsed. By using a callback for the implementation of
 the fragment function, a LH-aware application using a TLS-LH library
 can decide how much data to send in each fragment. An application
 should consider the TLS LH mechanism effective only to conceal the
 length of the message exchanged over the network.

 Yet, an application on top of TLS could easily leak the message
 length, by performing visible actions after a known amount of bytes
 has been received. Hiding the length of the message at the
 application level is outside the scope of this document, and is a
 complex information flow property that should carefully considered
 when designing a LH-aware implementation. Even the way the bytes are
 transferred from the TLS library to the application could leak
 information about their length.

5.1. Length Hiding with extended record padding

 Since the padding is always included in the MAC computation, attacks
 that utilize the current CBC-padding timing channel (e.g.,
 [DTLS-ATTACK]) are not applicable.

 In a way, the extended record padding can be seen as a special way of
 encoding application data before encryption (where application data
 given by the user are prefixed by some padding). Hence, previous
 security results on standard TLS block and stream ciphers still apply
 to the extended record padding.

5.2. Length Hiding with standard TLS block ciphers

Section 6.2.3.2, Implementation note, of [RFC5246] acknowledges a
 small timing channel, due to the MAC timing depending on the length
 of each TLSCiphertext.content. Usage of large ranges with the LH
 scheme amplifies this timing channel, up to make it exploitable
 [LH-PADDING], because shorter messages within a range will be
 processed faster than longer messages in the same range.

https://datatracker.ietf.org/doc/html/rfc5246

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 13]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

 Implementations supporting the LH scheme SHOULD implement a MAC
 algorithm whose execution time depends on the length of the
 TLSCiphertext.content plus the length of the padding, thus
 eliminating this timing channel.

5.3. Mitigating Denial of Service

 The TLS protocol allows zero-length fragments of Application data,
 and these are exploited by the TLS length-hiding mechanism proposed
 in this document. For implementations that notify the application of
 such zero-length fragments, this poses no denial of service (DoS)
 issues. However, some TLS implementations will keep reading for the
 next fragment if a zero-length fragment is received. This exposes
 such implementations (especially server-side ones) to distributed DoS
 attacks, where a network of attackers connects to the same host and
 sends a sequence of zero-length fragments, keeping the host busy in
 processing them. This issue gets amplified when the
 "extended_record_padding" extension is used, because MAC computation
 includes a possibly large amount of padding.

 Implementations that keep reading for the next fragment when a zero-
 length one is received, and that are concerned by such DoS attacks,
 MAY implement a DoS countermeasure. For example, they could accept
 'n' zero-length fragments in a row, before notifying the application
 or returning an error. This conflicts with the requirements of a
 length-hiding mechanism, where zero-length fragments are used to
 conceal the real plaintext length. The value of 'n' SHOULD be chosen
 such that it is the smallest number of fragments that can convey the
 application-required LH padding. Usually, this value is application
 specific, so TLS implementations that implement this DoS mitigation
 SHOULD let 'n' be set by the application.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 14]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

6. IANA Considerations

 This document defines a new TLS extension, "extended_record_padding",
 assigned a value of TBD-BY-IANA (the value 48015 is suggested) from
 the TLS ExtensionType registry defined in [RFC5246]. This value is
 used as the extension number for the extensions in both the client
 hello message and the server hello message.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 15]

https://datatracker.ietf.org/doc/html/rfc5246

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

7. Normative References

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6066] Eastlake, D., "Transport Layer Security (TLS) Extensions:
 Extension Definitions", RFC 6066, January 2011.

 [DTLS-ATTACK]
 Nadhem, N. and K. Paterson, "Plaintext-recovery attacks
 against datagram TLS.", Network and Distributed System
 Security Symposium , 2012.

 [LH-PADDING]
 Pironti, A., Strub, P., and K. Bhargavan, "Identifying
 Website Users by TLS Traffic Analysis: New Attacks and
 Effective Countermeasures.", INRIA Research Report 8067 ,
 2012.

 [CBCTIME] Canvel, B., Hiltgen, A., Vaudenay, S., and M. Vuagnoux,
 "Password Interception in a SSL/TLS Channel", Advances in
 Cryptology -- CRYPTO , 2003.

 [COMPLEAK]
 Kelsey, K., "Compression and information leakage of
 plaintext", Fast software encryption , 2002.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6066

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 16]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

Appendix A. Acknowledgements

 The authors wish to thank Kenny Paterson for his suggestions on
 improving this document.

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 17]

Internet-Draft Length Hiding Padding for TLS Protocol September 2013

Authors' Addresses

 Alfredo Pironti
 INRIA Paris-Rocquencourt
 23, Avenue d'Italie
 Paris, 75214 CEDEX 13
 France

 Email: alfredo.pironti@inria.fr

 Nikos Mavrogiannopoulos
 Independent
 Leuven, B-3000
 Belgium

 Email: nmav@gnutls.org

Pironti & Mavrogiannopoulos Expires March 15, 2014 [Page 18]

