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1. Introduction

This document supplements [RFC8018]. It provides a specification of

usage of GOST R 34.12-2015 encryption algorithms and the GOST R

34.11-2012 hashing functions in the information systems [GostPkcs5].

The methods described in this document are designed to generate key

information using the user's password and protect information using

the generated keys.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in
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BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Basic Terms and Definitions

Throughout this document, the following notations are used:

P a password encoded as a Unicode UTF-8 string

S a random initializing value

c a number of iterations of algorithm, a positive integer

dkLen a length in octets of derived key, a positive integer

DK a derived key of length dkLen

B_n
a set of all octet strings of length n, n >= 0; if n = 0,

then the set B_n consists of an empty string of length 0

A||C

a concatenation of two octet strings A, C, i.e., a vector

from B_(|A|+|C|), where the left subvector from B_(|A|) is

equal to the vector A and the right subvector from B_(|C|)

is equal to the vector C: A = (a_(n_1),...,a_1) in B_(n_1)

and C = (c_(n_2),..., c_1) in B_(n_2), res =

(a_(n_1),...,a_1,c_(n_2),..., c_1) in B_(n_1 + n_2);

\xor
a bit-wise exclusive-or of two octet strings of the same

length

MSB^n_r:

B_n ->

B_r

a truncating of an octet string to size r by removing the

least significant n-r octets: MSB^n_r(a_n,...,a_(n-

r+1),a_(n-r),...,a_1) =(a_n,...,a_(n-r+1)); 

LSB^n_r:

B_n ->

B_r

a truncating of a octet string to size r by removing the

most significant n-r octets: LSB^n_r(a_n,...,a_(n-

r+1),a_(n-r),...,a_1) =(a_r,...,a_1) 

Int(i)

a four-octet encoding of the integer i =< 2^32: (i_1, i_2,

i_3, i_4) in B_4, i = i_1 + 2^8 * i_2 + 2^16 * i_3 + 2^24

* i_4

b[i, j]
a substring extraction operator: extracts octets i through

j, 0 =< i =< j.

CEIL(x) the smallest integer greater than, or equal to, x

Table 1

This document uses the following abbreviations and symbols:

HMAC_GOSTR3411

Hashed-based Message Authentication Code. A function

for calculating a message authentication code, based

on the GOST R 34.11-2012 hash function ([RFC6986])

with 512-bit output in accordance with [RFC2104].

Table 2
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4. Algorithm For Generating a Key From a Password

The DK key is calculated by means of a key derivation function

PBKDF2(P, S, c, dkLen) [RFC8018], section 5.2 using the

HMAC_GOSTR3411 function as the PRF pseudo-random function:

DK = PBKDF2(P,S,c,dkLen).

The PBKDF2 function is defined as the following algorithm:

If dkLen > (2^32 - 1) * 64, output "derived key too long" and

stop.

Calculate n = CEIL(dkLen / 64).

Calculate a set of values for each i from 1 to n:

U_1(i) = HMAC_GOSTR3411 (P, S || INT (i))

U_2(i) = HMAC_GOSTR3411 (P, U_1(i))

...

U_c(i) = HMAC_GOSTR3411 (P, U_{c-1}(i))

T(i) = U_1(i) \xor U_2(i) \xor ... \xor U_c(i)

Concatenate the octet strings T(i) and extract the first dkLen

octets to produce a derived key DK:

DK = MSB^{n * 64}_dkLen(T(1)||T(2)||...||T(n))

5. Data Encryption

5.1. GOST R 34.12-2015 Data Encryption

Data encryption using the DK key is carried out in accordance with

the PBES2 scheme (see [RFC8018], section 6.2) using GOST R

34.12-2015 in CTR_ACPKM mode (see [RFC8645]).

5.1.1. Encryption

The encryption process for PBES2 consists of the following steps:

Select the random value S of length from 8 to 32 octets.

Select the iteration count c depending on the conditions of

use. The minimum allowable value for the parameter is 1000.

Set the value dkLen = 32.
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Apply the key derivation function to the password P, the random

value S and the iteration count c to produce a derived key DK

of length dkLen octets in accordance with the algorithm from 

Section 4. Generate the sequence T(1) and truncate it to 32

octets, i.e.,

DK = PBKDF2(P,S,c,32) = MSB^64_32(T(1)).

Generate the random value ukm of size n, where n takes a value

of 12 or 16 octets, depending on the selected encryption

algorithm:

GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

Set the value S' = ukm[1..n-8]

For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-

kuznyechik-ctracpkm algorithms (see Appendix A.3) encrypt the

message M with GOST R 34.12-2015 algorithm with the derived key

DK and the random value S' to produce a ciphertext C.

For id-gostr3412-2015-magma-ctracpkm-omac and id-

gostr3412-2015-kuznyechik-ctracpkm-omac algorithms (see 

Appendix A.3) encrypt the message M with GOST R 34.12-2015

algorithm with the derived key DK and the ukm in accordance

with the following steps:

- Generate two keys from the derived key DK using the

KDF_TREE_GOSTR3411_2012_256 algorithm (see [RFC7836]):

encryption key K(1)

MAC key K(2).

Input parameters for the KDF_TREE_GOSTR3411_2012_256

algorithm take the folowing values:

K_in = DK

label = "kdf tree" (8 octets)

seed = ukm[n-7..n]

R = 1

The input string label above is encoded using ASCII.
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- Compute MAC for the message M using the K(2) key. Append

the computed MAC value to the message M: M||MAC.

- Encrypt the resulting octet string with MAC with GOST R

34.12-2015 algorithm with the derived key K(1) and the

random value S' to produce a ciphertext C.

Serialize the parameters S, c, ukm as algorithm parameters in

accordance with Appendix A.

5.1.2. Decryption

The decryption process for PBES2 consists of the following steps:

Set the value dkLen = 32.

Apply the key derivation function PBKDF2 to the password P, the

random value S and the iteration count c to produce a derived

key DK of length dkLen octets in accordance with the algorithm

from Section 4. Generate the sequence T(1) and truncate it to

32 octets, i.e., DK = PBKFD2(P,S,c,32) = MSB^64_32(T(1)).

Set the value S' = ukm[1..n-8], where n is the size of ukm in

octets.

For id-gostr3412-2015-magma-ctracpkm and id-gostr3412-2015-

kuznyechik-ctracpkm algorithms (see Appendix A.3) decrypt the

ciphertext C with GOST R 34.12-2015 algorithm with the derived

key DK and the random value S' to produce the message M.

For id-gostr3412-2015-magma-ctracpkm-omac and id-

gostr3412-2015-kuznyechik-ctracpkm-omac algorithms (see 

Appendix A.3) decrypt the ciphertext C with GOST R 34.12-2015

algorithm with the derived key DK and the ukm in accordance

with the following steps:

- Generate two keys from the derived key DK using the

KDF_TREE_GOSTR3411_2012_256 algorithm:

encryption key K(1)

MAC key K(2).

Input parameters for the KDF_TREE_GOSTR3411_2012_256

algorithm take the folowing values:

K_in = DK

label = "kdf tree" (8 octets)
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seed = ukm[n-7..n]

R = 1

The input string label above is encoded using ASCII.

- Decrypt the ciphertext C with GOST R 34.12-2015 algorithm

with the derived key K(1) and the random value S' to produce

the plaintext. The last k octets of the text are the message

authentication code MAC', where k depends on the selected

encryption algorithm.

- Compute MAC for the text[1..m - k] using the K(2) key,

where m is the size of text.

- Compare the original message authentication code MAC and

the receiving message authentication code MAC'. If the sizes

or values do not match, the message is distorted.

6. Message Authentication

PBMAC1 scheme is used for message authentication (see [RFC8018],

section 7.1). This scheme bases on the HMAC_GOSTR3411 function.

6.1. MAC Generation

The MAC generation operation for PBMAC1 consists of the following

steps:

Select the random value S of length from 8 to 32 octets.

Select the iteration count c depending on the conditions of

use. The minimum allowable value for the parameter is 1000.

Set the dkLen to at least 32 octets. It depends on previous

parameter values.

Apply the key derivation function to the password P, the random

value S and the iteration count c to generate a sequence K of

length dkLen octets in accordance with the algorithm from 

Section 4.

Truncate the sequence K to 32 octets to get the derived key DK,

i.e., DK = LSB^dkLen_32(K).

Process the message M with the underlying message

authentication scheme with the derived key DK to generate a

message authentication code T.
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Save the parameters S, c, ukm as algorithm parameters in

accordance with Appendix A.

6.2. MAC Verification

The MAC verification operation for PBMAC1 consists of the following

steps:

Set the dkLen to at least 32 octets. It depends on previous

parameter values.

Apply the key derivation function to the password P, the random

value S and the iteration count c to generate a sequence K of

length dkLen octets in accordance with the algorithm from 

Section 4.

Truncate the sequence K to 32 octets to get the derived key DK,

i.e., DK = LSB^dkLen_32(K).

Process the message M with the underlying message

authentication scheme with the derived key DK to generate a

message authentication code MAC'.

Compare the original message authentication code MAC and the

receiving message authentication code MAC'. If the sizes or

values do not match, the message is distorted.

7. Security Considerations

This entire document is about security.

For information on security considerations for password-based

cryptography see [RFC8018].

Conforming applications MUST use unique values for ukm and S.

It is RECOMMENDED to use the value of parameter c equal to 2000 for

generating the derived key in PBKDF2 algorithm.

It is RECOMMENDED to use the value of parameter S equal to 32 octets

for generating the derived key in PBKDF2 algorithm.

It is RECOMMENDED to use the exact algorithm parameters in symmetric

algorithms "Magma" and "Kuznyechik". They are defined in Appendix A.

3.

8. IANA Considerations

This document makes no requests for IANA action.
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Appendix A. Identifiers and Parameters

This section defines ASN.1 syntax for the key derivation functions,

the encryption schemes, the message authentication scheme, and

supporting techniques ([RFC8018]).

A.1. PBKDF2

The object identifier id-PBKDF2 identifies the PBKDF2 key derivation

function:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBKDF2-params:

The fields of type PBKDF2-params have the following meanings:

- salt contains the random value S in OCTET STRING.

- iterationCount specifies the iteration count c.

- keyLength is the length of the derived key in octets. It is

optional field for PBES2 sheme since it is always 32 octets. It

¶

rsadsi OBJECT IDENTIFIER ::= { iso(1) member-body(2) us(840) 113549 }

pkcs OBJECT IDENTIFIER ::= { rsadsi 1 }

pkcs-5 OBJECT IDENTIFIER ::= { pkcs 5 }

¶

¶

id-PBKDF2 OBJECT IDENTIFIER ::= { pkcs-5 12 }¶

¶

PBKDF2-params ::= SEQUENCE

{

    salt            CHOICE

    {

        specified       OCTET STRING,

        otherSource     AlgorithmIdentifier {{PBKDF2-SaltSources}}

    },

    iterationCount  INTEGER (1000..MAX),

    keyLength       INTEGER (32..MAX) OPTIONAL,

    prf             AlgorithmIdentifier {{PBKDF2-PRFs}}

}

¶

¶

¶

¶
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MUST be present for PBMAC1 sheme and MUST be at least 32 octets

since the HMAC_GOSTR3411 function has a variable key size.

- prf identifies the pseudorandom function. The identifier value

MUST be id-tc26-hmac-gost-3411-12-512, the parameters value must

be NULL:

A.2. PBES2

The object identifier id-PBES2 identifies the PBES2 encryption

scheme:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBES2-params:

The fields of type PBES2-params have the following meanings:

- keyDerivationFunc identifies the key derivation function in

accordance with Appendix A.1.

- encryptionScheme identifies the encryption scheme in with 

Appendix A.3.

A.3. Identifier and Parameters of Gost34.12-2015 Encryption Scheme

The Gost34.12-2015 encryption algorithm identifier SHALL take one of

the following values:

¶

¶

id-tc26-hmac-gost-3411-12-512 OBJECT IDENTIFIER ::=

{

    iso(1) member-body(2) ru(643) reg7(7)

    tk26(1) algorithms(1) hmac(4) 512(2)

}

¶

¶

id-PBES2 OBJECT IDENTIFIER ::= { pkcs-5 13 }¶

¶

PBES2-params ::= SEQUENCE

{

    keyDerivationFunc   AlgorithmIdentifier { { PBES2-KDFs } },

    encryptionScheme    AlgorithmIdentifier { { PBES2-Encs } }

}

¶

¶

¶

¶

¶

id-gostr3412-2015-magma-ctracpkm OBJECT IDENTIFIER ::=

{

    iso(1) member-body(2) ru(643) rosstandart(7)

    tc26(1) algorithms(1) cipher(5)

    gostr3412-2015-magma(1) mode-ctracpkm(1)

}

¶



In case of use id-gostr3412-2015-magma-ctracpkm identifier the data

is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM mode

in accordance with [RFC8645]. The block size is 64 bits, the section

size is fixed within a specific protocol based on the requirements

of the system capacity and the key lifetime.

In case of use id-gostr3412-2015-magma-ctracpkm-omac identifier the

data is encrypted by the GOST R 34.12-2015 Magma cipher in CTR_ACPKM

mode in accordance with [RFC8645], and MAC is computed by the GOST R

34.12-2015 Magma cipher in MAC mode (MAC size is 64 bits). The block

size is 64 bits, the section size is fixed within a specific

protocol based on the requirements of the system capacity and the

key lifetime.

In case of use id-gostr3412-2015-kuznyechik-ctracpkm identifier the

data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in

CTR_ACPKM mode in accordance with [RFC8645]. The block size is 128

bits, the section size is fixed within a specific protocol based on

the requirements of the system capacity and the key lifetime.

In case of use id-gostr3412-2015-kuznyechik-ctracpkm-omac identifier

the data is encrypted by the GOST R 34.12-2015 Kuznyechik cipher in

CTR_ACPKM mode in accordance with [RFC8645], and MAC is computed by

the GOST R 34.12-2015 Kuznyechik cipher in MAC mode (MAC size is 128

bits). The block size is 128 bits, the section size is fixed within

a specific protocol based on the requirements of the system capacity

and the key lifetime.

¶

id-gostr3412-2015-magma-ctracpkm-omac OBJECT IDENTIFIER ::=

{

    iso(1) member-body(2) ru(643) rosstandart(7)

    tc26(1) algorithms(1) cipher(5)

    gostr3412-2015-magma(1) mode-ctracpkm-omac(2)

}

¶

¶

id-gostr3412-2015-kuznyechik-ctracpkm OBJECT IDENTIFIER ::=

{

    iso(1) member-body(2) ru(643) rosstandart(7)

    tc26(1) algorithms(1) cipher(5)

    gostr3412-2015-kuznyechik(2) mode-ctracpkm(1)

}

¶

¶

id-gostr3412-2015-kuznyechik-ctracpkm-omac OBJECT IDENTIFIER ::=

{

    iso(1) member-body(2) ru(643) rosstandart(7)

    tc26(1) algorithms(1) cipher(5)

    gostr3412-2015-kuznyechik(2) mode-ctracpkm-omac(2)

}

¶

¶



The parameters field in an AlgorithmIdentifier SHALL have type

Gost3412-15-Encryption-Parameters:

The field of type Gost3412-15-Encryption-Parameters have the

following meanings:

- ukm MUST be present and MUST contain n octets. Its value

depends on the selected encryption algorithm:

GOST R 34.12-2015 "Kuznyechik" n = 16 (see [RFC7801])

GOST R 34.12-2015 "Magma" n = 12 (see [RFC8891])

A.4. PBMAC1

The object identifier id-PBMAC1 identifies the PBMAC1 message

authentication scheme:

The parameters field associated with this OID in an

AlgorithmIdentifier SHALL have type PBMAC1-params:

The fields of type PBMAC1-params have the following meanings:

- keyDerivationFunc is identifier and parameters of key

derivation function in accordance with Appendix A.1

- messageAuthScheme is identifier and parameters of

HMAC_GOSTR3411 algorithm.

Appendix B. PBKDF2 HMAC_GOSTR3411 Test Vectors

These test vectors are formed by analogy with test vectors from 

[RFC6070]. The input strings below are encoded using ASCII. The

sequence "\0" (without quotation marks) means a literal ASCII NULL

value (1 octet). "DK" refers to the Derived Key.

¶

Gost3412-15-Encryption-Parameters ::= SEQUENCE

{

    ukm OCTET STRING

}

¶

¶

¶

¶

¶

¶

id-PBMAC1 OBJECT IDENTIFIER ::= { pkcs-5 14 }¶

¶

PBMAC1-params ::=  SEQUENCE

{

    keyDerivationFunc AlgorithmIdentifier { { PBMAC1-KDFs } },

    messageAuthScheme AlgorithmIdentifier { { PBMAC1-MACs } }

}

¶

¶

¶

¶

¶



Input:

    P = "password" (8 octets)

    S = "salt" (4 octets)

    c = 1

    dkLen = 64

Output:

    DK = 64 77 0a f7 f7 48 c3 b1 c9 ac 83 1d bc fd 85 c2

         61 11 b3 0a 8a 65 7d dc 30 56 b8 0c a7 3e 04 0d

         28 54 fd 36 81 1f 6d 82 5c c4 ab 66 ec 0a 68 a4

         90 a9 e5 cf 51 56 b3 a2 b7 ee cd db f9 a1 6b 47

Input:

    P = "password" (8 octets)

    S = "salt" (4 octets)

    c = 2

    dkLen = 64

Output:

    DK = 5a 58 5b af df bb 6e 88 30 d6 d6 8a a3 b4 3a c0

         0d 2e 4a eb ce 01 c9 b3 1c 2c ae d5 6f 02 36 d4

         d3 4b 2b 8f bd 2c 4e 89 d5 4d 46 f5 0e 47 d4 5b

         ba c3 01 57 17 43 11 9e 8d 3c 42 ba 66 d3 48 de

Input:

    P = "password" (8 octets)

    S = "salt" (4 octets)

    c = 4096

    dkLen = 64

Output:

    DK = e5 2d eb 9a 2d 2a af f4 e2 ac 9d 47 a4 1f 34 c2

         03 76 59 1c 67 80 7f 04 77 e3 25 49 dc 34 1b c7

         86 7c 09 84 1b 6d 58 e2 9d 03 47 c9 96 30 1d 55

         df 0d 34 e4 7c f6 8f 4e 3c 2c da f1 d9 ab 86 c3

Input:

    P = "password" (8 octets)

    S = "salt" (4 octets)

    c = 16777216

    dkLen = 64

Output:

    DK = 49 e4 84 3b ba 76 e3 00 af e2 4c 4d 23 dc 73 92

         de f1 2f 2c 0e 24 41 72 36 7c d7 0a 89 82 ac 36

         1a db 60 1c 7e 2a 31 4e 8c b7 b1 e9 df 84 0e 36

         ab 56 15 be 5d 74 2b 6c f2 03 fb 55 fd c4 80 71

Input:

    P = "passwordPASSWORDpassword" (24 octets)



    S = "saltSALTsaltSALTsaltSALTsaltSALTsalt" (36 octets)

    c = 4096

    dkLen = 100

Output:

    DK = b2 d8 f1 24 5f c4 d2 92 74 80 20 57 e4 b5 4e 0a

         07 53 aa 22 fc 53 76 0b 30 1c f0 08 67 9e 58 fe

         4b ee 9a dd ca e9 9b a2 b0 b2 0f 43 1a 9c 5e 50

         f3 95 c8 93 87 d0 94 5a ed ec a6 eb 40 15 df c2

         bd 24 21 ee 9b b7 11 83 ba 88 2c ee bf ef 25 9f

         33 f9 e2 7d c6 17 8c b8 9d c3 74 28 cf 9c c5 2a

         2b aa 2d 3a

Input:

    P = "pass\0word" (9 octets)

    S = "sa\0lt" (5 octets)

    c = 4096

    dkLen = 64

Output:

    DK = 50 df 06 28 85 b6 98 01 a3 c1 02 48 eb 0a 27 ab

         6e 52 2f fe b2 0c 99 1c 66 0f 00 14 75 d7 3a 4e

         16 7f 78 2c 18 e9 7e 92 97 6d 9c 1d 97 08 31 ea

         78 cc b8 79 f6 70 68 cd ac 19 10 74 08 44 e8 30

¶
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