
INTERNET-DRAFT D.Piscitello,
Expires: February 28, 1998 L.Phifer
 Core Competence
 Y.Wang,
 R.Hovey
 Bellcore
 August 28, 1997

Mobile Network Computing Protocol (MNCP)
<draft-piscitello-mncp-00.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas, and
 its working groups. Note that other groups may also distribute working
 documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference material
 or to cite them other than as "works in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this memo is unlimited. Please send comments to the
 authors.

Abstract

 This memo documents an architecture and protocol for mobile network
 computing. The protocol described herein provides session control and
 reliable delivery services to accommodate mobile client access to
 internetworked applications within a 'client-agent-server'
 architecture. Client middleware based on this architecture can operate
 over wireless data networking services such as RAM, ARDIS, CDPD, PCS
 data services and wireless local area networks. This client middleware
 can be implemented using any standard application programming interface
 to a commercial UDP/IP stack on Hand-held PC's (HPC), personal digital
 assistants (PDA's), four-line browsers or 'smart' phones as well as
 laptop and desktop computers.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 <draft-piscitello-mncp-00.txt> Page 1

INTERNET DRAFT MNCP August 28, 1997

 Table of Contents

1. Introduction...4
1.1 Motivation..4
1.2 Design Goals..4
1.3 Mobile Network Computing Architecture.................................6
1.4 Relationship of MNCP to other Internet Protocols......................7
1.5 Requirements..8
1.6 Terms...8
2. Protocol Overview..9
2.1 Single Packet Reliable Delivery Service...............................9
2.2 Multi-Packet Reliable Delivery Service...............................10
2.2.1 NOTIFICATION Packet Processing (Sender)............................10
2.2.2 NOTIFICATION Packet Processing (Receiver)..........................12
2.2.3 Data Transfer (Sender)...12
2.2.4 Data Transfer (Receiver)...13
2.3 Session Control Service..14
2.3.1 Subscriber Validation..14
2.3.2 Registration...14
2.3.3 Application Data Transfer..15
2.3.4 Deregistration...15
2.3.5 Correlation Identifiers..16
3. MNCP Reliable Delivery Packets..16
3.1 Packet Types...16
3.2 Packet Headers...17
3.3 Packet Body..18
3.4 Packet Length..20
3.5 Information Elements...20
3.5.1 Data (Final and More)..21
3.5.2 Message Length...21
3.5.3 Acknowledge Code...22
3.5.4 Data Compression...22
3.5.5 Data Offset..23
3.5.6 Packet Size..23
3.6 PT_CMD...23
3.7 PT_ACK...24
3.8 PT_NTFN..24
3.9 PT_DATA..24
4. MNCP Session Control Packets..25
4.1 Packet Types...25
4.2 Session Control Headers..25

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

4.3 Session Control Body...26
4.4 Packet Length..26
4.5 Information Elements...26
4.5.1 Subscriber ID..26
4.5.2 Application ID...26
4.5.3 Subscriber Password..27
4.5.4 Registration Status..27
4.5.5 Message Cross-Correlation ID.......................................27
4.5.6 Acknowledge Code...27
4.6 FUN_REG_REQ..28
4.7 FUN_DEREG_REQ..28
4.8 FUN_<other>..29
5. MNCP Reliable Delivery Processing.....................................29

<draft-piscitello-mncp-00.txt> Page 2

INTERNET DRAFT MNCP August 28, 1997

5.1 Phase Diagram..29
5.2 State Diagram..31
5.3 States...32
5.4 Events...33
5.5 Actions..34
5.6 Timers, Acknowledgment, and Retransmission...........................37
5.7 Packet Size Negotiation, Segmentation and Reassembly.................37
5.7.1 Computing the payload size for PT_DATA packets.....................38
5.7.2 Segmentation and PT_DATA Packet Composition........................38
5.7.3 Reassembly...39
5.8 Data Compression...39
6. MNCP Session Control Processing.......................................40
6.1 Phase Diagram..40
6.2 State Diagram..42
6.3 States...42
6.4 Events...43
6.5 Actions..44
7. Security Considerations...48
8. References..48
9. Authors' Addresses..49
Appendix A. HDML Transactions using MNCP.................................50
Appendix B. Future Protocol Extensions...................................55

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

<draft-piscitello-mncp-00.txt> Page 3

INTERNET DRAFT MNCP August 28, 1997

1. Introduction

1.1 Motivation

 Mobile network computing, if constrained by consumer interest alone,
 would at this point in time increase more rapidly than the growth of
 the Internet itself. Applications that drive consumer interest --
 access to the public web and intranets, remote access to corporate and
 public databases, unified messaging and two-way paging -- are already
 present and widely available, having already been enabled by public and
 enterprise IP-based internetworking.

 The need to access internetworked applications remotely has already
 been established, but the means of addressing that need are only
 partially satisfied through the use of wireline and portable (laptop)
 PC solutions.

 The rapid acceptance of cellular telephony provides a strong indication
 of how quickly similarly untethered computer communications will be
 embraced by consumers. Recent technology advances now make it possible
 to produce handheld devices that are as small as cellular phones yet
 smart as portable PC's. These devices are very adapted for wireless

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 communications environments, better able to maintain signal strength
 and intelligently manage power consumption. It is thus likely that
 mobile network computers (MNCs), hand-held PC's (HPCs), personal
 digital assistants, and four-line browser or "smart" phones operating
 over wireless data networks will complement (or inherit) existing
 remote access alternatives, and create a potentially enormous consumer
 market for wireless data networking services such as RAM, ARDIS, CDPD,
 and PCS data services.

 This new class of mobile computing devices (MCD's) will often operate
 in low bandwidth, high latency environments, where it is important to
 minimize communications consumption. Such environments are not,
 however, the exclusive operating domains for every mobile computing
 device, and a device does not have to be among those types previously
 enumerated to be mobile. Any classification of MCD's must also include
 desktop and docking laptop computers in wireless LAN environments,
 where mobility within a building or campus is provided by wireless
 Ethernet or similar technology. It is also true that many mobile
 computing devices may be used in both wireless and wireline
 environments: change a network interface card (NIC) on many of these
 devices, and the MCD can operate over analog dial, ISDN, or in a LAN.

1.2 Design Goals

 Because of the diverse nature of Mobile Computing Devices, the
 communications environments over which they may operate, and the
 applications MCD's may provide, several design goals emerge.

 1) It is important to minimize communications consumption when low
 bandwidth, high latency networks are used by MCDs;

<draft-piscitello-mncp-00.txt> Page 4

INTERNET DRAFT MNCP August 28, 1997

 2) Applications should operate well irrespective of wireless or
 wireline network characteristics; and

 3) It should be possible for certain classes of MCD's to operate in a
 disconnected state.

 4) It should be relatively simple for end users to change
 communications environments; optimally, an end user would be able to
 install the appropriate network interface and begin communicating over
 a different type of network.

 5) It is desirable to have a mechanism to allow subscriber
 identification and authentication to be IP address independent.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 6) It is desirable to minimize communications consumption for low
 bandwidth devices with limited battery life.

 7) Both mobile computing devices and mobility servers should be able to
 initiate communications and transfers of data; i.e., client initiated
 or pull" applications as well as server initiated or "push"
 applications should be accommodated.

 +----------+ +----------+ +-------+ +---------+
 | desktop | | handheld | | PDA | | smart |
 | PC | | PC | | | | phone |
 +----------+ +----------+ +-------+ +---------+
 | | | |
 +--+
 | Applications |
 +--+
 | mobile network computing middleware |
 +--+
 | commercial UDP/IP implementation |
 +--+

 Mobile client applications will operate on wireless networks in a
 bandwidth-latency range where many commercial TCP's have insufficient
 tuning parameters to permit efficient operation. Custom TCP's might be
 developed to accommodate the specific bandwidth-delay characteristics
 of wireless networks, but these custom TCP's would need to be installed
 in all networked hosts with which the user wishes to communicate, which
 is not practical.

 To meet the design goals enumerated, and to avoid situations where the
 end user would be responsible for reconfiguring TCP for each
 environment, or where the user might have to install a different TCP
 entirely to operate over a LAN or wireless WAN, we believe it is
 appropriate to build a middleware element that can operate on top of
 any commercial, off-the-shelf UDP/IP implementation.

 [Note: It is conceivable that a standard TCP could be adapted to
 satisfy the network transparency design goals. The difficulty with
 this approach is that it will be some time before this can propagate
 into existing TCP implementations. More importantly, the existing TCP

<draft-piscitello-mncp-00.txt> Page 5

INTERNET DRAFT MNCP August 28, 1997

 architecture does not allow optimizations for minimizing communications
 consumption for low bandwidth devices with limited battery life, as
 will be described with MNCP.]

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 These requirements suggest that important efficiencies can be achieved
 by adopting an agent-enabled, transmission independent messaging
 paradigm. This client-agent-server architecture allows for the
 introduction of increased efficiencies such as session level data
 compression.

 [Note: This client-agent-server relationship is euphemistically
 referred to as a thin-client architecture. However, it is appropriate
 to consider so-called thin clients as one of many, rather than the
 only, type of client accommodated by the MNC architecture.]

 +-----------+ +-------------+ +-------------+
Mobile		Mobile		Enterprise
client		Agent/		or
(HPC,PDA,		application		Internet
laptop.)		proxy		application
				server(s)
 +-----------+ +-------------+ +-------------+
 | | | |
 | | | Internet or |
 |___wireless network__| |___Enterprise network____|

 In addition, client-server behavior and the "chatty" protocol behavior
 associated with client-server (web) interaction and transactions can be
 optimized by introducing a degree of parallelism, i.e., by adopting
 common service or "session layer" framing as well as application
 specific framing, on top of traditional transfer control framing. In
 addition to the operational efficiencies introduced with this approach,
 mechanisms for providing reliable delivery over wireless technologies
 can be developed and applied in application, rather than TCP "kernel"
 and operating system, space.

1.3 Mobile Network Computing Architecture

 The Mobile Network Computing architecture consists of a middleware
 service component to support user registration and authentication, data
 transfer (with compression) and reliable delivery. A diverse set of
 application service components may ride on top of this middleware, each
 providing application-specific services such as mobile (unified)
 messaging, paging, browsing, and remote database access.

<draft-piscitello-mncp-00.txt> Page 6

INTERNET DRAFT MNCP August 28, 1997

 MCD Mobility Server External Server

 +--------------+ +--------------+
 +-------------+ | +--------------+ +-------------+ |
 |Client App(s)|--+ | Appl Agent | |Server App(s)|--+
 +-------------+ +------+-------+ +-------------+
 | MNCP | | MNCP | Other | | Other Stack |
 +-------------+ +------+ Stack | |(HTTP, SMTP, |
 | UDP | | UDP |(HTTP, | |TCP/IP, etc) |
 +-------------+ +------+ SMTP, | | |
 | IP | | IP | TCPIP)| | |
 +-------------+--------------+-------+-------+-------------+
 | Wireless Network | Wireline Network |
 +----------------------------+-----------------------------+

 This internet-draft describes the Mobile Network Computing Protocol,
 which provides the services ascribed to the middleware component of the
 architecture.

1.4 Relationship of MNCP to other Internet Protocols

 MNCP is designed to be implemented on top of the Datagram protocol
 (UDP). MNCP packets have an IP header, a UDP header, and an MNCP
 header.

 MCD Mobility Server
 +--------------+ +--------------+ Server Apps can
 +-------------+ | +-------------+ | be Local or
 |Client App(s)|--+ |Server App(s)|--+ Distributed to
 +-------------+ +-------------+ External Server
 | MNCP | | MNCP |
 +-------------+ +-------------+ +-----+-----+--------+
 | UDP | | UDP | | IP | UDP | MNCP |
 +-------------+ +-------------+ | Hdr | Hdr | Packet |
 | IP | | IP | +-----+-----+--------+
 +-------------+------------------------+ ^ ^
 | Wireless Network | | +- Src/DestPort
 +--------------------------------------+ | Checksum
 +- Src/Dest IP Address

 The source and destination address fields of the IP header are used by
 MNCP to identify the requesting and responding hosts. For example, a
 request initiated by an MCD to a Mobility Server will carry the MCD's
 IP address in the source field and the Mobility Server's IP address in
 the destination field.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 The source and destination port fields of the UDP header are used by
 identify the requesting and responding MNCP's. An MNCP implementation
 listens to an assigned "well known" UDP port number (to be assigned and
 recorded by IANA[2]) for incoming requests, and demultiplexes them to
 the appropriate application based upon Service ID (see Section 4.5.2).
 For example, a request initiated by a mobile messaging client
 application will carry the application's UDP port number in the source
 port field (selected from the range of values for UDP "ephemeral" or

<draft-piscitello-mncp-00.txt> Page 7

INTERNET DRAFT MNCP August 28, 1997

 client ports) and the "well known" port number for MNCP in the
 destination port field.

 The UDP header length field reflects the total size of the MNCP packet.
 MNCP relies upon the UDP header's checksum field and error checking to
 protect the MNCP packet. MNCP provides end-to-end acknowledgment,
 retransmission, flow control, and segmentation as needed to insulate
 supported applications from the diverse characteristics of the
 underlying mobile network.

 Client and server applications supported by MNCP are identified by a
 Service ID field carried in the first MNCP packet of each packet
 sequence. In order to send or receive MNCP packets with a given
 Service ID, the MCD must register for that service with the Mobility
 Server. The MNCP is responsible for authenticating the client and
 performing access control, based upon Subscriber ID and Password fields
 supplied by the MCD. The MNCP relays messages between server
 applications and client applications currently registered for that
 Service ID.

1.5 Requirements
 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119[5].

1.6 Terms
 This memo uses a number of terms to describe components of the MNCP.
 Other common terms are used as specified in RFC 1983[4].

 Mobile Computing Device (MCD)
 PDA, laptop, hand-held device, desktop PC, or other network computer
 connected via wireless technology to a Mobility Server.

 Mobility Server (MS)
 The system which acts as an application layer gateway or agent between

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1983

 MCDs and networked application services such as mobile messaging or
 web-enabled database access.

 Client Application
 An application located on an MCD which uses MNCP to communicate with
 Server Applications.

 Server Application
 An application conceptually located on a Mobility Server, but which
 may be physically distributed (i.e., a service-specific application
 gateway on the Mobility Server relays messages to and from a server
 application running on an external server).

 Packet
 The basic unit of MCNP communication, consisting of a structured
 sequence of octets matching the syntax defined in Sections 3-4 and
 transmitted over wireless networks connecting an MCD and its Mobility
 Server.

<draft-piscitello-mncp-00.txt> Page 8

INTERNET DRAFT MNCP August 28, 1997

2. Protocol Overview
 This section provides a brief overview of each type of service,
 enumerating the features provided by each service.

 MNCP operates over the User Datagram Protocol, and relies on UDP
 protocol for protocol demultiplexing and data integrity . MNCP provides
 the following basic services:

 - A single packet (acknowledged datagram) reliable delivery service
 supports applications where a single datagram request and reply
 sequence is sufficient for application data transfer.

 - A multi-packet reliable delivery service supports applications
 requiring the reliable delivery of arbitrarily long data.

 - A set of registration and request/response correlation (message flow
 support) services collectively referred to as SESSION CONTROL.

 The MNC protocol consists of a message set of four basic packet types:
 COMMAND, NOTIFICATION, DATA, and ACKNOWLEDGE. Reliable delivery and
 session control services are provided through the use of Information
 Elements (IE's) encoded in these four packet types. The encodings of
 Information Elements for each packet type are described in sections 3
 and 4.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 The remainder of section 2 provides an overview of how MNCP provides
 data transfer and session control services to mobile applications.

2.1 Single Packet Reliable Delivery Service
 The single packet reliable delivery service is an acknowledged datagram
 service. The service makes use of the COMMAND (PT_CMD) and ACKNOWLEDGE
 (PT_ACK) packets. The basic features of the service are:

 - Data transfer
 - Packet correlation
 - error detection and recovery using positive acknowledgment with
 retransmission based on timeout

 The single packet reliable delivery service is used when an application
 invokes the service with a request to send data, and a single MNCP
 datagram request and reply sequence is sufficient for application data
 transfer. This is true when the total amount of data to be sent is
 less than or equal to the default packet size (470 octets).

 The MNCP constructs a COMMAND packet as follows. Common header fields
 are populated as discussed in section 3.2. A correlation identifier
 value is chosen for the packet exchange by the MNCP and encoded in the
 COMMAND packet (see section 2.3.5). Session Control information
 supplied by the application in the MNCP service request (service,
 function, and subscriber identifiers, and the subscriber password, see

Section 2.3) are encoded in the packet header, along with any
 application-specific information elements supplied in the request.
 Application data are then appended to the header as "payload".

<draft-piscitello-mncp-00.txt> Page 9

INTERNET DRAFT MNCP August 28, 1997

 The COMMAND packet is sent in a UDP packet to the well-known MNCP port
 (source UDP port value is assigned from UDP client space), and a retry
 timer is initiated by the sender. If an acknowledgment is not received
 before the retry timer expires, the COMMAND packet is resent. If a
 specified maximum number of retry attempts is exceeded and an
 ACKNOWLEDGMENT is not received, the failure is reported to the
 application. If an ACKNOWLEDGMENT is received, a confirmation
 (delivery success or failure) is returned to the application.

 When a COMMAND packet is received, the MNCP parses the packet and
 composes and returns a ACKNOWLEDGMENT packet containing a negative ACK
 code if errors were detected. Otherwise, the MNCP forwards the packet
 to the MNCP session control for processing (see section 2.3). If
 subscriber authentication and application service access control are
 successful, session control passes the contents of the data payload to

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 the application service indicted in the header, and returns a positive
 acknowledgment to MNCP. If authentication fails, or the subscriber is
 not authorized to use this application, session control will return a
 negative acknowledgment code to MNCP. Upon reception of a response
 from session control, the MNCP composes and returns an ACKNOWLEDGMENT
 packet with a positive or negative ACK code (the ACK code may be
 negative, indicating a session control failure, such as an invalid
 subscriber identifier or password).

2.2 Multi-Packet Reliable Delivery Service
 The multi-packet reliable delivery service is used when an application
 attempts to send a message that is longer than the default packet size
 offered (see section 3.4), i.e., when the entire user data,
 uncompressed, cannot be transferred in a single packet. The service
 makes use of the NOTIFICATION (PT_NTFN) DATA (PT_DATA) and ACKNOWLEDGE
 (PT_ACK) packets. The basic features of the service are:

 - Data Transfer
 - Packet correlation
 - Packet size selection
 - Data compression method selection
 - Error detection and recovery using positive acknowledgment with
 retransmission based on timeout
 - Flow control
 - Segmentation and reassembly
 - Data compression (when selected)

2.2.1 NOTIFICATION Packet Processing (Sender)
 When the multi-packet reliable delivery service is used, the MNCP
 constructs a NOTIFICATION packet to initiate a sequence of data
 packets. The purpose of the NOTIFICATION packet is to convey to the
 receiver certain information regarding overall and compressed size of
 the data to be transferred, and to propose a data compression method
 and maximum packet size to use when transferring subsequent data in the
 context of this multi-packet transfer.

 The NOTIFICATION packet is always default packet size (470 octets) or
 less, and is constructed as follows. Common header fields are populated
 as discussed in section 3.2. A correlation identifier value is chosen

<draft-piscitello-mncp-00.txt> Page 10

INTERNET DRAFT MNCP August 28, 1997

 for the packet exchange by the MNCP (see section 2.3.5) and encoded in
 the NOTIFICATION packet. The sequence number in the NOTIFICATION is
 set to an initial value of zero (all subsequent DATA packets within the
 same packet sequence are incremented sequentially by one). The total
 (uncompressed) length of the application message to be sent is encoded

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 in the packet as the Original Message Length.

 To increase network efficiency, the sender can propose to use a packet
 size larger than the default packet size. For this version of the
 protocol, the maximum packet size that can be proposed is 2048 octets
 (see section 3.4). The sender can also propose to use data
 compression, by specifying a compression method in the Data Compression
 Option. Proposing a larger packet size and a data compression method
 are options in the MNCP.

 Session Control information supplied by the application in the MNCP
 service request (service, function, and subscriber identifiers, and the
 subscriber password, see Section 2.3) are encoded in the packet header,
 along with any application-specific information elements supplied in
 the request.

 The NOTIFICATION packet is sent in a UDP packet to the well-known MNCP
 port (source UDP port value is assigned from client space), and a retry
 timer is initiated by the sender. If an ACKNOWLEDGMENT packet is not
 received before the retry timer expires, the NOTIFICATION packet is
 resent. If a specified maximum number of retry attempts is exceeded
 and an ACKNOWLEDGMENT packet is not received, a failure is reported to
 the application (see section 5.6).

 If an ACKNOWLEDGMENT packet containing a positive ACK code is received,
 the sender begins transferring application data (see section 2.2.3).
 If the receiver has accepted an increased packet size, then the sender
 extracts the packet size specified in the ACKNOWLEDGMENT packet and
 uses this for subsequent message transfer. The packet size indicated
 in the ACKNOWLEDGMENT packet may be equal to or less than the size
 proposed by the sender. If the sender has proposed a data compression
 method, a positive ACK code indicates that the receiver has agreed to
 the data compression option proposed by the sender in the NOTIFICATION
 packet being ACKed.

 The receiver may return a negative code to reject the compression
 method proposed in a NOTIFICATION packet, and may propose an
 alternative compression methods in the ACKNOWLEDGEMENT packet, to
 expedite the compression selection process. If the sender supports the
 data compression method proposed, the sender resends the NOTIFICATION,
 identifying the data compression proposed by the receiver in the
 ACKNOWLEDGMENT packet; alternatively, the sender may bid a new method.
 The receiver may again return a negative acknowledgment code to reject
 the proposed compression method, and (optionally) propose an
 alternative method. This form of "bidding" continues until a mutually
 acceptable compression method is identified (no compression is a
 legitimate option). The sender recognizes that compression selection
 has concluded when it receives an ACKNOWLEDGMENT packet containing a
 positive acknowledgment code.

<draft-piscitello-mncp-00.txt> Page 11

INTERNET DRAFT MNCP August 28, 1997

 [NOTE: Under this compression selection scheme, the sending MNCP must
 compress the data using a particular algorithm before it sends the
 PT_NTFN in order to convey the compressed length. This reflects
 current implementation practice. This memo does not preclude the use
 and future specification of stream compression algorithms that could be
 more closely coupled with an underlying transmission service, to
 optimize performance.]

2.2.2 NOTIFICATION Packet Processing (Receiver)
 The MNCP parses an incoming NOTIFICATION packet and composes and
 returns a ACKNOWLEDGMENT packet containing a negative ACK code if
 errors were detected in the common header. Otherwise, the receiver
 examines the NOTIFICATION packet to determine if the sender has
 proposed any options. If the sender has proposed a packet size greater
 than the default packet size, the receiver may agree to use the larger
 packet size or it may propose an alternative size that is less than the
 size specified in the NOTIFICATION packet. The receiver can propose a
 smaller packet size and still return a positive acknowledgment.

 If the NOTIFICATION proposes a data compression method that is not
 supported by the receiver, the receiver may reject the proposed data
 compression method and propose an alternative method in the
 ACKNOWLEDGMENT packet returned to the sender. As described in section

2.2.1, a form of "bidding" continues until both receiver and sender
 identify a mutually acceptable compression method.

 When processing associated with multi-packet reliable delivery is
 completed by the receiver, the MNCP forwards the NOTIFICATION packet to
 the MNCP session control for processing (see section 2.3). Upon
 reception of a response from session control, the MNCP composes and
 returns an ACKNOWLEDGMENT packet with an ACK code indicating success or
 failure of session control processing.

2.2.3 Data Transfer (Sender)
 When the NOTIFICATION processing is completed, the MNCP attempts to
 transfer data. The original application data submitted in the request
 is first compressed (if compression is selected), then segmented into a
 sequence of DATA packets containing data payloads of size {negotiated
 packet size - DATA packet header information}, i.e., when constructing
 a DATA packet, the MNCP attempts to create "n" packets of this fixed
 size. The last segment of application data transferred in this
 sequence of DATA packets may contain fewer octets than the negotiated
 packet size minus the header.

 The processing and transmission of a sequence of DATA packets is as

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 follows. All packets in a sequence of DATA packets carry the same
 Correlation Identifier as the NOTIFICATION packet. A Data Offset is
 encoded in each DATA packet to assist in the reassembly of the
 application message. The first in a sequence of DATA packets has a
 Data Offset value of zero . When compression is used, the sending MNCP
 will fill the first DATA packet to the maximum payload available with
 compressed data, otherwise, each packet is filled to the maximum
 payload available with a segment of the original uncompressed message.

<draft-piscitello-mncp-00.txt> Page 12

INTERNET DRAFT MNCP August 28, 1997

 A sequence number is encoded in each DATA packet to assist in
 determining packet order. The sequence number of the initial DATA
 packet in a sequence is set to one (1).

 For each additional DATA packet in the sequence, the Data Offset value
 represents the offset from the beginning of the transmitted data
 (hence, if the message was compressed before it was sent, the offset is
 relative to the beginning of the compressed message, not the original
 uncompressed message). The sequence number value is incremented by one
 for each subsequent segment created. The sequence number is not
 altered if a packet is retransmitted.

 Each packet in a sequence of DATA packets except the final DATA packet
 carries an indication that more DATA packets follow this packet. The
 final DATA packet may contain less that the maximum data payload number
 of octets, and must not be padded.

 Each DATA packet is sent as a UDP packet to the source port which sent
 the last ACKNOWLEDGMENT packet, and a retry timer is initiated by the
 sender. If an acknowledgment is not received before the retry timer
 expires, the DATA packet is resent. If a specified maximum number of
 retry attempts is exceeded and an ACKNOWLEDGMENT is not received, the
 failure is reported to the application (see section 5.6). If an
 ACKNOWLEDGMENT containing the sequence number of the DATA packet sent
 is received, the next DATA packet in the sequence is transmitted (out
 of sequence ACKNOWLEDGMENT packets are discarded). Upon reception of a
 positive ACKNOWLEDGMENT to the final DATA packet, a confirmation is
 provided to the sending application, indicating successful delivery.

2.2.4 Data Transfer (Receiver)
 When the receiver sends a positive ACKNOWLDEGMENT in response to a
 NOTIFICATION request, the receiving MNCP awaits the arrival of DATA
 packets.

 Reliable delivery of data is achieved through the use of a stop-and-go
 with timeout retransmission mechanism. Each DATA packet must be

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 individually acknowledged by the receiving MNCP. The ACKNOWLEDGMENT
 packet must contain the same sequence number as the packet it is
 acknowledging.

 Out of sequence DATA packets (any packet with a previously acknowledged
 sequence number or a packet whose sequence number is greater than the
 next expected sequence number) are discarded by the receiving MNCP. As
 part of the processing of out of sequence DATA packets, the receiving
 MNCP returns an ACKNOWLEDGEMENT packet containing the sequence number
 of the most recently acknowledged DATA packet.

 The receiver processes the incoming DATA packets as follows. As part
 of the process of determining whether a properly composed DATA packet
 has arrived, the receiver checks to see if the correlation identifier
 in the packet corresponds to a transfer in progress; if the packet is
 incorrectly composed or the correlation identifier is unknown (not
 associated with a transfer in progress), the packet is discarded. If
 the DATA packet is valid, the receiver uses the packet contents

<draft-piscitello-mncp-00.txt> Page 13

INTERNET DRAFT MNCP August 28, 1997

 (correlation identifier, data offset, sequence number, more/final
 information, application data) and information relayed in the
 NOTIFICATION request (message length, compressed and uncompressed,
 compression method) to reassemble the application data. The receiver
 composes and returns an ACKNOWLDEGEMENT packet containing the
 correlation identifier and sequence number from the DATA packet being
 acknowledged. The ACKNOWLEDGEMENT packet is sent as a UDP packet to the
 source port which sent the DATA packet being acknowledged.

 Reassembly of application data continues in this manner until a DATA
 packet containing a "final data" indicator is processed. The
 reassembled data are uncompressed (if compression was used).
 Application-specific information elements are forwarded to the
 application, and a final ACKNOWLEDGEMENT packet is sent as a UDP packet
 to the source port which sent the DATA packet being acknowledged.

2.3 Session Control Service
 MNCP session control packets are exchanged between an MCD and a
 Mobility Server using MNCP reliable delivery packets. The purpose of
 session control is to provide user validation (authentication),
 application access control, user registration (deregistration) for
 application services, and application request/response correlation.

2.3.1 Subscriber Validation
 User validation (authentication) is based on a subscriber identifier
 and subscriber password. A subscriber identifier is assigned to the

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 user of a mobile computing device, and is intended to be independent
 from any lower layer (e.g., IP) addressing or identification. In
 particular, access controls to applications and services may be based
 on subscriber identification, allowing the subscriber to access these
 applications irrespective of the IP or equivalent network address the
 user of an MCD is (temporarily) using for communication with a Mobility
 Server.

 Applications and specific functions of applications that may be
 accessed by a user of a MCD (remotely invoked operations) are
 identified by a service identifier, which is globally unique and IANA-
 assigned, and a function identifier, which is service-specific.
 Application registration and deregistration are functions performed for
 all application services, and fall within session control, whereas
 other functions, such as a "check mailbox status" function, are
 specific to an application (mobile messaging), and are thus transparent
 to the MNCP.

2.3.2 Registration
 Registration is a process whereby a client (MCD) notifies a Mobility
 Server of its intent to make use of an application service. An
 explicit form of registration is accomplished as follows. Session
 control information (subscriber identification and authentication
 information, application service and function identification) is
 supplied by the client application to the MCD's MNCP and encoded as
 information elements in a REGISTRATION request (see also section 2.1).
 A registration request is sent by a client (MCD) MNCP using the single
 packet reliable delivery mechanism.

<draft-piscitello-mncp-00.txt> Page 14

INTERNET DRAFT MNCP August 28, 1997

 The receiving MNCP (here, the Mobility Server) uses the subscriber
 identification and authentication information to validate the user and
 to determine whether the user has access privileges to the application
 service and function identified. The receiving (MS) MNCP returns a
 positive or negative ACKNOWLEDGMENT based on the success or failure of
 authentication and access control processing. If the authentication
 succeeds, the (MS) MNCP updates the status of the subscriber to
 "registered", records the IP address of the MCD from which the
 subscriber's registration request was initiated, and returns a positive
 ACKNOWLEDGEMENT. The (MS) MNCP starts a timer that bounds the amount
 of time the registered subscriber may be inactive before the subscriber
 is declared unavailable (see sections 4.7 and section 6.4).

 [NOTE: Explicit registration may be used to enable "push" applications.
 Once a client application at an MCD is registered, an application at a

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 Mobility Server may send unsolicited messages to the MCD.]

 A second, implicit form of registration occurs when an application at a
 Mobility Server receives requests for a service from a MCD that has not
 explicitly registered for that service. If the subscriber
 identification and authentication are valid, and access to this service
 is permitted for this subscriber, the MS will register the client (MCD)
 as previously described, and process the service request (see section

2.3.3 and section 3).

 Once a subscriber has registered, a Mobility Server will forward all
 subsequent subscriber-bound messages to the MCD at the IP address
 recorded, until the subscriber explicitly deregisters the service, or
 registers the service from another MCD, or from a different IP address.

2.3.3 Application Data Transfer
 Once registration is completed, applications at either the MCD or MS
 may begin sending requests. Session Control information (application
 service and function identification, subscriber identification and
 password, request/response message correlation information) accompany
 application-specific control information and data in each request.
 Each request (carried as a COMMAND packet or a NOTIFICATION packet
 initiating a multi-packet sequence) is authenticated. If
 authentication succeeds and all the contents are reliably delivered, a
 positive ACKNOWLEDGEMENT is returned to the MCD MNCP. Application-
 specific IE's as well as data are forwarded to the application when the
 entire request has been delivered.

2.3.4 Deregistration
 Deregistration may be initiated by the MCD application. A request to
 deregister from an application service results in the transmission of a
 DEREGISTER function by session control to the Mobility Server's (MS)
 MNCP. Deregistration can also occur when an inactivity timer operating
 at the Mobility Server expires. When either of these events occurs,
 the (MS) MNCP deregisters the subscriber (i.e., changes the
 registration status to deregistered for the application service
 indicated in the request). The MNCP requesting deregistration (either

<draft-piscitello-mncp-00.txt> Page 15

INTERNET DRAFT MNCP August 28, 1997

 the MCD or MS) composes and sends a Deregistration request and awaits
 an indication from reliable transfer that

 (a) the MCD MNCP has responded with an ACKNOWLDGEMENT indicating it
 wishes to continue communicating with the server. In this case, the
 (MS) MNCP updates the registration status of the client (to

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 registered).

 (b) the (MCD or MS) MNCP has responded with an ACKNOWLEDGEMENT
 indicating it agrees to discontinue communication. In this case, the
 requesting MNCP remains in an unregistered (i.e., inactive) status.

 (c) retry timer expiration causes the reliable delivery MNCP to
 indicate to session control that communication attempts have been
 abandoned. In this case, the requesting MNCP remains in an
 unregistered (i.e., inactive) status.

2.3.5 Correlation Identifiers
 The correlation identifier is used by Session Control to associate
 packets (or packet sequences) of a given exchange, and is relevant for
 both directions of information flow (i.e., the acknowledgment for a
 NOTIFICATION, COMMAND, and DATA packet must have the same correlation
 identifier) for the duration of that exchange. The correlation
 identifier has local significance to the mobile computing device or
 Mobility Server.

 Applications may use a Correlation Identifier value to link together or
 "cross-correlate" packet sequences related to the same application-
 specific message flow. Consider an e-mail client application request
 from a MCD to retrieve mailbox messages. The request could be
 satisfied using a single COMMAND-ACK sequence. The corresponding
 responses could be conveyed as a packet sequence involving the use of
 the NOTIFICATION service initiated by a messaging application operating
 on a Mobility Server. The Cross-correlation Identifier value used by
 the Mobility Server when delivering the contents of the mailbox to the
 email client must be the same as the Correlation Identifier of the
 original request to retrieve mailbox messages (see section 4.5.5).

3. MNCP Reliable Delivery Packets
 This section defines the packets which support MNCP reliable delivery
 services.

3.1 Packet Types
 MNCP reliable delivery packets are exchanged between an MCD and a
 Mobility Server. There are four types of MNCP reliable delivery
 packets, differentiated by the Packet Type field in the Packet Header.

 Command Packet (PT_CMD)
 This packet is used when the entire length of the application data can
 be carried in a single packet.

<draft-piscitello-mncp-00.txt> Page 16

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

INTERNET DRAFT MNCP August 28, 1997

 Notification Packet (PT_NTFN)
 This packet is used when the entire length of the user data can not
 fit into a single packet. It is followed by one or more PT_DATA
 packets.

 Data Packet (PT_DATA)
 This packet is used in conjunction with the Notification Packet to
 carry the actual application data.

 Acknowledge Packet (PT_ACK)
 This packet is used to confirm receipt of a PT_CMD, PT_NTFN, or
 PT_DATA packet by the peer MNCP.

 MNCP reliable delivery packets PT_CMD, PT_NTFN, and PT_DATA can
 originate from either the MCD or the Mobility Server. Acknowledgments
 (PT_ACKs) are returned by the recipient of the other packets.

 Exactly one MNCP reliable delivery packet is encapsulated in each UDP
 Information field as an octet sequence, encoded in network-byte order.

3.2 Packet Headers
 The following common header fields appear in every MNCP reliable
 delivery packet. A summary of the packet header format is shown below.
 The bits are transmitted in network-byte order, from left to right.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
 +-+
 | Major Version | Minor Version | Packet Type | ..
 +-+
 2 3 4 5
 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +-+
 | Correlation Id | Sequence Number |
 +-+

 Major and Minor Protocol Version
 Two one octet Protocol Version fields identify the Major and Minor
 Version level of the MNCP packet. The values (1,1) MUST be used to
 indicate the MNCP protocol version specified by this memo. When a
 packet is received with an unknown Protocol Version value, the packet
 SHOULD be silently discarded.

 Packet Type
 The Packet Type field is one octet, and identifies the type of MNCP
 reliable delivery packet as enumerated below.

 1 PT_CMD Command

 2 PT_NTFN Notification
 3 PT_DATA Data
 4 PT_ACK Acknowledge

 When a packet is received with an unknown Packet Type value, the
 packet SHOULD be silently discarded.

<draft-piscitello-mncp-00.txt> Page 17

INTERNET DRAFT MNCP August 28, 1997

 Correlation Id
 The Correlation Id field is two octets, and is used to link together
 all the packets in a particular packet sequence. When initiating a
 new packet sequence, applications at a Mobility Server MUST select
 values in the range h0001 - h7FFF (i.e., the most significant bit must
 be zero, 0). When initiating a new packet sequence, applications at a
 MCD MUST select values in the range h8000-hFFFF (i.e., the most
 significant bit must be one, 1). The value zero is reserved and MUST
 NOT be used.

 When a PT_DATA or PT_ACK packet is received with an unknown
 Correlation Identifier field, or any other type of packet is received
 with a missing Correlation Identifier field, the packet SHOULD be
 silently discarded.

 The MNCP that initiates a packet sequence (i.e., sends a PT_CMD or
 PT_NTFN packet) MUST ensure that the Correlation Identifier value
 uniquely identifies the packet sequence locally (i.e., no other packet
 sequence is in progress involving this MCD and the same Correlation
 Identifier value). All other packets in this packet sequence
 (including PT_ACKs) MUST carry this same Correlation Identifier value.

 Applications may use the same Correlation Identifier value to link
 together packet sequences related to the same application-specific
 message flow. For example, an e-mail client request might be conveyed
 by a PT-CMD packet sequence, with mail server responses conveyed as
 PT-NTFN packets sequences, all of which carry Cross Correlation
 Identifiers equal to the Correlation Identifier of the original
 request.

 Sequence Number
 The Sequence Number field is two octets, and is used to maintain
 sequencing of packets. When a packet is received with a missing or
 unknown Sequence Number field, the packet SHOULD be silently
 discarded.

 The sequence number MUST have the value zero (0) for the first packet

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 of a packet sequence. The sequence number contained in each
 subsequent PT_DATA packet within the same packet sequence MUST be
 incremented sequentially by one (1) until the maximum field value
 (65,536) has been reached, and then recycled back to zero(0).

3.3 Packet Body
 The body an MNCP packet is used to carry MNCP reliable delivery control
 information, session control information, and application-specific
 data. The MNCP packet body is transmitted immediately after the MNCP
 packet header, beginning at bit 56 of the entire MNCP reliable delivery
 packet.

<draft-piscitello-mncp-00.txt> Page 18

INTERNET DRAFT MNCP August 28, 1997

 5 6 7 8
 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
 +-+
 | MNCP Packet Body (1..N Information Elements) ..
 +-+

 The MNCP reliable delivery packet body consists of one or more
 Information Elements (IEs). Each Information Element consists of an IE
 Type field, IE Length field, and a variable-length data field (content
 determined by the IE Type, length identified by the IE Length). There
 are two Information Element formats: an extended length format used
 only for IE_DATA_MORE and IE_DATA_FINAL elements, and an abbreviated
 format used for all other currently-defined IE Types.

 A summary of the Information Element field format is shown below. The
 fields are transmitted in network-byte order, from left to right,
 beginning with the first available bit after the MNCP packet header or
 preceding Information Element.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 | IE Type=Other | IE Length | IE Data (1..N octets) ..
 +-+
 OR
 +-+
 | IE Type=DATA | IE Length |IE Data(1..N oct)..
 +-+

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 IE Type
 The IE Type field is one octet, and identifies the type of Information
 Element as enumerated below.

 5 IE_DATA_FINAL Data (Final)
 6 IE_DATA_MORE Data (More)
 8 IE_MSG_LENGTH Message Length
 10 IE_ACK_CODE Acknowledge Code
 16 IE_DATA_COMPRESSION Data Compression
 18 IE_DATA_OFFSET Data Offset
 20 IE_PKT_SIZE Packet Size

 Additional IE Type values are defined by MNCP Session Control (see
Section 4.5) and may also be defined for use by specific applications

 (to be assigned and recorded by IANA[2]). When a packet is received
 with an unknown IE Type value, the Information Element SHOULD be
 forwarded to the application without further interpretation by the
 MNCP.

 IE Length
 If the IE Type equals IE_DATA_MORE or IE_DATA_FINAL, the IE Length
 field is two octets; otherwise, the IE Length field is one octet. The
 IE Length field indicates the length of the information element data
 field, in octets.

<draft-piscitello-mncp-00.txt> Page 19

INTERNET DRAFT MNCP August 28, 1997

 Octets beyond the range of the IE Length field are treated as a
 separate Information Element. When a packet is received with an
 invalid Length field, the packet SHOULD be silently discarded.

 IE Data
 The format of the IE Data field varies according to IE Type. The
 format associated with each IE Type is defined in Sections 3.5 and
 4.5.

 When encoding MNCP packets, the following general rules apply, in order
 of priority.

 - Required IEs MUST appear before optional IEs, and
 - Fixed-length IEs MUST appear before variable-length IEs.

3.4 Packet Length
 The length of each MNCP reliable delivery packet is the sum of the
 following:

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 MNCP Header Length 7 octets
 MNCP Body Length sum of Information Element lengths

 When IE Type is IE_DATA_MORE or IE_DATA_FINAL, the length of the
 Information Element is three(3) octets plus the value specified by the
 IE Length field. Otherwise, the length of the Information Element is
 two (2) octets plus the value specified by the IE Length field. Since
 every MNCP reliable delivery packet contains at least one Information
 Element, the minimum length of a packet is 10 octets.

 The maximum length of an MNCP packet, MAX_PACKET_SIZE, is limited to
 2048 octets. The default packet size, DEFAULT_PACKET_SIZE, is 470
 octets, chosen because it is the most efficient size that can be
 transported by UDP over wireless Mobitex networks. In order to
 increase network efficiency, the sending MNCP may propose a packet
 length greater than DEFAULT_PACKET_SIZE, but less than or equal to
 MAX_PACKET_SIZE. The receiving MNCP may accept the proposed value or
 request a smaller packet length. The selection of an appropriate
 packet size is affected by factors such as the Maximum Transmission
 Unit (MTU) and Maximum Segment Size (MSS) of the underlying network.

 When an application message is longer than the negotiated packet size
 (less header and protocol control information overhead), it MUST be
 segmented into more than one MNCP reliable delivery packet. In this
 case, the length of the complete application message is indicated by
 the IE_MSG_LENGTH Information Element included in the PT_NTFN packet
 (see Section 3.5.2).

3.5 Information Elements
 Each Information Element includes IE Type and IE Length fields,
 formatted as described in Section 3.3. Information Elements related to
 reliable transfer are defined below; additional elements related to
 session control are defined in Section 4.5.

<draft-piscitello-mncp-00.txt> Page 20

INTERNET DRAFT MNCP August 28, 1997

 When a packet is received with a syntactically invalid Information
 Element, the packet MUST be acknowledged with the Ack Code
 ACK_ERR_INFO. When a packet is received without a required Information
 Element, the packet MUST be acknowledged with the Ack Code
 ACK_ERR_PROT.

3.5.1 Data (Final and More)
 0 1 2 3

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |T=IE_DATA_FINAL| Length=1..N | Data (1..N) ..
 |or IE_DATA_MORE| where N = (MAX_PACKET_SIZE - header length)
 +-+

 Data
 The Data field is variable length, ranging from one to
 (MAX_PACKET_SIZE - header) octets, and carries application-dependent
 content.

 The IE Type MUST equal IE_DATA_FINAL if the data field contains the
 only or final segment of an application message. Otherwise, the IE
 Type MUST equal IE_DATA_MORE, indicating that the remainder of the
 application message will be sent in subsequent PT_DATA packets.

 In a PT_DATA packet, the content of the data field may be compressed
 (see Section 3.5.4).

3.5.2 Message Length
 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |T=IE_MSG_LENGTH| Length=8 |..
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 1 2 3 4
 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
 +-+
 | Original Message Length |..
 +-+
 4 5 6 7
 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 +-+
 | Compressed Message Length |
 +-+

 Original Message Length
 The Original Message Length field is four octets, and identifies the
 length, in octets, of the original application message to be
 transferred during an MNCP reliable delivery packet sequence.
 Providing this value allows the receiving MNCP to allocate adequate
 buffer space in which to build the decompressed message.

 Compressed Message Length
 The Compressed Message Length field is four octets, and identifies the
 length, in octets, of the same application message after compression.

<draft-piscitello-mncp-00.txt> Page 21

INTERNET DRAFT MNCP August 28, 1997

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 This indicates the number of data octets to be carried by the sequence
 of PT_DATA packets which follow this PT_NTFN packet, and may equal
 Original Message Length if no compression algorithm has been
 negotiated. Providing this value allows the receiving MNCP to
 allocate adequate buffer space in which to reassemble the compressed
 message.

3.5.3 Acknowledge Code
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Typ=IE_ACK_CODE| Length=2 | Ack Code |
 +-+

 Ack Code
 The Ack Code field is two octets, and indicates success or failure of
 MNCP packet processing. Values associated with reliable transfer
 processing are enumerated below; additional session control-related
 values are enumerated in Section 4.5.6.

 ACK_OK 0 Success, no error
 ACK_ERR_MCD 1 Unrecognized MCD
 ACK_ERR_FILE_IO 9 Storage or File I/O error
 ACK_ERR_INFO 11 Invalid parameters/command syntax
 ACK_OOS_COMPRESS 12 Compression method not supported
 ACK_ERR_PROT 13 Protocol Error
 ACK_ERR_SYS 65535 Unrecoverable System Error

3.5.4 Data Compression
 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
 +-+
 |T=IE_DATA_COMP | Length=1 | Compression |
 +-+

 Compression
 The Compression field is one octet, and identifies the compression
 method to be used on the data contained within PT_DATA packet
 IE_DATA_MORE and IE_DATA_FINAL information elements, as enumerated
 below.

 COMPRESS_OFF 0 Data MUST NOT be compressed
 COMPRESS_DEFAULT 1 Data MUST be compressed using default
 method, LZS, as defined by RFC 1974[3]

 Additional values for this field may be assigned and recorded by
 IANA[2]. Section 5.8 describes how this field is used for negotiation
 in PT_NTFN and PT_ACK packets.

https://datatracker.ietf.org/doc/html/rfc1974

<draft-piscitello-mncp-00.txt> Page 22

INTERNET DRAFT MNCP August 28, 1997

3.5.5 Data Offset
 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |T=IE_DATA_OFF | Length=8 |..
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 1 2 3 4
 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
 +-+
 | Data Offset |
 +-+

 Data Offset
 The Data Offset field is four octets. When uncompressed data are
 sent, Data Offset identifies the offset, in octets, of the first bit
 of the IE_DATA_MORE or IE_DATA_FINAL Data field from the beginning of
 the original uncompressed message. When compression is used, Data
 Offset identifies the offset, in octets, of the first bit of the
 IE_DATA_MORE or IE_DATA_FINAL Data field from the beginning of the
 compressed message.

3.5.6 Packet Size
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Typ=IE_PKT_SIZE| Length=2 | Packet Size |
 +-+

 Packet Size
 The Packet Size field is two octets, and identifies the maximum size
 (in octets) for PT_DATA packets in this MNCP packet sequence. Section

5.7 describes how this field is used for negotiation in PT_NTFN and
 PT_ACK packets and how it affects segmentation of application data in
 PT_DATA packets.

 The default value for this field is DEFAULT_PACKET_SIZE (470 octets).
 The maximum value for this field is MAX_PACKET_SIZE (2048 octets). If
 this field is absent from a PT_NTFN packet, the default value MUST be
 assumed.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

3.6 PT_CMD
 When an application wishes to send a message that is shorter than
 (DEFAULT_PACKET_SIZE - header) octets, uncompressed, the MNCP MUST
 embed it in the IE_DATA_FINAL field of a PT_CMD packet.

 Upon reception of a correctly-formed PT_CMD packet, a PT_ACK MUST be
 transmitted, containing a positive or negative Ack Code as described in

Section 3.7.

 The following IEs are optional in a PT_CMD packet.

 IE_DATA_FINAL As defined in Section 3.5.1
 MUST be present if application data
 has been supplied by the user.

<draft-piscitello-mncp-00.txt> Page 23

INTERNET DRAFT MNCP August 28, 1997

 Additional session control or application-specific IEs may also be
 included in the PT-CMD packet.

3.7 PT_ACK
 Upon reception of a correctly-formed PT_CMD, PT_NTFN, or PT_DATA
 packet, a PT_ACK MUST be transmitted to confirm delivery. The PT_ACK
 includes the same Correlation ID and Sequence Number as the packet to
 be confirmed, and an Ack Code to indicate the success or failure of
 packet processing within the MNCP.

 The following IE is required in a PT_ACK packet.

 IE_ACK_CODE As defined in Section 3.5.3

 Additional session control IEs and application-specific IEs may also be
 included in the PT_ACK packet.

3.8 PT_NTFN
 When an application wishes to send a message that is longer than
 (DEFAULT_PACKET_SIZE - header) octets, uncompressed, the MNCP MUST
 generate a PT_NTFN packet to initiate a sequence of PT_DATA packets.

 Upon reception of a correctly-formed PT_NTFN packet, a PT_ACK MUST be
 transmitted, containing a positive or negative Ack Code as described in

Section 3.7.

 The following IEs are required in a PT_NTFN packet.

 IE_MSG_LENGTH As defined in Section 3.5.2

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 The following IEs are optional in a PT_NTFN packet.

 IE_DATA_COMPRESSION As defined in Section 3.5.4
 MUST be present if compression desired
 otherwise default value assumed

 IE_PKT_SIZE As defined in Section 3.5.6
 MUST be present if long packets desired
 otherwise default value assumed

 Additional application-specific IEs may also be included in the PT-NTFN
 packet.

3.9 PT_DATA
 When an application wishes to send a message that is longer than
 (DEFAULT_PACKET_SIZE - header) octets, uncompressed, the MNCP generates
 a sequence of PT_DATA packets to carry message segments. The final
 PT_DATA packet carries the information element IE_DATA_FINAL; all
 others carry the information element IE_DATA_MORE. These packets carry
 the same Correlation ID and sequentially-assigned Sequence Numbers.

<draft-piscitello-mncp-00.txt> Page 24

INTERNET DRAFT MNCP August 28, 1997

 Upon reception of each correctly-formed PT_DATA packet, a PT_ACK MUST
 be transmitted, containing a positive or negative Ack Code as described
 in Section 3.7.

 The following IEs are required in a PT_DATA packet.

 IE_DATA_OFFSET As defined in Section 3.5.5
 IE_DATA_MORE or
 IE_DATA_FINAL As defined in Section 3.5.1

4. MNCP Session Control Packets
 This section defines the packets which support MNCP session control
 services.

4.1 Packet Types
 MNCP session control packets are exchanged between an MCD and a
 Mobility Server using MNCP reliable delivery packets. There are three
 types of MNCP session control packets, differentiated by the Function
 ID field of the IE_APP_ID information element in the MNCP session
 control header.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 Registration Packet (PT_CMD, Function ID = FUN_REG_REQ)
 This packet is used to register a Subscriber to use the specified
 Service.

 Deregistration Packet (PT_CMD, Function ID = FUN_DEREG_REQ)
 This packet is used to deregister a Subscriber so that it can no
 longer use the specified Service.

 Application Request Packet (PT_CMD or PT_NTFN, Function ID = other)
 This packet is used to request an application-specific service,
 specified by Service ID and Function ID.

 Registration packets originate from the MCD, to be processed and
 acknowledged by the Mobility Server. Deregistration and Application
 Request packets can be initiated by either the MCD or Mobility Server.

 Exactly one MNCP session control packet is conveyed by each PT_CMD or
 PT_NTFN packet, utilizing those fields previously defined for MNCP
 reliable delivery, and the additional Session Control fields defined in
 this section.

4.2 Session Control Headers
 Information Element types defined specifically for use as MNCP Session
 Control header fields are enumerated below and defined in Section 4.5.

 1 IE_SUB_ID Subscriber ID
 3 IE_APP_ID Application ID
 9 IE_SUB_PWD Subscriber Password

 These Information Elements are mandatory in every MNCP session control
 packet, regardless of Service ID or Function ID, and may appear
 anywhere within the list of Information Elements in an MNCP packet.

<draft-piscitello-mncp-00.txt> Page 25

INTERNET DRAFT MNCP August 28, 1997

4.3 Session Control Body
 Information Element types defined specifically for use as MNCP Session
 Control body fields are enumerated below and defined in Section 4.5.

 11 IE_REG_STATUS Registration Status
 24 IE_CROSS_ID Message Cross-correlation ID

 These Information Elements may be included in certain MNCP session
 control packets, as determined by Function ID, and may appear anywhere
 within the list of Information Elements in an MNCP packet.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

4.4 Packet Length
 The length of the MNCP session control packet can be computed as the
 sum of the lengths of each session control Information Element.

4.5 Information Elements
 Each Information Element includes IE Type and IE Length fields,
 formatted as described in Section 3.3. Information Elements related to
 reliable transfer are defined in Section 3.5; additional elements
 related to session control are defined below.

4.5.1 Subscriber ID
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Type=IE_SUB_ID | Length=1...N | Subscriber ID (1..N octets) ...
 +-+

 Subscriber ID
 The Subscriber ID field is variable length, and identifies the user of
 the MCD. This value is used by MNCP Session Control to provide
 subscriber validation/authentication (see Section 7).

4.5.2 Application ID
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Type=IE_APP_ID | Length=2 | Service ID | Function ID |
 +-+

 Service ID
 The Service ID field is one octet, and identifies the Information
 Service (specific application) involved in this MNCP packet sequence.
 This field identifies both the application which originated the
 message and the destination application that is to receive the
 message.

 Service ID values are assigned and recorded by IANA[2] for use by
 specific applications. Service ID is used by MNCP Session Control to
 provide service registration, deregistration, and filtering features.

<draft-piscitello-mncp-00.txt> Page 26

INTERNET DRAFT MNCP August 28, 1997

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 Function ID
 The Function ID field is one octet, and identifies the function within
 the specified Service requested by this MNCP packet, as enumerated
 below.

 0 FUN_DEREG_REQ Deregistration Request
 1 FUN_REG_REQ Registration Request
 2..255 TBD Application-Dependent

 Function ID values zero (0) and one (1) are reserved for use by MNCP
 Session Control. Function ID values 2 through 255 are application-
 dependent, and are transparent to the MNCP.

4.5.3 Subscriber Password
 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Type=IE_SUB_PWD| Length=4..N |Subscriber Password(4..N octets)..
 +-+

 Subscriber Password
 The Subscriber Password field is variable length, ranging from four to
 N octets, and carries a value used by MNCP Session Control for user
 validation/authentication (see Section 7).

4.5.4 Registration Status
 0 1 2 9

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 . . 0 1 2 3 4 5 6
 +-+
 |T=IE_REG_STATUS| Length=1..N |Registration Status(1..N octets)|
 +-+

 Registration Status
 The Registration Status field is a variable length field, where each
 octet contains the ID of a Service for which this Subscriber is
 currently registered.

4.5.5 Message Cross-Correlation ID
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 |Typ=IE_CROSS_ID| Length=2 | Cross Correlation ID |
 +-+

 Message Cross-correlation ID
 The Message Cross-correlation ID is two octets, and carries a 16-bit
 unsigned integer number identifying the correlation ID of a previous
 message flow to which the current message flow is associated. Using a
 cross-correlation identifier, a receiving application correlates a
 response message with a previous request message.

4.5.6 Acknowledge Code

 MNCP Session Control defines additional values for the Ack Code field
 specified in Section 3.5.3.

<draft-piscitello-mncp-00.txt> Page 27

INTERNET DRAFT MNCP August 28, 1997

 ACK_ERR_SID 2 Unrecognized Subscriber ID
 ACK_ERR_PWD 3 Incorrect Password
 ACK_OOS_SID 5 Subscriber ID is suspended
 ACK_OOS_SVC 10 Application service unavailable

4.6 FUN_REG_REQ
 When an application wishes to explicitly register for a specific
 Service ID (see section 2.3.2), it MUST first generate a Registration
 Request by issuing a PT_CMD packet with the desired Service ID and
 Function ID set to FUN_REG_REQ.

 Upon reception of a Registration Request, MNCP session control performs
 authentication based upon Service ID, Subscriber ID, and Password,
 marking the subscriber as "registered" and recording the IP address of
 the MCD from which the request was received if the subscriber is
 determined to be authentic and authorized to use the service. A PT_ACK
 MUST be transmitted in response, containing a positive or negative Ack
 Code as described in Section 4.5.6. In addition, as an implementation
 option, the PT_ACK MAY contain the IE_REG_STATUS Information Element
 described in Section 4.5.4.

4.7 FUN_DEREG_REQ
 When an application wishes to stop using a specific Service ID, it may
 generate a Deregistration Request by issuing a PT_CMD packet with the
 desired Service ID and Function ID set to FUN_DEREG_REQ.

 The MCD MNCP MAY deregister from a service by generating a
 Deregistration Request, either implicitly on behalf of the application,
 explicitly upon application request, or both. Upon receiving an MCD-
 initiated Deregistration Request, the MS MNCP session control performs
 authentication based upon Service ID, Subscriber ID, and Password,
 marking the subscriber as "deregistered" if authorized to use the
 service. A PT_ACK MUST be transmitted in response, containing an Ack
 Code as described in Section 4.5.6.

 An MS MNCP that has not detected activity on the part of a registered
 subscriber for a given period of time (INACTIVITY_TIMER) MAY attempt to
 deregister the subscriber implicitly by generating a Deregistration
 Request. Upon receiving an MS-initiated Deregistration Request, the
 MCD MNCP determines whether the application identified by the service
 ID is still running. If so, the MCD MNCP MUST return a PT_ACK (ACK_OK)

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 and the MS MNCP MUST re-register the subscriber. Otherwise, the MCD
 MNCP returns a PT_ACK (ACK_OOS_SVC) and the MS interprets this as a
 confirmation that the application service is no longer running on the
 subscriber's MCD.

 In addition, as an implementation option, these PT_ACKs MAY contain the
 IE_REG_STATUS Information Element described in Section 4.5.4. As a
 security precaution, this field SHOULD NOT be included when
 acknowledging a Deregistration Request that has not passed
 authentication.

<draft-piscitello-mncp-00.txt> Page 28

INTERNET DRAFT MNCP August 28, 1997

4.8 FUN_<other>
 When an application wishes to send a request with a specific Service
 ID, it MUST generate an Application Request by issuing a PT_CMD or
 PT_NTFN packet with the desired Service ID and Function ID.

 Upon reception of an Application Request, and if the subscriber is
 currently registered to use the service, MNCP session control performs
 authentication based upon Service ID, Subscriber ID, and Password, and
 forwards the request to the destination application.

 If the subscriber is not currently registered to use the service, MNCP
 session control performs authentication based upon Service ID,
 Subscriber ID, and Password. If the subscriber is determined to be
 authentic and permitted to access the service, MNCP session control
 marks the subscriber as "registered" and forwards the request to the
 destination application (implicit registration).

 For either case, a PT_ACK MUST be transmitted in response, containing a
 positive or negative Ack Code as described in Section 4.5.6. A
 positive Ack Code indicates that the request can be delivered to the
 destination application; a negative Ack Code indicates why the request
 cannot be delivered.

5. MNCP Reliable Delivery Processing

5.1 Phase Diagram
 MNCP reliable delivery goes through three distinct phases which are
 specified in the following simplified diagram.

 +------+ +---------------+
 | | PT_CMD | |
 | |---------------------------------->| |

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 | Idle | +-------------+ | Data Transfer | | |
 | | PT_NTFN | | PT_DATA | |
 | |---------->| Negotiation |-------->| |
 | | ^ | | ^ | |
 +------+ | +-------------+ | +---------------+
 ^ PT_ACK(C) | | | | | |
 | or TMO <----+ | TMO <----+ |
 <--------------------------+-------------------------+
 PT_ACK(OK), PT_ACK(ERR), or TMO & retries exhausted

 TMO = timeout expires
 PT_ACK(C) = PT_ACK (ACK_OOS_COMPRESS) received
 PT_ACK(OK) = PT_ACK (ACK_OK) sent/received for final packet
 PT_ACK(ERR)= PT_ACK (any other IE_ACK_CODE) sent/received

 Idle Phase
 The MNCP necessarily begins and ends with this phase. When an
 application or session control request causes a PT_NTFN packet to be
 sent or received, the MNCP proceeds to the Negotiation phase. When an
 application or session control request causes a PT_CMD packet to be
 sent or received, the MNCP proceeds to the Data Transfer phase.

<draft-piscitello-mncp-00.txt> Page 29

INTERNET DRAFT MNCP August 28, 1997

 The MNCP returns to the Idle phase automatically if:

 - the ack timeout expires while waiting for any packet (i.e., packet
 lost or silent discard of badly-formed packet) and all retries have
 been exhausted;

 - a PT_ACK packet with IE_ACK_CODE equal to ACK_OK is sent or received
 confirming the final packet in a packet sequence (i.e., confirming a
 PT_DATA packet that contained an IE_DATA_FINAL element); or

 - a PT_ACK packet with IE_ACK_CODE not equal to ACK_OK is sent, or a
 PT_ACK packet with IE_ACK_CODE not equal to ACK_OK or
 ACK_OSS_COMPRESS is received.

 Negotiation Phase
 The MNCP enters this phase when sending or receiving a PT_NTFN packet.

 The receiving MNCP processes the incoming packet and returns a
 positive or negative PT_ACK as follows.

 - If the PT_ACK is negative, the receiver returns to the Idle phase.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 - If the PT_ACK is positive, the receiver enters the Data Transfer
 phase.

 The sending MNCP awaits and processes the PT_ACK.

 - If the PT_ACK is positive, the sender enters the Data Transfer
 phase.

 - If the PT_ACK indicates ACK_OSS_COMPRESS, the sender SHOULD retry
 sending the PT_NTFN with a different compression method and remain
 in the Negotiation phase.

 - Otherwise, the sender returns to the Idle phase.

 Any locally-initiated application request received during this phase
 MUST NOT be processed by this MNCP instance until the Idle Phase is
 re-entered. Such requests MAY be rejected or buffered locally by the
 implementation.

 Data Transfer Phase
 The MNCP enters this phase when sending or receiving a PT_CMD or
 PT_DATA packet.

 The receiving MNCP processes the incoming packet and returns a
 positive or negative PT_ACK as follows.

 - If the PT_ACK is negative or confirms receipt of a packet containing
 an IE_DATA_FINAL element, the receiver returns to the Idle phase.

 - Otherwise (confirming PT_DATA packet with IE_DATA_MORE), the
 receiver remains in the Data Transfer phase.

<draft-piscitello-mncp-00.txt> Page 30

INTERNET DRAFT MNCP August 28, 1997

 The sending MNCP awaits and processes the PT_ACK.

 - If PT_ACK is negative or the outgoing packet contained an
 IE_DATA_FINAL element, the sender returns to the Idle phase.

 - Otherwise (PT_ACK confirmed packet containing IE_DATA_MORE), the
 sender remains in the Data Transfer phase and sends the next PT_DATA
 packet.

 Any locally-initiated application request received during this phase
 MUST NOT be processed by this MNCP instance until the Idle Phase is
 re-entered. Such requests MAY be rejected or buffered locally by the

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 implementation.

5.2 State Diagram
 The MNCP reliable delivery finite-state automaton is defined by events,
 actions and state transitions. Events include reception of application
 requests, expiration of the Ack timer, and reception of packets from a
 peer. Actions include the starting of the timers and transmission of
 packets to the peer.

 Events Actions

 REQ = Receive Application Request scm = send PT_CMD
 RCM = Receive PT_CMD snt = send PT_NTFN
 RNT = Receive PT_NTFN fsc = fwd to Session Control
 RSP = Receive Session Response sak = send PT_ACK
 RAK = Receive PT_ACK sdt = send PT_DATA
 RDT = Receive PT_DATA sto = start timers
 TMO = Ack Timeout ind = send Appl Indication
 cnf = send Appl Confirm

 The complete state transition table follows. States are indicated
 horizontally, and events are read vertically. State transitions and
 actions are represented in the form action/new-state. Multiple actions
 are separated by commas, and may continue on succeeding lines as space
 requires; multiple actions may be implemented in any convenient order.
 The state may be followed by a letter, which indicates an explanatory
 footnote. The dash ('-') indicates an illegal transition.

<draft-piscitello-mncp-00.txt> Page 31

INTERNET DRAFT MNCP August 28, 1997

 | State
 | 0 1 2 3 4 5
 Events| Listen Cmd-Sent Ntfn-Sent Data-Sent Await-Rsp Await-Data

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 ------+---
 REQ | scm/1 or - - - - -
 | snt/2
 RCM | sak/0 or - - - - -
 | fsc/4
 RNT | sak/0 or - - - - -
 | fsc/4
 RSP | - - - - sak/0 or -
 | sak/5 or
 | ind,sak/0
 RAK | - cnf/0 cnf/0 or cnf/0 or - -
 | snt/2 sdt/3
 | sdt/3
 RDT | - - - - - sak/5 or
 | ind,sak/0
 TMO | - cnf/0 or cnf/0 or cnf/0 or - 0
 | scm/1 snt/2 sdt/3

 Timers are started (sto action) when sending any packet and stopped
 when receiving any packet. The sending MNCP runs an ACK_WAIT_TIMER;
 the receiving MNCP runs a DATA_WAIT_TIMER. See section 5.6 for
 additional detail.

5.3 States
 Following is a more detailed description of each automaton state.

 Listen
 The MNCP automaton begins and ends in this state, awaiting either a
 locally-initiated application or session control request, or receipt
 of a PT_CMD or PT_NTFN packet.

 Command-Sent
 The MNCP automaton transitions to this state when sending a PT_CMD
 packet. Events expected to occur while in this state are expiration
 of the ACK_WAIT_TIMER or receipt of a PT_ACK packet.

 Notification-Sent
 The MNCP automaton transitions to this state when sending a PT_NTFN
 packet. Events expected to occur while in this state are expiration
 of the ACK_WAIT_TIMER or receipt of a PT_ACK packet.

 Await-Data
 The MNCP automaton transitions to this state when sending a positive
 PT_ACK packet in response to an incoming PT_NTFN packet. Events
 expected to occur while in this state are expiration of the
 DATA_WAIT_TIMER or receipt of a PT_ACK packet.

<draft-piscitello-mncp-00.txt> Page 32

INTERNET DRAFT MNCP August 28, 1997

 Await-Session-Response
 The MNCP automaton transitions to this state when forwarding an
 incoming PT_CMD or PT_NTFN packet to MNCP session control. The only
 event expected to occur while in this state is a response from session
 control.

 Data-Sent
 The MNCP automaton transitions to this state when sending a PT_DATA
 packet. Events expected to occur while in this state are expiration
 of the ACK_WAIT_TIMER or receipt of a PT_ACK packet.

5.4 Events
 Transitions and actions in the automaton are caused by events.

 Receive Application Request (REQ)
 This event occurs when a locally-initiated application or session
 control request is submitted to the MNCP for processing. If the data
 contained in the request is shorter than (DEFAULT_PACKET_SIZE -
 header) octets, uncompressed, the MNCP automaton sends a PT_CMD (scm
 action). Otherwise, it sends a PT_NTFN (snt action).

 Receive PT_CMD (RCM)
 This event occurs when a remotely-initiated PT_CMD packet is received
 by the MNCP as an incoming UDP datagram. If the packet is badly
 formed, contains an invalid version, a system error occurs, or
 resources are unavailable to further process the request, the MNCP
 automaton sends a PT_ACK (sak action) with a negative Ack Code.
 Otherwise, it forwards the PT_CMD packet to the MNCP session control
 automaton (fsc action).

 Receive PT_NTFN (RNT)
 This event occurs when a remotely-initiated PT_NTFN packet is received
 by the MNCP as an incoming UDP datagram. If the packet is badly
 formed, contains an invalid version, a system error occurs, resources
 are unavailable to further process the request, or the proposed
 compression method is not supported, the MNCP automaton sends a PT_ACK
 (sak action) with a negative Ack Code, and an alternative compression
 method (if applicable). Otherwise, it forwards the PT_NTFN packet to
 the MNCP session control automaton (fsc action).

 Receive Session Response (RSP)
 This event occurs when a response is returned from the local MNCP
 session control automaton, indicating the success or failure of
 authentication, registration, or deregistration. If the response is
 negative, the MNCP automaton sends a PT_ACK (sak action) with the

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 negative Ack Code supplied by session control. If the response is
 positive, the MNCP automaton sends a PT_ACK (sak action) ACK_OK. If
 the incoming request was a PT_CMD packet, the MNCP automaton supplies
 any application-specific information elements (including data) to the
 destination application (ind action).

 Receive PT_ACK (RAK)
 This event occurs when a remotely-initiated PT_ACK packet is received
 by the MNCP as an incoming UDP datagram. If the Ack Code is

<draft-piscitello-mncp-00.txt> Page 33

INTERNET DRAFT MNCP August 28, 1997

 ACK_OOS_COMPRESS, the MNCP automaton SHOULD resend the PT_NTFN with
 another compression method (snt action). If the Ack Code is any other
 negative value, the MNCP automaton notifies the requesting application
 of the failure (cnf action). If the Ack Code is ACK_OK and confirms a
 PT_NTFN or PT_DATA(more) packet, the MNCP automaton sends a PT_DATA
 packet (sdt action). Otherwise (the Ack Code is ACK_OK and confirms
 the final packet in a sequence), the MNCP automaton notifies the
 requesting application that its request was delivered successfully
 (cnf action).

 Receive PT_DATA (RDT)
 This event occurs when a remotely-initiated PT_DATA packet is received
 by the MNCP as an incoming UDP datagram. The MNCP automaton uses the
 packet contents to reassemble and decompress application data (see
 Sections 5.6 through 5.8) and send a PT_ACK (sak action). If incoming
 packet contained an IE_DATA_FINAL element, the MNCP automaton supplies
 all application-specific information elements received during the
 packet sequence, including the reassembled/decompressed application
 data, to the destination application (ind action).

 Ack Timeout (TMO)
 This event occurs when the ACK_WAIT_TIMER or DATA_WAIT_TIMER started
 by this MNCP automaton expires. The automaton applies its
 retransmission algorithm (see Section 5.6) to determine the
 appropriate action: resending a PT_CMD packet (scm action), PT_NTFN
 packet (snt action), PT_DATA packet (sdt action), or PT_ACK packet
 (sak action), or abandoning the packet sequence. When abandoning the
 packet sequence, if this MNCP was the sequence initiator, it also
 notifies the requesting application of the failure (cnf action).

5.5 Actions
 Actions in the automaton are caused by events and typically indicate
 the transmission of packets and/or the starting or stopping of the
 timers.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 send PT_CMD (scm)
 The MNCP automaton sends a PT_CMD packet as a result of a locally-
 initiated application or session control request, or as a retry
 (ACK_WAIT_TIMER expired with retry remaining).

 The MNCP builds a PT_CMD packet as follows.
 - Protocol Version is set to the value for this implementation.
 - Packet Type is set to PT_CMD.
 - Correlation Identifier is assigned by the MNCP (new request) or set
 to the previously-assigned value (retry).
 - Sequence Number is set to zero(0).
 - Session Control fields supplied in the request (Service ID, Function
 ID, Subscriber ID, Subscriber Password) are appended.
 - Any application-specific IEs supplied in the request are appended.
 - Any application-specific data supplied in the request is
 encapsulated in a Data(Final) information element.

 The PT_CMD packet is sent as a UDP packet to the "well-known" MNCP
 port, the PKT_RETRY count is incremented, and the ACK_WAIT_TIMER is

<draft-piscitello-mncp-00.txt> Page 34

INTERNET DRAFT MNCP August 28, 1997

 started (see Section 5.6). The MNCP automaton then transitions to the
 Command-Sent state.

 send PT_NTFN (snt)
 The MNCP automaton sends a PT_NTFN packet as a result of a locally-
 initiated application or session control request, or as a retry
 (ACK_WAIT_TIMER expired with retry remaining or PT_ACK
 ACK_OOS_COMPRESS received and alternative method available).

 The MNCP builds a PT_NTFN packet as follows.
 - Protocol Version is set to the value for this implementation.
 - Packet Type is set to PT_NTFN.
 - Correlation Identifier is assigned by the MNCP (new request) or set
 to the previously-assigned value (retry).
 - Sequence Number is set to zero(0).
 - Data Compression Method is chosen by the MNCP, influenced by values
 returned in earlier PT_ACKs (if any); see Section 5.8. If the
 default value (COMPRESS_OFF) is selected, this field SHOULD be
 omitted.
 - Uncompressed Message Length is set to the number of octets of
 application-specific data supplied in the request.
 - Compressed Message Length is set to the number of octets yielded
 when compressing this data using the proposed Compression Method.
 - As an implementation option, Packet Size may be set to a value
 larger than DEFAULT_PACKET_SIZE; see Section 5.7. If the default

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 value is desired, this field SHOULD be omitted.
 - Session Control fields supplied in the request (Service ID, Function
 ID, Subscriber ID, Subscriber Password) are appended.
 - Any application-specific IEs supplied in the request are appended.

 The PT_NTFN packet is sent as a UDP packet to the "well-known" MNCP
 port, the PKT_RETRY count is incremented, and the ACK_WAIT_TIMER is
 started (see Section 5.6). The MNCP automaton then transitions to the
 Notification-Sent state.

 fwd to Session Control (fsc)
 The MNCP automaton forwards incoming PT_CMD and PT_NTFN packets to
 MNCP session control for registration, deregistration, and
 authentication. The MNCP automaton then transitions to the Await-
 Session-Response state.

 send PT_ACK (sak)
 The MNCP automaton sends a PT_ACK packet in response to an incoming
 packet.

 The MNCP builds a PT_ACK packet as follows.
 - Protocol Version is set to the value for this implementation.
 - Packet Type is set to PT_ACK.
 - Correlation Identifier and Sequence Number are both set to the
 corresponding values in the packet being acknowledged.
 - Ack Code is chosen by the MNCP to reflect the result of processing.

<draft-piscitello-mncp-00.txt> Page 35

INTERNET DRAFT MNCP August 28, 1997

 When acknowledging a PT_NTFN only, the following fields MAY also be
 included in the PT_ACK packet.
 - If the Ack Code is ACK_OOS_COMPRESS, an alternative Data Compression
 Method MUST be chosen by the MNCP; see Section 5.8. Otherwise, this
 field MUST be omitted.
 - As an implementation option, PACKET_SIZE MAY be set to a value
 larger than DEFAULT_PACKET_SIZE and less than the proposed size, see

Section 5.7. If the default value is desired, this field SHOULD be
 omitted.

 The PT_ACK packet is sent as a UDP packet to the source port which
 sent the packet being acknowledged. When positively acknowledging a
 PT_NTFN or PT_DATA(more) packet, the MNCP automaton then transitions
 to the Await-Data state and the DATA_WAIT_TIMER is started (see

section 5.6). Otherwise, the MNCP automaton transitions to the Listen

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 state, forwards incoming data to the receiving application (ind
 action), and the packet sequence is concluded.

 send PT_DATA (sdt)
 The MNCP automaton sends a PT_DATA packet when it receives a positive
 PT_ACK to a PT_NTFN or PT_DATA(more) packet, or as a retry
 (ACK_WAIT_TIMER expired with retry remaining).

 The MNCP builds a PT_DATA packet as follows.
 - Protocol Version is set to the value for this implementation.
 - Packet Type is set to PT_DATA.
 - Correlation Identifier is set to the value used in the PT_NTFN
 packet that started this packet sequence.
 - Sequence Number is set to the value used in the preceding packet
 (retry) or that value incremented by one (otherwise).
 - Data Offset is set to the starting octet position of the
 application-specific data to be included in this packet.
 - Compressed and segmented application data (see Sections 5.7 and 5.8)
 is encapsulated in IE_DATA_MORE or IE_DATA_FINAL information
 elements. When building an IE_DATA_MORE element, the MNCP MUST fill
 the remainder of the PT_DATA packet with compressed data. When
 building an IE_DATA_FINAL element, the MNCP MUST NOT pad the data.

 The PT_DATA packet is sent as a UDP packet to the source port which
 sent the last PT_ACK packet, the PKT_RETRY count is incremented, and
 the ACK_WAIT_TIMER is started (see Section 5.6). The MNCP automaton
 then transitions to the Data-Sent state.

 start ACK_WAIT_TIMER or DATA_WAIT_TIMER (sto)
 The MNCP automaton starts the ACK_WAIT_TIMER or DATA_WAIT_TIMER
 whenever it sends a non ACK packet, as described in Section 5.6.

 send Appl Indication (ind)
 The MNCP automaton supplies incoming session control information
 elements, application-specific information elements, and
 reassembled/decompressed data (if any) to the destination application
 just before sending a PT_ACK to an incoming PT_CMD or PT_DATA(final)
 packet as described under the sak action above.

<draft-piscitello-mncp-00.txt> Page 36

INTERNET DRAFT MNCP August 28, 1997

 send Appl Confirm (cnf)
 The MNCP automaton supplies a delivery confirmation to the requesting
 application when it receives the final PT_ACK in a packet sequence or
 abandons the request. Negative confirmations include the reason why
 the request could not be delivered (e.g., the Ack Code value or

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 timeout). The MNCP automaton then transitions to the Listen state and
 the packet sequence is concluded.

5.6 Timers, Acknowledgment, and Retransmission
 To help ensure a reliable delivery of data between a MCD and the
 Mobility Server, MNCP uses a stop-and-go with timeout retransmission
 mechanism.

 Each MNCP reliable delivery packet carries a 16-bit unsigned sequence
 number and MUST be individually acknowledged by the receiving MNCP.
 The sequence number MUST start at 0 for the first packet of each packet
 sequence and be incremented by one for each additional packet in the
 flow till 65,535 and then recycled through 0 if necessary. An
 acknowledgment packet MUST use the same sequence number as the packet
 it is acknowledging.

 Out of sequence data packet MUST be discarded by the receiving MNCP.
 As part of the action associated with the processing a PT_DATA packet
 that arrives out of sequence, the MNCP MUST return a PT_ACK packet
 containing the Sequence Number of the most recently acknowledged
 PT_DATA packet.

 When sending a packet, the sending MNCP MUST start a retransmission
 timer (ACK_WAIT_TIMEOUT, default 15 seconds), during which the sending
 MNCP will wait for an acknowledgment from the receiving MNCP. When
 sending a PT_ACK to any packet other than PT_DATA (final), the
 receiving MNCP MUST start a DATA_WAIT_TIMER (typically, three times the
 ACK_WAIT_TIMER value). Expiration of this timer causes the transfer of
 the packet sequence to be abandoned.

 If the sending MNCP does not receive an acknowledgment from the
 receiving MNCP within the timeout period, which has the same sequence
 number as the packet been sent, it should retransmit the packet up to
 PKT_RETRY times (default 2 retries per packet). If there is still no
 acknowledgment after all the retries (i.e., for an attempt of PKT_RETRY
 + 1 times), the sending MNCP should abort the packet sequence.

 Implementation Note: In the current implementations, timers are
 assigned predetermined values appropriate for the wireless environment
 over which the MNCP operates, from a configuration file.
 ACK_WAIT_TIMEOUT is the same for all Service ID/Function ID
 combinations.

5.7 Packet Size Negotiation, Segmentation and Reassembly
 A sending MNCP may propose a packet size larger than the
 DEFAULT_PACKET_SIZE in a NOTIFICATION REQUEST. Any value greater than
 DEFAULT_PACKET_SIZE but less than or equal to the maximum packet size
 of 2048 octets may be proposed by encoding the desired size in the
 IE_PKT_SIZE information element in the PT_NTFN. A receiving MNCP may

<draft-piscitello-mncp-00.txt> Page 37

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

INTERNET DRAFT MNCP August 28, 1997

 accept the proposed packet size, or it may proposed a reduced packet
 size. The receiving MNCP specifies the acceptable packet size
 (proposed or reduced) in the IE_PKT_SIZE information element when
 composing a PT_ACK packet in response to a PT_NTFN packet. In the
 absence of an explicit IE_PKT_SIZE field, the DEFAULT_PACKET_SIZE MUST
 be assumed.

5.7.1 Computing the payload size for PT_DATA packets
 The sending MNCP subtracts the MNCP common header length (7), the
 length of IE_DATA_OFFSET information element (6) and the length of the
 IE Length and IE Type components of the IE_DATA_MORE information
 element (3) from the value of IE_PKT_SIZE and uses this as the
 PAYLOAD_SIZE.

5.7.2 Segmentation and PT_DATA Packet Composition
 The sending MNCP segments application data into "n" PT_DATA packets.
 All but the final PT_DATA packet contain one IE_DATA_MORE information
 element that conveys PAYLOAD_SIZE octets, and a monotonically
 incremented sequence number, and a data offset.

 Data compression, if selected, is performed on the application data
 prior to segmentation. This is required to determine the value of
 Compressed Message Length used in the PT_NTFN (see section 3.5.2).

 Initially, a local parameter, next-data-offset, is set to zero (0), and
 the next-sequence-number is set equal to the value of Sequence Number
 sent in the PT_NTFN (zero, 0).

 If no compression is used, then PAYLOAD_SIZE number of octets of
 uncompressed data are encoded in the Data field of the IE_DATA_MORE
 information element. The value of next-data-offset is encoded in the
 IE_DATA_OFFSET field, and next-data-offset is incremented by
 PAYLOAD_SIZE. If compression is used, then PAYLOAD_SIZE number of
 octets of compressed data are encoded in the Data field of the
 IE_DATA_MORE information element, the value of next-data-offset is
 encoded in the IE_DATA_OFFSET field, and next-data-offset is set to the
 octet location of the final octet of data that were encoded in the Data
 field. The Sequence number encoded in the common packet header is set
 to next-sequence number, and next-sequence-number is increased by one
 (1).

 The PT_DATA packet is then sent as an individual transmission in a UDP
 packet, and a timer is initiated. If a PT_ACK is not received before
 the retransmission timer expires, the PT_DATA packet is retransmitted.
 Retransmission upon timer expiration is repeated until a maximum number
 of retries (PKT_RETRY +1) is exhausted, at which time the sending MNCP
 notifies session control of a communications failure.

 Upon reception of an PT_ACK, another PT_DATA packet may be sent. If no
 compression is used and the value of IE_DATA_OFFSET subtracted from
 Original Message length is greater than PAYLOAD_SIZE, the process of
 composing and sending a PT_DATA packet containing an IE_DATA_MORE
 information element is repeated. Similarly, a PT_DATA packet
 containing an IE_DATA_MORE information element is composed if

<draft-piscitello-mncp-00.txt> Page 38

INTERNET DRAFT MNCP August 28, 1997

 compression is used and more than PAYLOAD_SIZE number of compressed
 octets remain to be sent. Otherwise, a final PT_DATA packet is
 generated.

 The final PT_DATA packet contains an IE_DATA_FINAL information element,
 and conveys up to PAYLOAD_SIZE octets, compressed or uncompressed. The
 value of the IE_DATA_FINAL information element must not be padded.

5.7.3 Reassembly
 The receiving MNCP processes incoming PT_DATA packets as follows.
 Following transmission of a positive (PT_ACK) acknowledgment to a
 PT_NTFN packet, the receiving MNCP sets a local parameter for next-
 expected-sequence-number to one (1), and awaits the arrival of a
 PT_DATA packet containing the same Correlation ID as encoded in the
 PT_NTFN packet that initiated this packet sequence and a Sequence
 Number equal to the parameter next-expected-sequence-number, and an
 IE_DATA_MORE or IE_DATA_FINAL information element.

 The receiving MNCP composes and returns a PT_ACK with Sequence Number
 set to the value of Sequence Number from the PT_DATA packet being
 acknowledged, then increments next-expected-sequence-number by one (1),
 and awaits the arrival of the next packet in the sequence. If the
 sequence number in the next PT_DATA packet that arrives does not equal
 next-expected-sequence-number, the receiving MNCP composes and returns
 a PT_ACK packet with the sequence number of the last acknowledged
 PT_DATA packet (next-expected-sequence-number minus 1) and immediately
 discards the PT_DATA packet. Otherwise, the receiving MNCP processes
 each arriving PT_DATA packet containing an IE_DATA_MORE information
 element in exactly the same manner as the initial PT_DATA packet. The
 process repeats until a PT_DATA packet containing an IE_DATA_FINAL
 information element is received. The receiving MNCP composes and
 returns a PT_ACK as previously described.

 If compression is used, the user data extracted from the IE_DATA_MORE
 and IE_DATA_FINAL information elements received by the MNCP are
 reassembled and then uncompressed. Reassembly uses the values of
 IE_DATA_OFFSET and PAYLOAD_SIZE to compose the original message from

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 the message segments delivered, then the message in its entirety is
 passed to the application.

 Receive buffer strategies are implementation-dependent; for example, if
 compression is used during a transfer, the value of Compressed Message
 Length from the IE_MSG_LENGTH information element in the PT_NTFN may be
 used to allocate a buffer sufficient for the reassembly of the
 compressed data packet sequence, otherwise the value of Original
 Message Length may be used. [Note: This memo imposes no restrictions
 on how receive buffers are allocated in implementations.]

5.8 Data Compression
 When issuing a PT_NTFN packet, the sending MNCP uses the
 IE_DATA_COMPRESSION field to indicate the compression method that it
 wishes to apply to the application data that will follow in PT_DATA
 packets. The IE_MSG_LENGTH Compressed Message Length field is computed

<draft-piscitello-mncp-00.txt> Page 39

INTERNET DRAFT MNCP August 28, 1997

 by assuming this compression method. The receiving MNCP responds to
 this bid in the PT_ACK packet that confirms the PT_NTFN, as follows.

 To accept the proposed compression method, the responding MNCP MUST
 return a PT_ACK packet with IE_DATA_COMPRESSION absent and IE_ACK_CODE
 equal to ACK_OK.

 To reject the proposed compression method, the responding MNCP MUST
 return a PT_ACK packet with IE_DATA_COMPRESSION set to indicate an
 alternative compression method (which may be NONE) and an IE_ACK_CODE
 equal to ACK_OOS_COMPRESS.

 If the sender's proposed compression method was rejected, the sending
 MNCP SHOULD issue another PT_NTFN packet with an alternative
 compression method, repeating the above negotiation until a mutually
 acceptable method is agreed upon (signaled by a PT_ACK with IE_ACK_CODE
 equal to ACK_OK and IE_DATA_COMPRESSION absent). Note that the
 IE_MSG_LENGTH Compressed Message Length field is recomputed by assuming
 the compression method, which can either be the alternative method
 proposed by the receiver, or a new method proposed by the sender. If
 no compression method is specified, the Compressed Message Length field
 value MUST be the same as the value of Original Message Length.

 Once a compression method has been agreed, the sending MNCP applies the
 negotiated method to compress the data content of PT_DATA packet
 IE_DATA_MORE and IE_DATA_FINAL elements sent in this MNCP packet
 sequence. The receiving MNCP applies the same negotiated method to

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 decompress the data content upon arrival, ultimately yielding the
 number of octets indicated by the IE_MSG_LENGTH Original Message Length
 field.

6. MNCP Session Control Processing
 The phase diagram and state machine described in this section operates
 on unique Subscriber ID/Service ID pairs. When responding to any
 event, the session control automaton must first determine the current
 state associated with the Subscriber ID/Service ID pair, and then
 follow the course of action specified for that state.

6.1 Phase Diagram
 Session control goes through two distinct phases which are specified
 in the following simplified diagram.

<draft-piscitello-mncp-00.txt> Page 40

INTERNET DRAFT MNCP August 28, 1997

 +------+ +------------+ DEREG(FAILED)
 | |REG(ACK_OK)| | and APPL REQs
 | Idle |---------->| Registered |---------+
 | | | |<--------+
 +------+ +------------+
 ^ |
 | DEREG(SUCCESS)OR LOS |
 <-----------------------+

 REG(ACK_OK) = Send or receive Ack Code ACK_OK to FUN_REG_REQ
 or FUN_<other>
 DEREG(SUCCESS)= Send/receive positive Ack accepting FUN_DEREG_REQ
 PT_ACK from MCD to MS containing ACK_OOS_SVC
 PT_ACK from MS to MCD containing ACK_OK
 DEREG(FAILED) = Send/receive negative Ack rejecting FUN_DEREG_REQ
 PT_ACK from MCD to MS containing ACK_OK
 PT_ACK from MS to MCD containing any other value

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 APPL REQs = Send or receive FUN_<other> app-specific request
 LOS = Loss of signal assumed when DEREG_REQ abandoned

 Idle Phase
 MNCP session control necessarily begins and ends with this phase.
 When a positive acknowledgment (Ack Code ACK_OK) is returned to a
 Registration Request (FUN_REG_REQ or FUN_<other> in the case of an
 implicit registration performed by the MS), session control
 transitions to the Registered phase.

 MNCP session control returns to the Idle phase automatically after
 receiving or sending a successful Deregistration Request, and after
 timeout of a Deregistration Request, as signaled by the MNCP reliable
 delivery automaton.

 Registered Phase
 MCD MNCP session control enters this phase when receiving a positive
 Registration Request acknowledgment. MS MNCP session control enters
 this phase when it has received and processed a valid Registration
 request from an MCD and has responded to the request with a positive
 acknowledgment. MS MNCP session control also enters this phase when
 it has received and processed a valid service request from an MCD that
 has not previously (explicitly) registered with the service and has
 responded to the request with a positive acknowledgment.

 In this phase, MNCP session control processes incoming Deregistration
 Requests and any other Application Request. All requests are
 authenticated, and service access control is verified. Application
 Requests are forwarded to the destination application service only if
 the subscriber is currently registered for that service.

 The Mobility Server runs an INACTIVITY_TIMER to reaffirm the
 registration status on a periodic basis.

 MCD MNCP session control remains in the Registered phase until it
 completes a successful Deregistration Request. MS MNCP session

<draft-piscitello-mncp-00.txt> Page 41

INTERNET DRAFT MNCP August 28, 1997

 control remains in the Registered phase until it either completes a
 successful Deregistration, or a Deregistration Request is abandoned
 due to timeout. When Deregistration is completed, the MNCP returns to
 the Idle phase.

6.2 State Diagram
 The session control finite-state automaton is defined by events,
 actions and state transitions. Events include reception of application

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 requests and expiration of the Inactivity timer. Actions include the
 starting of the INACTIVITY_TIMER and transmission of requests and
 responses.

 Events Actions

 ORR = Outgoing Registration Request srr = send FUN_REG_REQ
 ODR = Outgoing Deregistration Request sdr = send FUN_DEREG_REQ
 OAR = Outgoing Application Request sar = send FUN_<other>
 IRR = Incoming FUN_REG_REQ au = authenticate subscriber
 IDR = Incoming FUN_DEREG_REQ up = update registr. status
 IAR = Incoming FUN_<other> spk = send Positive Ack
 IAK = Incoming Ack snk = send Negative Ack
 TMO = Inactivity Timeout it = start INACTIVITY_TIMER

 The complete state transition table follows. States are indicated
 horizontally, and events are read vertically. State transitions and
 actions are represented in the form action/new-state. Multiple actions
 are separated by commas, and may continue on succeeding lines as space
 requires; multiple actions may be implemented in any convenient order.
 The state may be followed by a letter, which indicates an explanatory
 footnote. The dash ('-') indicates an illegal transition.

 | State
 | 0 1 2 3 4
 Events| Listen Reg-Sent Dereg-Sent App-Sent Registered
 ------+---
 ORR | srr/1 - - - -
 ODR | - - - - up,sdr/2
 OAR | - - - - sar/3
 IRR | au,snk/0 or - - - -
 | au,up,it,spk/4
 IDR | - snk/1 snk/2 snk/3 au,snk/4 or
 | au,up,spk/0
 IAR | - - - - au,it,up,spk/4 or
 | au,it,spk/4 or
 | au,it,snk/4
 IAK | - up/4 or up,it/4 or 4 -
 | 0 0
 TMO | - - - - up,sdr/2

 The INACTIVITY_TIMER runs only at the Mobility Server.

6.3 States
 Following is a more detailed description of each automaton state.

<draft-piscitello-mncp-00.txt> Page 42

INTERNET DRAFT MNCP August 28, 1997

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 Listen
 The session control automaton begins and ends in this state, awaiting
 either a locally-initiated (outgoing) Registration Request, or receipt
 of an incoming FUN_REG_REQ indication from MNCP reliable delivery.

 Registration-Request-Sent
 The session control automaton transitions to this state when sending a
 FUN_REG_REQ. The events expected to occur while in this state are
 receipt of an Ack Code from MNCP reliable transfer, indicating the
 result of the request or timeout, or receipt of a Deregister request
 form the MS.

 Deregistration-Request-Sent
 The session control automaton transitions to this state when sending a
 FUN_DEREG_REQ. Events expected to occur while in this state are
 receipt of an Ack Code from MNCP reliable transfer or receipt of an
 incoming FUN_DEREG_REQ.

 Application-Request-Sent
 The session control automaton transitions to this state when sending a
 FUN_REG_REQ. Events expected to occur while in this state are receipt
 of an Ack Code from MNCP reliable transfer or receipt of an incoming
 FUN_DEREG_REQ, or receipt of a Deregister request form the MS.

 Registered
 The session control automaton transitions to this state when returning
 a positive Ack for an incoming FUN_REG_REQ (explicit registration),
 returning a positive Ack for an incoming FUN_<other> (implicit
 request), receiving a positive Ack for an outgoing FUN_REG_REQ,
 receiving a positive Ack for an outgoing FUN_<other>, or receiving a
 negative Ack for an outgoing FUN_DEREG_REQ. Events expected to occur
 while in this state are outgoing Deregistration or Application
 Requests, incoming FUN_DEREG_REQ or FUN_<other> packets, or expiration
 of the INACTIVITY_TIMER.

6.4 Events
 Transitions and actions in the automaton are caused by events.

 Outgoing Registration Request (ORR)
 This event occurs when a Registration Request is initiated by the MCD,
 causing the session control automaton to send a FUN_REG_REQ (srr
 action). This event MAY also be initiated implicitly by the MCD
 session control implementation (e.g., when the first Application-
 specific Request for a give service is initiated).

 Outgoing Deregistration Request (ODR)
 This event occurs when a Deregistration Request is initiated by the
 MCD, causing the session control automaton to send a FUN_DEREG_REQ
 (sdr action). This event MAY also be initiated by the MS session

 control implementation (as a consequence of the expiry of the
 INACTIVITY_TIMER).

<draft-piscitello-mncp-00.txt> Page 43

INTERNET DRAFT MNCP August 28, 1997

 Outgoing Application Request (OAR)
 This event occurs when an Application Request is initiated by the MCD,
 causing the session control automaton to send a FUN_<other> (sar
 action).

 Incoming FUN_REG_REQ (IRR)
 This event occurs when a remotely-initiated FUN_REG_REQ is received by
 the Mobility Server. The session control automaton attempts to
 authenticate the subscriber and verify the subscriber is permitted
 access to the service indicated in the request (au action) and returns
 the result to MNCP reliable delivery as an Ack Code (snk or spk
 action). When authentication is successful, the automaton also
 updates the subscriber's registration status (up action) and starts
 the INACTIVITY_TIMER (it action).

 Incoming FUN_DEREG_REQ (IDR)
 This event occurs when a remotely-initiated FUN_DEREG_REQ is received
 by either the MCD or Mobility Server. The session control automaton
 attempts to authenticate the subscriber (au action) and returns the
 result to MNCP reliable delivery as an Ack Code (snk or spk action).
 When authentication is successful, the automaton also updates the
 subscriber's registration status (up action).

 Incoming FUN_<other> (IAR)
 This event occurs when any other remotely-initiated request
 (FUN_<other>) is received by either the Mobility Server. The session
 control automaton attempts to authenticate the subscriber and verify
 the subscriber is permitted access to the service indicated in the
 request (au action), and returns the result to MNCP reliable delivery
 as an Ack Code (snk or spk action).

 Incoming Acknowledgment (IAK)
 This event occurs when a response is received from MNCP reliable
 delivery, indicating success or failure of an earlier request as an
 Ack Code. When receiving a Registration or Deregistration Request
 acknowledgment, the automaton updates the subscriber's registration
 status (up action). When the Mobility Server receives an ACK_OK in a
 Deregistration Request acknowledgment, indicating the subscriber

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 should be (re)registered for the service, the MS (re)starts the
 INACTIVITY_TIMER (it action).

 Inactivity Timeout (TMO)
 This event occurs when the INACTIVITY_TIMER started by the Mobility
 Server's session control automaton expires. Subsequent processing
 assumes that the MCD has become unavailable since last contact (e.g.,
 out of range, turned off, disabled). The automaton updates the
 subscriber's registration status (up action) and sends a FUN_DEREG_REQ
 (sdr action).

6.5 Actions
 Actions in the automaton are caused by events and typically indicate
 the transmission of packets and/or the (re)starting of the Inactivity
 timer.

<draft-piscitello-mncp-00.txt> Page 44

INTERNET DRAFT MNCP August 28, 1997

 send FUN_REG_REQ (srr)
 The MCD sends a FUN_REG_REQ packet as a result of a locally-initiated
 Registration Request involving a Subscriber/Service combination that
 is not currently registered (i.e., the automaton is in the Listen
 state). Session Control fields (Service ID, Function ID, Subscriber
 ID, Subscriber Password) are supplied to the MNCP reliable delivery
 automaton for inclusion in a PT_CMD packet. Function ID is set to
 FUN_REG_REQ; all other values are obtained from the MCD
 subscriber/application. The session control automaton then
 transitions to the Registration-Request-Sent state.

 send FUN_DEREG_REQ (sdr)
 The MCD sends a FUN_DEREG_REQ packet as a result of a locally-
 initiated Deregistration Request (implicit or explicit) involving a
 Subscriber/Service combination that is currently registered (i.e., the
 automaton is in the Registered state). The Mobility Server also sends
 a FUN_DEREG_REQ packet when the INACTIVITY_TIMER expires. Session
 Control fields (Service ID, Function ID, Subscriber ID, Subscriber
 Password) are supplied to the MNCP reliable delivery automaton for
 inclusion in a PT_CMD packet. Function ID is set to FUN_DEREG_REQ;
 all other values are obtained from the subscriber/application or the
 registration status table. The session control automaton marks the
 subscriber as deregistered for this service (up action) and then
 transitions to the Deregistration-Request-Sent state.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

<draft-piscitello-mncp-00.txt> Page 45

INTERNET DRAFT MNCP August 28, 1997

 send FUN_<other> (sar)
 Either the Mobility Server or the MCD sends a FUN_<other> packet as a
 result of a locally-initiated Application Request involving a
 Subscriber/Service combination that is currently registered (i.e., the
 automaton is in the Registered state), or the MCD sends a FUN_<other>
 packet as a result of a locally-initiated Application Request
 involving a Subscriber/Service combination that has not been
 explicitly registered (i.e., the MS is expected to implicitly register
 the application at the MCD). Session Control fields provided by the
 application (Service ID, Function ID, Subscriber ID, Subscriber
 Password) are supplied to the MNCP reliable delivery automaton for
 inclusion in a PT_CMD or PT_NTFN packet. The session control
 automaton then transitions to the Application-Request-Sent state.

 An Application Request initiated when the automaton is in the Listen
 state MAY cause the MCD to attempt implicit registration before the
 request is further processed. Otherwise, such a request MUST be
 rejected using the Ack Code value ACK_OOS_SVC and the automaton
 remains in the Listen state.

 authenticate subscriber (au)

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 The automaton attempts to authenticate the Subscriber ID and Password
 and verifies the subscriber's current registration status and
 permission to access the specified Service ID and Function ID.

 - If Subscriber ID is not found, return the Ack Code ACK_ERR_SID.
 - Else if the Subscriber Password is invalid, return the Ack Code
 ACK_ERR_PWD.
 - Else if the Subscriber does not have permission to access this
 Service and Function, return the Ack Code ACK_OOS_SID.
 - Else if the Service is not currently available (e.g., the
 application process bound to this Service ID is not running), return
 ACK_OOS_SVC.
 - Else return ACK_OK.

 The method by which the MNCP determines whether a local application
 service is running is not specified by this memo. Refer to Section 7
 for additional discussion of Security. Refer to the spk and snk
 actions for Ack Code processing.

 update Registration Status (up)
 The automaton updates the subscriber's current registration status for
 each specified service as follows.

<draft-piscitello-mncp-00.txt> Page 46

INTERNET DRAFT MNCP August 28, 1997

 When the MNCP: Status is set to:
 --------------------------------------- -----------------
 Sends positive FUN_REG_REQ Ack Code Registered
 Receives positive FUN_REG_REQ Ack Code Registered
 Receives positive FUN_<other> Ack Code Registered (implicit)
 Sends FUN_DEREG_REQ Deregistered (implicit)
 Sends positive FUN_DEREG_REQ Ack Code Deregistered
 (MCD sends ACK_OOS_SVC, MS sends ACK_OK)
 Receives positive FUN_DEREG_REQ Ack Code Deregistered
 (MCD rcvs ACK_OK, MS rcvs ACK_OOS_SVC)
 Sends negative FUN_DEREG_REQ Ack Code (Still)Registered

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 (MCD sends ACK_OK, MS sends ACK_other)
 Receives negative FUN_DEREG_REQ Ack Code (Re)Registered
 (MCD rcvs ACK_other, MS rcvs ACK_OK)

 Storage methods and internal representation of subscriber information
 and registration status are not specified by this memo.

 send Positive Ack Code (spk)
 Successful authentication of any incoming request forwarded to session
 control is indicated by returning a positive ACK code to the MNCP
 reliable delivery automaton for inclusion in a PT_ACK packet. A
 positive Ack Code is ACK_OK in all cases except when an MCD responds
 to a FUN_DEREG_REQ; in this case, it is ACK_OOS_SVC. The session
 control automaton changes state when acknowledging initial Application
 Requests (FUN_<other> packets) that cause implicit registration. The
 automaton transitions to the logical next state: Registered after a
 FUN_REG_REQ, FUN_<other>, or Listen after a FUN_DEREG_REQ.

 send Negative Ack Code (snk)
 Failed authentication of any incoming request forwarded to session
 control is indicated by returning a negative ACK code to the MNCP
 reliable delivery automaton for inclusion in a PT_ACK packet. A
 negative ACK code is one of {ACK_ERR_SID, ACK_ERR_PWD, ACK_OOS_SID, or
 ACK_OOS_SVC}, except in the case where an MCD rejects a FUN_DEREG_REQ,
 in which case the ACK code is ACK_OK. The session control automaton
 does not change state when acknowledging Application Requests
 (FUN_<other> packets) or failed Registration Requests, but transitions
 back to the Registered state after a failed Deregistration Request
 (i.e., MS requests deregistration after inactivity time expires, but
 MCD indicates the application is still active).

 start INACTIVITY_TIMER (it)
 The Mobility Server's session control automaton (re)starts an
 INACTIVITY_TIMER whenever it receives a FUN_REG_REQ, FUN_<other>, or
 failed FUN_DEREG_REQ Ack from the MCD. This timer allows the Mobility
 Server to refresh the registration status associated with an MCD on a
 periodic basis in the absence of other traffic. This timer does not
 apply to the MCD's session control automaton.

<draft-piscitello-mncp-00.txt> Page 47

INTERNET DRAFT MNCP August 28, 1997

7. Security Considerations

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 The only form of security provided in this protocol is a validation
 (weak authentication) scheme based on clear text subscriber
 identification and password, so it is vulnerable to several known forms
 of attacks on clear text, against which only limited defenses can be
 taken (password aging/expiration, use of one-time long, system-
 generated passwords, etc.). Only subscriber validation is performed
 (the subscriber has no mechanism to determine the authenticity of a
 mobility server).

 [NOTE: A means of negotiating or selecting a strong authentication
 method and (additionally, optionally) a method for providing data
 integrity and confidentiality at the session control level of MNCP is
 under investigation.]

 Since MNCP operates over UDP/IP, it may be appropriate to make use of
 security services offered by other layers. For example, an IP
 Authentication Header can be used to provide integrity and
 authentication without confidentiality to IP datagrams [6], whereas an
 IP Encapsulating Security Payload (ESP) can be used to provide
 integrity, authentication, and confidentiality to IP datagrams (see
 also [7]).

 For other applications, it may be appropriate to adopt/adapt
 application-specific security services. For example, Mobile Messaging
 application, having already adapted POP3 [8] and SMTP [9], could also
 adapt PGP [10] to provide non-repudiation of sender and data privacy
 through encryption.

8. References

 [1]Postel, J., "User Datagram Protocol," RFC 768, USC/Information
 Sciences Institute, 28 August 2880.

 [2] Reynolds, S. and Postel, J., "ASSIGNED NUMBERS", RFC 1700, 20
 October 1994.

 [3] Friend, R. and Simpson, W., "PPP Stac LZS Compression Protocol", RFC
1974, USC/Information Sciences Institute, 13 August 2896.

 [4] Malkin, G., "Internet Users' Glossary", RFC 1983, USC/Information
 Sciences Institute, 16 August 2896.

 [5] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, USC/Information Sciences Institute, 26 March
 1997.

 [6] Atkinson, R., "IP Authentication Header", RFC 1826,
 USC/Information Sciences Institute, 9 August 2895.

 [7] Atkinson, R., "Security Architecture for the Internet Protocol",
RFC 1825, USC/Information Sciences Institute, 9 August 2895.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/rfc1974
https://datatracker.ietf.org/doc/html/rfc1974
https://datatracker.ietf.org/doc/html/rfc1983
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1826
https://datatracker.ietf.org/doc/html/rfc1825

 [8] Atkins, D., Stallings, W., Zimmermann, P., "PGP Message

<draft-piscitello-mncp-00.txt> Page 48

INTERNET DRAFT MNCP August 28, 1997

 Exchange" Formats", RFC 1991, , USC/Information Sciences
 Institute, 16 August 2896

 [9] S Myers, J., M. Rose, "Post Office Protocol - Version 3", RFC
1939, USC/Information Sciences Institute, 14 May 1996

 [10] Postel, J., "Simple Mail Transfer Protocol", RFC 821,
 USC/Information Sciences Institute, January 8 1982

9. Authors' Addresses

 Dave Piscitello Lisa Phifer
 Core Competence Core Competence
 1620 Tuckerstown Road 1620 Tuckerstown Road
 Dresher, PA 19025 Dresher, PA 19025
 (215) 830-0692 (215) 830-0692
 dave@corecom.com lisa@corecom.com

 Richard Hovey Yangwei Wang
 Bellcore Bellcore
 445 South Street, MRE-2N264 331 Newman Springs Rd, NVC-3C221
 Morristown, NJ 07960-6438 Red Bank, NJ 07701
 (201)829-4176 (908)758-5107
 hovey@bellcore.com ywang@cc.bellcore.com

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt
https://datatracker.ietf.org/doc/html/rfc1991
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc1939
https://datatracker.ietf.org/doc/html/rfc821

<draft-piscitello-mncp-00.txt> Page 49

INTERNET DRAFT MNCP August 28, 1997

Appendix A. HDML Transactions using MNCP

 The design of the Mobile Network Computing Protocol (MNCP) makes it
 possible to implement a wide range of services efficiently and reliably
 using low-bandwidth, high-latency wireless links. In this Appendix, we
 describe the implementation of a Web browsing and information push
 service based on the Handheld Device Markup Language (HDML).

 HDML has been proposed as a means of bringing interactive browsing
 services to devices with limited processing, storage, display and input
 capabilities. The language is based on the concept of decks (the basic
 unit transported) and cards (the basic unit displayed). The language
 is a replacement for HTML for portable devices such as screen
 telephones and two-way pagers, and makes use of the infrastructure of
 HTTP connections and Web servers that has been created for HTML
 browsers. (See http://www.w3.org/pub/WWW/TR/NOTE-Submission-HDML.html
 for a copy of the HDML proposal)

 An HDML browser on an MNCP-capable client device begins by registering
 with the Mobility server. The client registers by submitting a request
 with the Function ID set to 1, and the Service ID set to the pre-
 defined HDML service (assume 85 is assigned to HDML). During the
 registration process, the Mobility server validates the user, based on
 the submitted Subscriber ID and password, ensuring both that the
 subscriber is registered with the server and authorized to use the
 requested service. Once registered, the client device can perform
 interactive browsing of HDML sites and receive unsolicited (pushed)
 messages encoded in HDML.

 Browsing of HDML sites is initiated by the subscriber, pointing the
 browser to the desired URL. The HDML browser formulates a HTTP request
 (e.g., GET or POST) of the specified URL, and submits this to the MNCP
 agent code on the client device. The MNCP code then formulates a single
 packet or multi-packet request to a pre-defined Service ID (i.e., 85)

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt
http://www.w3.org/pub/WWW/TR/NOTE-Submission-HDML.html

 on the Mobility server. The MNC protocol handles reliable delivery of
 the request to the Mobility server, invisible to the HDML browser.

 The Mobility server routes incoming messages to code modules based on
 the Service ID. Any message with a Service ID of 85 are routed to the
 HDML service module. The HDML service module then extracts the HTTP
 request from the MNCP message. The HTTP request could be implemented
 by using a Function ID to correspond to each HTTP function (i.e.,
 Function ID 2 maps to GET, Function ID 3 maps to PUT) or the HTTP
 request as formulated by the client could be included as the body of
 the message. The HDML service module then forwards the HTTP request to
 the HDML information server. When the Mobility server receives the
 response from the HDML information server, it encodes the response with
 the previously negotiated compression algorithm and delivers it to the
 client device. The subscriber could then continue browsing in a
 similar fashion, based on the contents of the HDML deck that was
 returned.

<draft-piscitello-mncp-00.txt> Page 50

INTERNET DRAFT MNCP August 28, 1997

 The process of `pushing' a message to the HDML browser is implemented
 from the server side. An external server begins the process by
 formulating an HDML deck to be delivered to a particular HDML service
 subscriber. Alternatively, a person may wish to send an email- or
 page-type notice to the subscriber. The information server or the
 individual must deliver the message to the Mobility server, using the
 interface specified by the Mobility server. (HTTP connections or e-
 mail messages are two possibilities.) When the Mobility server
 receives such a message, it first determines if the subscriber to whom
 the message is addressed is registered. If the subscriber is not
 registered for HDML service, the message might be returned or placed in
 a message store. If the subscriber is currently registered, the
 Mobility server routes the message to the HDML service module. The
 HDML service module takes the incoming message and formats it for
 delivery. This formatting might include converting a plain-text
 message to HDML, as well as compression and segmentation for MNCP
 delivery. The HDML service assigns the proper Service ID (85) and a
 pre-defined Function ID that corresponds to pushed messages. In fact,
 multiple Function IDs could be assigned to pushed messages, with
 different values indicating different levels of priority, for example.
 Using single- or multiple-packet reliable delivery, the Mobility server
 then forwards the message to the HDML client. The browser code
 receives the HDML deck, interprets the format for proper display and
 informs the user in an appropriate fashion. The user can then interact

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 with the delivered message in standard browsing mode.

 When the subscriber has completed browsing and/or no longer wishes to
 receive pushed messages, terminating the browser will perform a de-
 registration operation, separating the subscriber from the Mobility
 server. The de-registration message again uses the HDML-assigned
 Service ID (85) and the Function ID of 0.

 A variety of services can be implemented using HDML. Currently, public
 services such as phone-number searches, news reports and weather
 forecasts are available. Users of such services would not generally
 benefit from the overhead of sophisticated security measures. However,
 HDML could be used in intranet-like applications, such as salespeople
 querying market data, which would require encryption and
 authentication. To properly protect the data transmitted in such
 applications, the security measures must protect the entire path from
 client to server, not just the wireless portion of the link. End-to-
 end encryption and authentication protocols could be built into HDML
 browsers and HDML information servers to protect sensitive data.

<draft-piscitello-mncp-00.txt> Page 51

INTERNET DRAFT MNCP August 28, 1997

 Figure A-1 depicts the MNC architecture as used to support HDML
 transactions. Figure A-2 illustrates the message flows.

 MCD MS HDML Server
 +-----------+ +----------+ +--------+
 | | HDML | | HDML | Info |
 |HDML Client| <--> |HDML Proxy| <--> | Server |
 +-----------+ +-----+----+ +--------+
 | MNCP | |MNCP |HTTP| | HTTP |
 +-----------+ +-----+----+ +--------+
 | UDP | |UDP |TCP | | TCP |
 +-----------+------+-----+----+------+--------+
 | Wireless Network | Wireline Network |
 +------------------------+--------------------+

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 Figure A-1.

<draft-piscitello-mncp-00.txt> Page 52

INTERNET DRAFT MNCP August 28, 1997

 MCD MS HDML Server
 | | |
 REG_REQ |PT_CMD(S85,F1) | |
 ------->|-------------->| |
 REG_CNF |PT_ACK(ACK_OK) | Register MCD |
 <-------|<--------------| |
 | | |

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

 | | |
 FUN_REQ |PT_CMD(S85,Fx) | Browser Pull |
 ------->|-------------->| HDML GET:URL |
 FUN_CNF |PT_ACK(ACK_OK) |-------------->|
 <-------|<--------------| |Perform GET
 | | |Return PUT
 | | HDML PUT |
 |PT_NTFN(S85,Fy)|<--------------|
 |<--------------| |
 |PT_ACK(ACK_OK) | |
 |-------------->| |
 |PT_DATA(M,DECK)| |
 |<--------------| |
 |PT_ACK(ACK_OK) | |
 |-------------->| |
 |PT_DATA(F,DECK)| |
 <-------|<--------------| |
 FUN_IND |PT_ACK(ACK_OK) | |
 | | |
 | | |
 | | |Server Push
 | | HDML POST:URL |
 |PT_NTFN(S85,Fz)|<--------------|
 |<--------------| |
 |PT_ACK(ACK_OK) | |
 |-------------->| |
 |PT_DATA(M,DECK)| |
 |<--------------| |
 |PT_ACK(ACK_OK) | |
 |-------------->| |
 |PT_DATA(F,DECK)| |
 <-------|<--------------| |
 FUN-IND |PT_ACK(ACK_OK) | |
 | | |
 | | |
 DEREGREQ|PT_CMD(S85,F0) | |
 ------->|-------------->| |
 DEREGCNF|PT_ACK(ACK_OK) |Deregister MCD |
 <-------|<--------------| |
 | | |
 | | |Server Push
 | | HDML POST:URL |
 | X<--------------|
 | | |

<draft-piscitello-mncp-00.txt> Page 53

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

INTERNET DRAFT MNCP August 28, 1997

 Key: S85 = Service ID of HDML-based service
 F1 = Function ID of FUN_REG_REQ
 F0 = Function ID of FUN_DEREG_REQ
 Fx,y,z = Function IDs of FUN_<other>_REQs
 M,DECK = IE_DATA_MORE containing segment of HDML deck
 F,DECK = IE_DATA_FINAL containing last segment of HDML deck

 Note: This flow illustrates explicit registration. For implicit
 registration, omit first MNCP packet sequence; MS registers
 MCD upon receipt of FUN_<other>_REQ instead.

 Figure A-2.

<draft-piscitello-mncp-00.txt> Page 54

INTERNET DRAFT MNCP August 28, 1997

Appendix B. Future Protocol Extensions

 Several extensions are under consideration for the MNCP.

 A reliable delivery that uses a sliding window mechanism to improve
 performance. The objective is to extend the current positive
 acknowledgment of packets with retransmission by allowing more than one
 packet to be transmitted before waiting for acknowledgment from the
 receiver. Full or partial window credit indications would accompany
 cumulative acknowledgments returned by the receiver, and selective
 acknowledgments would be a desirable extension as well

 A means of providing data synchronization at the session control level
 that persists beyond the possibly abrupt termination or interruption of
 an underlying connection is desirable. Such a mechanism would allow a
 mobile computing device to continue a transfer from a commonly agreed
 upon starting point in an octet stream rather than from the beginning
 of the stream.

 It would be desirable to be able to extend the existing "per reliable
 transfer" authentication model in MNCP to support strong authentication
 whether applications are explicitly or implicitly registered. It would
 also be useful to allow the MCD to verify the authenticity of a
 Mobility Server.

 One method under consideration is to identify an authentication method
 and encode the authentication information appropriate for that method
 in the same registration request or data request packet. The initiator
 (MCD or MS) chooses a method, performs whatever computation is required
 to generate the strong authentication information for that method, and
 then sends the packet. The initiator decides what security is
 appropriate. A new IE identifying authentication-method can be sent in
 the clear, with the remainder of the PT_NTFN (PT_CMD) (including
 authentication information) encrypted as per the indicated security
 method.

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

<draft-piscitello-mncp-00.txt> Page 55

https://datatracker.ietf.org/doc/html/draft-piscitello-mncp-00.txt

