
Workgroup: Network Working Group

Internet-Draft: draft-pkcs5-gost-03

Published: 21 March 2022

Intended Status: Informational

Expires: 22 September 2022

Authors: E.K. Karelina, Ed.

InfoTeCS

Generating Password-based Keys Using the GOST Algorithms

Abstract

This document specifies how to use the Password-Based Cryptography

Specification version 2.1 (PKCS #5) defined in [RFC8018] to generate

password- based keys in conjunction with the Russian national

standard GOST algorithms.

PKCS #5 applies a pseudorandom function (a cryptographic hash,

cipher, or HMAC) to the input password along with a salt value and

repeats the process many times to produce a derived key.

This specification is developed outside the IETF and is published to

facilitate interoperable implementations that wish to support the

GOST algorithms. This document does not imply IETF endorsement of

the cryptographic algorithms used in this document.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 22 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions Used in This Document

3. Basic Terms and Definitions

4. Algorithm For Generating a Key From a Password

5. Data Encryption

5.1. GOST R 34.12-2015 Data Encryption

5.1.1. Encryption

5.1.2. Decryption

6. Message Authentication

6.1. MAC Generation

6.2. MAC Verification

7. Security Considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Identifiers and Parameters

A.1. PBKDF2

A.2. PBES2

A.3. Identifier and Parameters of Gost34.12-2015 Encryption

Scheme

A.4. PBMAC1

Appendix B. PBKDF2 HMAC_GOSTR3411 Test Vectors

Author's Address

1. Introduction

This document supplements [RFC8018]. It provides a specification of

usage of GOST R 34.12-2015 encryption algorithms and the GOST R

34.11-2012 hashing functions in the information systems [GostPkcs5].

The methods described in this document are designed to generate key

information using the user's password and protect information using

the generated keys.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

https://trustee.ietf.org/license-info

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Basic Terms and Definitions

Throughout this document, the following notations are used:

P a password encoded as a Unicode UTF-8 string

S a random initializing value

c a number of iterations of algorithm, a positive integer

dkLen a length in octets of derived key, a positive integer

DK a derived key of length dkLen

B_n
a set of all octet strings of length n, n >= 0; if n = 0,

then the set B_n consists of an empty string of length 0

A||C

a concatenation of two octet strings A, C, i.e., a vector

from B_(|A|+|C|), where the left subvector from B_(|A|) is

equal to the vector A and the right subvector from B_(|C|)

is equal to the vector C: A = (a_(n_1),...,a_1) in B_(n_1)

and C = (c_(n_2),..., c_1) in B_(n_2), res =

(a_(n_1),...,a_1,c_(n_2),..., c_1) in B_(n_1 + n_2);

\xor
a bit-wise exclusive-or of two octet strings of the same

length

MSB^n_r:

B_n ->

B_r

a truncating of an octet string to size r by removing the

least significant n-r octets: MSB^n_r(a_n,...,a_(n-

r+1),a_(n-r),...,a_1) =(a_n,...,a_(n-r+1));

LSB^n_r:

B_n ->

B_r

a truncating of a octet string to size r by removing the

most significant n-r octets: LSB^n_r(a_n,...,a_(n-

r+1),a_(n-r),...,a_1) =(a_r,...,a_1)

Int(i)

a four-octet encoding of the integer i =< 2^32: (i_1, i_2,

i_3, i_4) in B_4, i = i_1 + 2^8 * i_2 + 2^16 * i_3 + 2^24

* i_4

b[i, j]
a substring extraction operator: extracts octets i through

j, 0 =< i =< j.

CEIL(x) the smallest integer greater than, or equal to, x

Table 1

This document uses the following abbreviations and symbols:

HMAC_GOSTR3411

Hashed-based Message Authentication Code. A function

for calculating a message authentication code, based

on the GOST R 34.11-2012 hash function ([RFC6986])

with 512-bit output in accordance with [RFC2104].

Table 2

¶

¶

¶

4. Algorithm For Generating a Key From a Password

The DK key is calculated by means of a key derivation function

PBKDF2(P, S, c, dkLen) [RFC8018], section 5.2 using the

HMAC_GOSTR3411 function as the PRF pseudo-random function:

DK = PBKDF2(P,S,c,dkLen).

The PBKDF2 function is defined as the following algorithm:

If dkLen > (2^32 - 1) * 64, output "derived key too long" and

stop.

Calculate n = CEIL(dkLen / 64).

Calculate a set of values for each i from 1 to n:

U_1(i) = HMAC_GOSTR3411 (P, S || INT (i))

U_2(i) = HMAC_GOSTR3411 (P, U_1(i))

...

U_c(i) = HMAC_GOSTR3411 (P, U_{c-1}(i))

T(i) = U_1(i) \xor U_2(i) \xor ... \xor U_c(i)

Concatenate the octet strings T(i) and extract the first dkLen

octets to produce a derived key DK:

DK = MSB^{n * 64}_dkLen(T(1)||T(2)||...||T(n))

5. Data Encryption

5.1. GOST R 34.12-2015 Data Encryption

Data encryption using the DK key is carried out in accordance with

the PBES2 scheme (see [RFC8018], section 6.2) using GOST R

34.12-2015 in CTR_ACPKM mode (see [RFC8645]).

5.1.1. Encryption

The encryption process for PBES2 consists of the following steps:

Select the random value S of length from 8 to 32 octets.

Select the iteration count c depending on the conditions of

use. The minimum allowable value for the parameter is 1000.

Set the value dkLen = 32.

¶

¶

¶

1.

¶

2. ¶

3. ¶

¶

¶

¶

¶

¶

4.

¶

¶

¶

¶

1. ¶

2.

¶

3. ¶

Apply the key derivation function to the password P, the random

value S and the iteration count c to produce a derived key DK

of length dkLen octets in accordance with the algorithm from

Section 4. Generate the sequence T(1) and truncate it to 32

octets, i.e.,

DK = PBKDF2(P,S,c,32) = MSB^64_32(T(1)).

Generate the random value ukm of size n, where n takes a value

of 12 or 16 octets, depending on the selected encryption

algorithm:

GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

Set the value S' = ukm[1..n-8]

For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-

kuznyechik-ctracpkm algorithms (see Appendix A.3) encrypt the

message M with GOST R 34.12-2015 algorithm with the derived key

DK and the random value S' to produce a ciphertext C.

For id-gostr3412-2015-magma-ctracpkm-omac and id-

gostr3412-2015-kuznyechik-ctracpkm-omac algorithms (see

Appendix A.3) encrypt the message M with GOST R 34.12-2015

algorithm with the derived key DK and the ukm in accordance

with the following steps:

- Generate two keys from the derived key DK using the

KDF_TREE_GOSTR3411_2012_256 algorithm (see [RFC7836]):

encryption key K(1)

MAC key K(2).

Input parameters for the KDF_TREE_GOSTR3411_2012_256

algorithm take the folowing values:

K_in = DK

label = "kdf tree" (8 octets)

seed = ukm[n-7..n]

R = 1

The input string label above is encoded using ASCII.

4.

¶

¶

5.

¶

¶

¶

6. ¶

7.

¶

8.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

- Compute MAC for the message M using the K(2) key. Append

the computed MAC value to the message M: M||MAC.

- Encrypt the resulting octet string with MAC with GOST R

34.12-2015 algorithm with the derived key K(1) and the

random value S' to produce a ciphertext C.

Serialize the parameters S, c, ukm as algorithm parameters in

accordance with Appendix A.

5.1.2. Decryption

The decryption process for PBES2 consists of the following steps:

Set the value dkLen = 32.

Apply the key derivation function PBKDF2 to the password P, the

random value S and the iteration count c to produce a derived

key DK of length dkLen octets in accordance with the algorithm

from Section 4. Generate the sequence T(1) and truncate it to

32 octets, i.e., DK = PBKFD2(P,S,c,32) = MSB^64_32(T(1)).

Set the value S' = ukm[1..n-8], where n is the size of ukm in

octets.

For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-

kuznyechik-ctracpkm algorithms (see Appendix A.3) decrypt the

ciphertext C with GOST R 34.12-2015 algorithm with the derived

key DK and the random value S' to produce the message M.

For id-gostr3412-2015-magma-ctracpkm-omac and id-

gostr3412-2015-kuznyechik-ctracpkm-omac algorithms (see

Appendix A.3) decrypt the ciphertext C with GOST R 34.12-2015

algorithm with the derived key DK and the ukm in accordance

with the following steps:

- Generate two keys from the derived key DK using the

KDF_TREE_GOSTR3411_2012_256 algorithm:

encryption key K(1)

MAC key K(2).

Input parameters for the KDF_TREE_GOSTR3411_2012_256

algorithm take the folowing values:

K_in = DK

label = "kdf tree" (8 octets)

¶

¶

9.

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

¶

¶

¶

¶

seed = ukm[n-7..n]

R = 1

The input string label above is encoded using ASCII.

- Decrypt the ciphertext C with GOST R 34.12-2015 algorithm

with the derived key K(1) and the random value S' to produce

the plaintext. The last k octets of the text are the message

authentication code MAC', where k depends on the selected

encryption algorithm.

- Compute MAC for the text[1..m - k] using the K(2) key,

where m is the size of text.

- Compare the original message authentication code MAC and

the receiving message authentication code MAC'. If the sizes

or values do not match, the message is distorted.

6. Message Authentication

PBMAC1 scheme is used for message authentication (see [RFC8018],

section 7.1). This scheme bases on the HMAC_GOSTR3411 function.

6.1. MAC Generation

The MAC generation operation for PBMAC1 consists of the following

steps:

Select the random value S of length from 8 to 32 octets.

Select the iteration count c depending on the conditions of

use. The minimum allowable value for the parameter is 1000.

Set the dkLen to at least 32 octets. It depends on previous

parameter values.

Apply the key derivation function to the password P, the random

value S and the iteration count c to generate a sequence K of

length dkLen octets in accordance with the algorithm from

Section 4.

Truncate the sequence K to 32 octets to get the derived key DK,

i.e., DK = LSB^dkLen_32(K).

Process the message M with the underlying message

authentication scheme with the derived key DK to generate a

message authentication code T.

¶

¶

¶

¶

¶

¶

¶

¶

1. ¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

Save the parameters S, c, ukm as algorithm parameters in

accordance with Appendix A.

6.2. MAC Verification

The MAC verification operation for PBMAC1 consists of the following

steps:

Set the dkLen to at least 32 octets. It depends on previous

parameter values.

Apply the key derivation function to the password P, the random

value S and the iteration count c to generate a sequence K of

length dkLen octets in accordance with the algorithm from

Section 4.

Truncate the sequence K to 32 octets to get the derived key DK,

i.e., DK = LSB^dkLen_32(K).

Process the message M with the underlying message

authentication scheme with the derived key DK to generate a

message authentication code MAC'.

Compare the original message authentication code MAC and the

receiving message authentication code MAC'. If the sizes or

values do not match, the message is distorted.

7. Security Considerations

This entire document is about security.

For information on security considerations for password-based

cryptography see [RFC8018].

Conforming applications MUST use unique values for ukm and S.

It is RECOMMENDED to use the value of parameter c equal to 2000 for

generating the derived key in PBKDF2 algorithm.

It is RECOMMENDED to use the value of parameter S equal to 32 octets

for generating the derived key in PBKDF2 algorithm.

It is RECOMMENDED to use the exact algorithm parameters in symmetric

algorithms "Magma" and "Kuznyechik". They are defined in Appendix A.

3.

8. IANA Considerations

This document makes no requests for IANA action.

7.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

¶

¶

¶

¶

¶

[GostPkcs5]

[RFC2104]

[RFC2119]

[RFC6986]

[RFC7801]

[RFC7836]

[RFC8018]

[RFC8174]

[RFC8645]

[RFC8891]

9. References

9.1. Normative References

Karelina, E., Pianov, S., and A. Davletshina,

"Information technology. Cryptographic Data Security.

Password-based key security.", R 1323565.1.xxx-2022 (work

in progress). Federal Agency on Technical Regulating and

Metrology (In Russian).

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC 2104, DOI

10.17487/RFC2104, February 1997, <https://www.rfc-

editor.org/info/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Dolmatov, V., Ed. and A. Degtyarev, "GOST R 34.11-2012:

Hash Function", RFC 6986, DOI 10.17487/RFC6986, August

2013, <https://www.rfc-editor.org/info/rfc6986>.

Dolmatov, V., Ed., "GOST R 34.12-2015: Block Cipher

"Kuznyechik"", RFC 7801, DOI 10.17487/RFC7801, March

2016, <https://www.rfc-editor.org/info/rfc7801>.

Smyshlyaev, S., Ed., Alekseev, E., Oshkin, I., Popov, V.,

Leontiev, S., Podobaev, V., and D. Belyavsky, "Guidelines

on the Cryptographic Algorithms to Accompany the Usage of

Standards GOST R 34.10-2012 and GOST R 34.11-2012", RFC

7836, DOI 10.17487/RFC7836, March 2016, <https://www.rfc-

editor.org/info/rfc7836>.

Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:

Password-Based Cryptography Specification Version 2.1",

RFC 8018, DOI 10.17487/RFC8018, January 2017, <https://

www.rfc-editor.org/info/rfc8018>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Smyshlyaev, S., Ed., "Re-keying Mechanisms for Symmetric

Keys", RFC 8645, DOI 10.17487/RFC8645, August 2019,

<https://www.rfc-editor.org/info/rfc8645>.

Dolmatov, V., Ed. and D. Baryshkov, "GOST R 34.12-2015:

Block Cipher "Magma"", RFC 8891, DOI 10.17487/RFC8891,

https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6986
https://www.rfc-editor.org/info/rfc7801
https://www.rfc-editor.org/info/rfc7836
https://www.rfc-editor.org/info/rfc7836
https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8645

[RFC6070]

September 2020, <https://www.rfc-editor.org/info/

rfc8891>.

9.2. Informative References

Josefsson, S., "PKCS #5: Password-Based Key Derivation

Function 2 (PBKDF2) Test Vectors", RFC 6070, DOI

10.17487/RFC6070, January 2011, <https://www.rfc-

editor.org/info/rfc6070>.

Appendix A. Identifiers and Parameters

This section defines ASN.1 syntax for the key derivation functions,

the encryption schemes, the message authentication scheme, and

supporting techniques ([RFC8018]).

A.1. PBKDF2

The object identifier id-PBKDF2 identifies the PBKDF2 key derivation

function:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBKDF2-params:

The fields of type PBKDF2-params have the following meanings:

- salt contains the random value S in OCTET STRING.

- iterationCount specifies the iteration count c.

- keyLength is the length of the derived key in octets. It is

optional field for PBES2 sheme since it is always 32 octets. It

¶

rsadsi OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 113549 }

pkcs OBJECT IDENTIFIER ::= { rsadsi 1 }

pkcs-5 OBJECT IDENTIFIER ::= { pkcs 5 }

¶

¶

id-PBKDF2 OBJECT IDENTIFIER ::= { pkcs-5 12 }¶

¶

PBKDF2-params ::= SEQUENCE

{

 salt CHOICE

 {

 specified OCTET STRING,

 otherSource AlgorithmIdentifier {{PBKDF2-SaltSources}}

 },

 iterationCount INTEGER (1000..MAX),

 keyLength INTEGER (32..MAX) OPTIONAL,

 prf AlgorithmIdentifier {{PBKDF2-PRFs}}

}

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc8891
https://www.rfc-editor.org/info/rfc8891
https://www.rfc-editor.org/info/rfc6070
https://www.rfc-editor.org/info/rfc6070

MUST be present for PBMAC1 sheme and MUST be at least 32 octets

since the HMAC_GOSTR3411 function has a variable key size.

- prf identifies the pseudorandom function. The identifier value

MUST be id-tc26-hmac-gost-3411-12-512, the parameters value must

be NULL:

A.2. PBES2

The object identifier id-PBES2 identifies the PBES2 encryption

scheme:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBES2-params:

The fields of type PBES2-params have the following meanings:

- keyDerivationFunc identifies the key derivation function in

accordance with Appendix A.1.

- encryptionScheme identifies the encryption scheme in with

Appendix A.3.

A.3. Identifier and Parameters of Gost34.12-2015 Encryption Scheme

The Gost34.12-2015 encryption algorithm identifier SHALL take one of

the following values:

¶

¶

id-tc26-hmac-gost-3411-12-512 OBJECT IDENTIFIER ::=

{

 iso(1) member-body(2) ru(643) reg7(7)

 tk26(1) algorithms(1) hmac(4) 512(2)

}

¶

¶

id-PBES2 OBJECT IDENTIFIER ::= { pkcs-5 13 }¶

¶

PBES2-params ::= SEQUENCE

{

 keyDerivationFunc AlgorithmIdentifier { { PBES2-KDFs } },

 encryptionScheme AlgorithmIdentifier { { PBES2-Encs } }

}

¶

¶

¶

¶

¶

id-gostr3412-2015-magma-ctracpkm OBJECT IDENTIFIER ::=

{

 iso(1) member-body(2) ru(643) rosstandart(7)

 tc26(1) algorithms(1) cipher(5)

 gostr3412-2015-magma(1) mode-ctracpkm(1)

}

¶

In case of use id-gostr3412-2015-magma-ctracpkm identifier the data

is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM mode

in accordance with [RFC8645]. The block size is 64 bits, the section

size is fixed within a specific protocol based on the requirements

of the system capacity and the key lifetime.

In case of use id-gostr3412-2015-magma-ctracpkm-omac identifier the

data is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM

mode in accordance with [RFC8645], and MAC is computed by the GOST R

34.12-2015 Magma cipher in MAC mode (MAC size is 64 bits). The block

size is 64 bits, the section size is fixed within a specific

protocol based on the requirements of the system capacity and the

key lifetime.

In case of use id-gostr3412-2015-kuznyechik-ctracpkm identifier the

data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in

CTR_ACPKM mode in accordance with [RFC8645]. The block size is 128

bits, the section size is fixed within a specific protocol based on

the requirements of the system capacity and the key lifetime.

In case of use id-gostr3412-2015-kuznyechik-ctracpkm-omac identifier

the data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in

CTR_ACPKM mode in accordance with [RFC8645], and MAC is computed by

the GOST R 34.12-2015 Kuznyechik cipher in MAC mode (MAC size is 128

bits). The block size is 128 bits, the section size is fixed within

a specific protocol based on the requirements of the system capacity

and the key lifetime.

¶

id-gostr3412-2015-magma-ctracpkm-omac OBJECT IDENTIFIER ::=

{

 iso(1) member-body(2) ru(643) rosstandart(7)

 tc26(1) algorithms(1) cipher(5)

 gostr3412-2015-magma(1) mode-ctracpkm-omac(2)

}

¶

¶

id-gostr3412-2015-kuznyechik-ctracpkm OBJECT IDENTIFIER ::=

{

 iso(1) member-body(2) ru(643) rosstandart(7)

 tc26(1) algorithms(1) cipher(5)

 gostr3412-2015-kuznyechik(2) mode-ctracpkm(1)

}

¶

¶

id-gostr3412-2015-kuznyechik-ctracpkm-omac OBJECT IDENTIFIER ::=

{

 iso(1) member-body(2) ru(643) rosstandart(7)

 tc26(1) algorithms(1) cipher(5)

 gostr3412-2015-kuznyechik(2) mode-ctracpkm-omac(2)

}

¶

¶

The parameters field in an AlgorithmIdentifier SHALL have type

Gost3412-15-Encryption-Parameters:

The field of type Gost3412-15-Encryption-Parameters have the

following meanings:

- ukm MUST be present and MUST contain n octets. Its value

depends on the selected encryption algorithm:

GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

A.4. PBMAC1

The object identifier id-PBMAC1 identifies the PBMAC1 message

authentication scheme:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBMAC1-params:

The fields of type PBMAC1-params have the following meanings:

- keyDerivationFunc is identifier and parameters of key

derivation function in accordance with Appendix A.1

- messageAuthScheme is identifier and parameters of

HMAC_GOSTR3411 algorithm.

Appendix B. PBKDF2 HMAC_GOSTR3411 Test Vectors

These test vectors are formed by analogy with test vectors from

[RFC6070]. The input strings below are encoded using ASCII. The

sequence "\0" (without quotation marks) means a literal ASCII NULL

value (1 octet). "DK" refers to the Derived Key.

¶

Gost3412-15-Encryption-Parameters ::= SEQUENCE

{

 ukm OCTET STRING

}

¶

¶

¶

¶

¶

¶

id-PBMAC1 OBJECT IDENTIFIER ::= { pkcs-5 14 }¶

¶

PBMAC1-params ::= SEQUENCE

{

 keyDerivationFunc AlgorithmIdentifier { { PBMAC1-KDFs } },

 messageAuthScheme AlgorithmIdentifier { { PBMAC1-MACs } }

}

¶

¶

¶

¶

¶

Input:

 P = "password" (8 octets)

 S = "salt" (4 octets)

 c = 1

 dkLen = 64

Output:

 DK = 64 77 0a f7 f7 48 c3 b1 c9 ac 83 1d bc fd 85 c2

 61 11 b3 0a 8a 65 7d dc 30 56 b8 0c a7 3e 04 0d

 28 54 fd 36 81 1f 6d 82 5c c4 ab 66 ec 0a 68 a4

 90 a9 e5 cf 51 56 b3 a2 b7 ee cd db f9 a1 6b 47

Input:

 P = "password" (8 octets)

 S = "salt" (4 octets)

 c = 2

 dkLen = 64

Output:

 DK = 5a 58 5b af df bb 6e 88 30 d6 d6 8a a3 b4 3a c0

 0d 2e 4a eb ce 01 c9 b3 1c 2c ae d5 6f 02 36 d4

 d3 4b 2b 8f bd 2c 4e 89 d5 4d 46 f5 0e 47 d4 5b

 ba c3 01 57 17 43 11 9e 8d 3c 42 ba 66 d3 48 de

Input:

 P = "password" (8 octets)

 S = "salt" (4 octets)

 c = 4096

 dkLen = 64

Output:

 DK = e5 2d eb 9a 2d 2a af f4 e2 ac 9d 47 a4 1f 34 c2

 03 76 59 1c 67 80 7f 04 77 e3 25 49 dc 34 1b c7

 86 7c 09 84 1b 6d 58 e2 9d 03 47 c9 96 30 1d 55

 df 0d 34 e4 7c f6 8f 4e 3c 2c da f1 d9 ab 86 c3

Input:

 P = "password" (8 octets)

 S = "salt" (4 octets)

 c = 16777216

 dkLen = 64

Output:

 DK = 49 e4 84 3b ba 76 e3 00 af e2 4c 4d 23 dc 73 92

 de f1 2f 2c 0e 24 41 72 36 7c d7 0a 89 82 ac 36

 1a db 60 1c 7e 2a 31 4e 8c b7 b1 e9 df 84 0e 36

 ab 56 15 be 5d 74 2b 6c f2 03 fb 55 fd c4 80 71

Input:

 P = "passwordPASSWORDpassword" (24 octets)

 S = "saltSALTsaltSALTsaltSALTsaltSALTsalt" (36 octets)

 c = 4096

 dkLen = 100

Output:

 DK = b2 d8 f1 24 5f c4 d2 92 74 80 20 57 e4 b5 4e 0a

 07 53 aa 22 fc 53 76 0b 30 1c f0 08 67 9e 58 fe

 4b ee 9a dd ca e9 9b a2 b0 b2 0f 43 1a 9c 5e 50

 f3 95 c8 93 87 d0 94 5a ed ec a6 eb 40 15 df c2

 bd 24 21 ee 9b b7 11 83 ba 88 2c ee bf ef 25 9f

 33 f9 e2 7d c6 17 8c b8 9d c3 74 28 cf 9c c5 2a

 2b aa 2d 3a

Input:

 P = "pass\0word" (9 octets)

 S = "sa\0lt" (5 octets)

 c = 4096

 dkLen = 64

Output:

 DK = 50 df 06 28 85 b6 98 01 a3 c1 02 48 eb 0a 27 ab

 6e 52 2f fe b2 0c 99 1c 66 0f 00 14 75 d7 3a 4e

 16 7f 78 2c 18 e9 7e 92 97 6d 9c 1d 97 08 31 ea

 78 cc b8 79 f6 70 68 cd ac 19 10 74 08 44 e8 30

¶

Author's Address

Karelina Ekaterina (editor)

InfoTeCS

2B stroenie 1, ul. Otradnaya

Moscow

127273

Russian Federation

Phone: +7 (495) 737-61-92

Email: Ekaterina.Karelina@infotecs.ru

tel:+7%20(495)%20737-61-92
mailto:Ekaterina.Karelina@infotecs.ru

	Generating Password-based Keys Using the GOST Algorithms
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Basic Terms and Definitions
	4. Algorithm For Generating a Key From a Password
	5. Data Encryption
	5.1. GOST R 34.12-2015 Data Encryption
	5.1.1. Encryption
	5.1.2. Decryption

	6. Message Authentication
	6.1. MAC Generation
	6.2. MAC Verification

	7. Security Considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Identifiers and Parameters
	A.1. PBKDF2
	A.2. PBES2
	A.3. Identifier and Parameters of Gost34.12-2015 Encryption Scheme
	A.4. PBMAC1

	Appendix B. PBKDF2 HMAC_GOSTR3411 Test Vectors
	Author's Address

