
Workgroup: HTTP

Internet-Draft:

draft-polli-ratelimit-headers-03

Published: 26 May 2020

Intended Status: Standards Track

Expires: 27 November 2020

Authors: R. Polli

Team Digitale, Italian Government

A. Martinez

Red Hat

RateLimit Header Fields for HTTP

Abstract

This document defines the RateLimit-Limit, RateLimit-Remaining,

RateLimit-Reset header fields for HTTP, thus allowing servers to

publish current request quotas and clients to shape their request

policy and avoid being throttled out.

Note to Readers

RFC EDITOR: please remove this section before publication

Discussion of this draft takes place on the HTTP working group

mailing list (ietf-http-wg@w3.org), which is archived at https://

lists.w3.org/Archives/Public/ietf-http-wg/.

The source code and issues list for this draft can be found at

https://github.com/ioggstream/draft-polli-ratelimit-headers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 November 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://lists.w3.org/Archives/Public/ietf-http-wg/
https://lists.w3.org/Archives/Public/ietf-http-wg/
https://github.com/ioggstream/draft-polli-ratelimit-headers
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Rate-limiting and quotas

1.2. Current landscape of rate-limiting headers

1.2.1. Interoperability issues

1.3. This proposal

1.4. Goals

1.5. Notational Conventions

2. Expressing rate-limit policies

2.1. Time window

2.2. Request quota

2.3. Quota policy

3. Header Specifications

3.1. RateLimit-Limit

3.2. RateLimit-Remaining

3.3. RateLimit-Reset

4. Providing RateLimit headers

5. Receiving RateLimit headers

6. Examples

6.1. Unparameterized responses

6.1.1. Throttling informations in responses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

6.1.2. Use in conjunction with custom headers

6.1.3. Use for limiting concurrency

6.1.4. Use in throttled responses

6.2. Parameterized responses

6.2.1. Throttling window specified via parameter

6.2.2. Dynamic limits with parameterized windows

6.2.3. Dynamic limits for pushing back and slowing down

6.3. Dynamic limits for pushing back with Retry-After and slow

down

6.3.1. Missing Remaining informations

6.3.2. Use with multiple windows

7. Security Considerations

7.1. Throttling does not prevent clients from issuing requests

7.2. Information disclosure

7.3. Remaining quota-units are not granted requests

7.4. Reliability of RateLimit-Reset

7.5. Resource exhaustion

7.6. Denial of Service

8. IANA Considerations

8.1. RateLimit-Limit Header Field Registration

8.2. RateLimit-Remaining Header Field Registration

8.3. RateLimit-Reset Header Field Registration

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Change Log

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix B. Acknowledgements

Appendix C. RateLimit headers currently used on the web

Appendix D. FAQ

Authors' Addresses

1. Introduction

The widespreading of HTTP as a distributed computation protocol

requires an explicit way of communicating service status and usage

quotas.

This was partially addressed with the Retry-After header field

defined in [RFC7231] to be returned in 429 Too Many Requests or 503

Service Unavailable responses.

Still, there is not a standard way to communicate service quotas so

that the client can throttle its requests and prevent 4xx or 5xx

responses.

1.1. Rate-limiting and quotas

Servers use quota mechanisms to avoid systems overload, to ensure an

equitable distribution of computational resources or to enforce

other policies - eg. monetization.

A basic quota mechanism limits the number of acceptable requests in

a given time window, eg. 10 requests per second.

When quota is exceeded, servers usually do not serve the request

replying instead with a 4xx HTTP status code (eg. 429 or 403) or

adopt more aggressive policies like dropping connections.

Quotas may be enforced on different basis (eg. per user, per IP, per

geographic area, ..) and at different levels. For example, an user

may be allowed to issue:

10 requests per second;

limited to 60 request per minute;

limited to 1000 request per hour.

Moreover system metrics, statistics and heuristics can be used to

implement more complex policies, where the number of acceptable

request and the time window are computed dynamically.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

1.2. Current landscape of rate-limiting headers

To help clients throttling their requests, servers may expose the

counters used to evaluate quota policies via HTTP header fields.

Those response headers may be added by HTTP intermediaries such as

API gateways and reverse proxies.

On the web we can find many different rate-limit headers, usually

containing the number of allowed requests in a given time window,

and when the window is reset.

The common choice is to return three headers containing:

the maximum number of allowed requests in the time window;

the number of remaining requests in the current window;

the time remaining in the current window expressed in seconds or

as a timestamp;

1.2.1. Interoperability issues

A major interoperability issue in throttling is the lack of standard

headers, because:

each implementation associates different semantics to the same

header field names;

header field names proliferates.

Client applications interfacing with different servers may thus need

to process different headers, or the very same application interface

that sits behind different reverse proxies may reply with different

throttling headers.

1.3. This proposal

This proposal defines syntax and semantics for the following header

fields:

RateLimit-Limit: containing the requests quota in the time

window;

RateLimit-Remaining: containing the remaining requests quota in

the current window;

RateLimit-Reset: containing the time remaining in the current

window, specified in seconds.

¶

¶

¶

¶

* ¶

* ¶

*

¶

¶

*

¶

* ¶

¶

¶

*

¶

*

¶

*

¶

Authorization:

Throttling scope:

Response status code:

Throttling policy:

Service Level Agreement:

The behavior of RateLimit-Reset is compatible with the delta-seconds

notation of Retry-After.

The header fields definition allows to describe complex policies,

including the ones using multiple and variable time windows and

dynamic quotas, or implementing concurrency limits.

1.4. Goals

The goals of this proposal are:

Standardizing the names and semantic of rate-limit headers;

Improve resiliency of HTTP infrastructures simplifying the

enforcement and the adoption of rate-limit headers;

Simplify API documentation avoiding expliciting rate-limit

header fields semantic in documentation.

The goals do not include:

The rate-limit headers described here are not meant

to support authorization or other kinds of access controls.

This specification does not cover the throttling

scope, that may be the given resource-target, its parent path or

the whole Origin [RFC6454] section 7.

The rate-limit headers may be returned in

both Successful and non Successful responses. This specification

does not cover whether non Successful responses count on quota

usage.

This specification does not mandate a specific

throttling policy. The values published in the headers, including

the window size, can be statically or dynamically evaluated.

Conveyed quota hints do not imply any

service guarantee. Server is free to throttle respectful clients

under certain circumstances.

1.5. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 ([RFC2119] and [RFC8174]) when, and only when, they appear in

all capitals, as shown here.

¶

¶

¶

1. ¶

2.

¶

3.

¶

¶

¶

¶

¶

¶

¶

¶

This document uses the Augmented BNF defined in [RFC5234] and

updated by [RFC7405] along with the "#rule" extension defined in

Section 7 of [RFC7230].

The term Origin is to be interpreted as described in [RFC6454]

section 7.

The "delta-seconds" rule is defined in [RFC7234] section 1.2.1.

2. Expressing rate-limit policies

2.1. Time window

Rate limit policies limit the number of acceptable requests in a

given time window.

A time window is expressed in seconds, using the following syntax:

Subsecond precision is not supported.

2.2. Request quota

The request-quota is a value associated to the maximum number of

requests that the server is willing to accept from one or more

clients on a given basis (originating IP, authenticated user,

geographical, ..) during a time-window as defined in Section 2.1.

The request-quota is expressed in quota-units and has the following

syntax:

The request-quota SHOULD match the maximum number of acceptable

requests.

The request-quota MAY differ from the total number of acceptable

requests when weight mechanisms, bursts, or other server policies

are implemented.

If the request-quota does not match the maximum number of acceptable

requests the relation with that SHOULD be communicated out-of-band.

Example: A server could

count once requests like /books/{id}

count twice search requests like /books?author=Camilleri

¶

¶

¶

¶

¶

time-window = delta-seconds¶

¶

¶

¶

 request-quota = quota-units

 quota-units = 1*DIGIT

¶

¶

¶

¶

¶

* ¶

* ¶

so that we have the following counters

2.3. Quota policy

This specification allows describing a quota policy with the

following syntax:

quota-policy parameters like w and quota-comment tokens MUST NOT

occur multiple times within the same quota-policy.

An example policy of 100 quota-units per minute.

Two examples of providing further details via custom parameters in

quota-comments.

3. Header Specifications

The following RateLimit response header fields are defined

3.1. RateLimit-Limit

The RateLimit-Limit response header field indicates the request-

quota associated to the client in the current time-window.

If the client exceeds that limit, it MAY not be served.

The header value is

The expiring-limit value MUST be set to the request-quota that is

closer to reach its limit.

The quota-policy is defined in Section 2.3, and its values are

informative.

¶

GET /books/123 ; request-quota=4, remaining: 3, status=200

GET /books?author=Camilleri ; request-quota=4, remaining: 1, status=200

GET /books?author=Eco ; request-quota=4, remaining: 0, status=429

¶

¶

 quota-policy = request-quota; "w" "=" time-window

 *(OWS ";" OWS quota-comment)

 quota-comment = token "=" (token / quoted-string)

¶

¶

¶

 100;w=60¶

¶

 100;w=60;comment="fixed window"

 12;w=1;burst=1000;policy="leaky bucket"

¶

¶

¶

¶

¶

 RateLimit-Limit = expiring-limit [, 1#quota-policy]

 expiring-limit = request-quota

¶

¶

¶

A time-window associated to expiring-limit can be communicated via

an optional quota-policy value, like shown in the following example

If the expiring-limit is not associated to a time-window, the time-

window MUST either be:

inferred by the value of RateLimit-Reset at the moment of the

reset, or

communicated out-of-band (eg. in the documentation).

Policies using multiple quota limits MAY be returned using multiple

quota-policy items, like shown in the following two examples:

This header MUST NOT occur multiple times.

3.2. RateLimit-Remaining

The RateLimit-Remaining response header field indicates the

remaining quota-units defined in Section 2.2 associated to the

client.

The header value is

This header MUST NOT occur multiple times.

Clients MUST NOT assume that a positive RateLimit-Remaining value is

a guarantee of being served.

A low RateLimit-Remaining value is like a yellow traffic-light: the

red light may arrive suddenly.

One example of RateLimit-Remaining use is below.

3.3. RateLimit-Reset

The RateLimit-Reset response header field indicates either

the number of seconds until the quota resets.

 RateLimit-Limit: 100¶

¶

 RateLimit-Limit: 100, 100;w=10¶

¶

*

¶

* ¶

¶

 RateLimit-Limit: 10, 10;w=1, 50;w=60, 1000;w=3600, 5000;w=86400

 RateLimit-Limit: 10, 10;w=1;burst=1000, 1000;w=3600

¶

¶

¶

¶

 RateLimit-Remaining = quota-units¶

¶

¶

¶

¶

 RateLimit-Remaining: 50¶

¶

* ¶

The header value is

The delta-seconds format is used because:

it does not rely on clock synchronization and is resilient to

clock adjustment and clock skew between client and server (see

[RFC7231] Section 4.1.1.1);

it mitigates the risk related to thundering herd when too many

clients are serviced with the same timestamp.

This header MUST NOT occur multiple times.

An example of RateLimit-Reset use is below.

The client MUST NOT assume that all its request-quota will be

restored after the moment referenced by RateLimit-Reset. The server

MAY arbitrarily alter the RateLimit-Reset value between subsequent

requests eg. in case of resource saturation or to implement sliding

window policies.

4. Providing RateLimit headers

A server MAY use one or more RateLimit response header fields

defined in this document to communicate its quota policies.

The returned values refers to the metrics used to evaluate if the

current request respects the quota policy and MAY not apply to

subsequent requests.

Example: a successful response with the following header fields

does not guarantee that the next request will be successful. Server

metrics may be subject to other conditions like the one shown in the

example from Section 2.2.

A server MAY return RateLimit response header fields independently

of the response status code. This includes throttled responses.

If a response contains both the Retry-After and the RateLimit-Reset

header fields, the value of RateLimit-Reset SHOULD reference the

same point in time as Retry-After.

¶

 RateLimit-Reset = delta-seconds¶

¶

*

¶

*

¶

¶

¶

 RateLimit-Reset: 50¶

¶

¶

¶

¶

 RateLimit-Limit: 10

 RateLimit-Remaining: 1

 RateLimit-Reset: 7

¶

¶

¶

¶

When using a policy involving more than one time-window, the server

MUST reply with the RateLimit headers related to the window with the

lower RateLimit-Remaining values.

Under certain conditions, a server MAY artificially lower RateLimit

field values between subsequent requests, eg. to respond to Denial

of Service attacks or in case of resource saturation.

5. Receiving RateLimit headers

A client MUST process the received RateLimit headers.

A client MUST validate the values received in the RateLimit headers

before using them and check if there are significant discrepancies

with the expected ones. This includes a RateLimit-Reset moment too

far in the future or a request-quota too high.

Malformed RateLimit headers MAY be ignored.

A client SHOULD NOT exceed the quota-units expressed in RateLimit-

Remaining before the time-window expressed in RateLimit-Reset.

A client MAY still probe the server if the RateLimit-Reset is

considered too high.

The value of RateLimit-Reset is generated at response time: a client

aware of a significant network latency MAY behave accordingly and

use other informations (eg. the Date response header, or otherwise

gathered metrics) to better estimate the RateLimit-Reset moment

intended by the server.

The quota-policy values and comments provided in RateLimit-Limit are

informative and MAY be ignored.

If a response contains both the RateLimit-Reset and Retry-After

header fields, the Retry-After header field MUST take precedence and

the RateLimit-Reset header field MAY be ignored.

6. Examples

6.1. Unparameterized responses

6.1.1. Throttling informations in responses

The client exhausted its request-quota for the next 50 seconds. The

time-window is communicated out-of-band or inferred by the header

values.

Request:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Response:

6.1.2. Use in conjunction with custom headers

The server uses two custom headers, namely acme-RateLimit-DayLimit

and acme-RateLimit-HourLimit to expose the following policy:

5000 daily quota-units;

1000 hourly quota-units.

The client consumed 4900 quota-units in the first 14 hours.

Despite the next hourly limit of 1000 quota-units, the closest limit

to reach is the daily one.

The server then exposes the RateLimit-* headers to inform the client

that:

it has only 100 quota-units left;

the window will reset in 10 hours.

Request:

Response:

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

Ratelimit-Remaining: 0

Ratelimit-Reset: 50

{"hello": "world"}

¶

¶

* ¶

* ¶

¶

¶

¶

* ¶

* ¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

acme-RateLimit-DayLimit: 5000

acme-RateLimit-HourLimit: 1000

RateLimit-Limit: 5000

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

¶

6.1.3. Use for limiting concurrency

Throttling headers may be used to limit concurrency, advertising

limits that are lower than the usual ones in case of saturation,

thus increasing availability.

The server adopted a basic policy of 100 quota-units per minute, and

in case of resource exhaustion adapts the returned values reducing

both RateLimit-Limit and RateLimit-Remaining.

After 2 seconds the client consumed 40 quota-units

Request:

Response:

At the subsequent request - due to resource exhaustion - the server

advertises only RateLimit-Remaining: 20.

Request:

Response:

6.1.4. Use in throttled responses

A client exhausted its quota and the server throttles the request

sending the Retry-After response header field.

¶

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 60

RateLimit-Reset: 58

{"elapsed": 2, "issued": 40}

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100

RateLimit-Remaining: 20

RateLimit-Reset: 56

{"elapsed": 4, "issued": 41}

¶

¶

In this example, the values of Retry-After and RateLimit-Reset

reference the same moment, but this is not a requirement.

The 429 Too Many Requests HTTP status code is just used as an

example.

Request:

Response:

6.2. Parameterized responses

6.2.1. Throttling window specified via parameter

The client has 99 quota-units left for the next 50 seconds. The

time-window is communicated by the w parameter, so we know the

throughput is 100 quota-units per minute.

Request:

Response:

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Date: Mon, 05 Aug 2019 09:27:00 GMT

Retry-After: Mon, 05 Aug 2019 09:27:05 GMT

RateLimit-Reset: 5

RateLimit-Limit: 100

Ratelimit-Remaining: 0

{

"title": "Too Many Requests",

"status": 429,

"detail": "You have exceeded your quota"

}

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 100, 100;w=60

Ratelimit-Remaining: 99

Ratelimit-Reset: 50

{"hello": "world"}

¶

6.2.2. Dynamic limits with parameterized windows

The policy conveyed by RateLimit-Limit states that the server

accepts 100 quota-units per minute.

To avoid resource exhaustion, the server artificially lowers the

actual limits returned in the throttling headers.

The RateLimit-Remaining then advertises only 9 quota-units for the

next 50 seconds to slow down the client.

Note that the server could have lowered even the other values in

RateLimit-Limit: this specification does not mandate any relation

between the field values contained in subsequent responses.

Request:

Response:

6.2.3. Dynamic limits for pushing back and slowing down

Continuing the previous example, let's say the client waits 10

seconds and performs a new request which, due to resource

exhaustion, the server rejects and pushes back, advertising

RateLimit-Remaining: 0 for the next 20 seconds.

The server advertises a smaller window with a lower limit to slow

down the client for the rest of its original window after the 20

seconds elapse.

Request:

Response:

¶

¶

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10, 100;w=60

Ratelimit-Remaining: 9

Ratelimit-Reset: 50

{

 "status": 200,

 "detail": "Just slow down without waiting."

}

¶

¶

¶

¶

GET /items/123¶

¶

6.3. Dynamic limits for pushing back with Retry-After and slow down

Alternatively, given the same context where the previous example

starts, we can convey the same information to the client via the

Retry-After header, with the advantage that the server can now

specify the policy's nominal limit and window that will apply after

the reset, ie. assuming the resource exhaustion is likely to be gone

by then, so the advertised policy does not need to be adjusted, yet

we managed to stop requests for a while and slow down the rest of

the current window.

Request:

Response:

Note that in this last response the client is expected to honor the

Retry-After header and perform no requests for the specified amount

of time, whereas the previous example would not force the client to

stop requests before the reset time is elapsed, as it would still be

free to query again the server even if it is likely to have the

request rejected.

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

RateLimit-Limit: 0, 15;w=20

Ratelimit-Remaining: 0

Ratelimit-Reset: 20

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

Retry-After: 20

RateLimit-Limit: 15, 100;w=60

Ratelimit-Remaining: 15

Ratelimit-Reset: 40

{

 "status": 429,

 "detail": "Wait 20 seconds, then slow down!"

}

¶

¶

6.3.1. Missing Remaining informations

The server does not expose RateLimit-Remaining values, but resets

the limit counter every second.

It communicates to the client the limit of 10 quota-units per second

always returning the couple RateLimit-Limit and RateLimit-Reset.

Request:

Response:

Request:

Response:

6.3.2. Use with multiple windows

This is a standardized way of describing the policy detailed in

Section 6.1.2:

5000 daily quota-units;

1000 hourly quota-units.

The client consumed 4900 quota-units in the first 14 hours.

Despite the next hourly limit of 1000 quota-units, the closest limit

to reach is the daily one.

¶

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"first": "request"}

¶

¶

GET /items/123¶

¶

HTTP/1.1 200 Ok

Content-Type: application/json

RateLimit-Limit: 10

Ratelimit-Reset: 1

{"second": "request"}

¶

¶

* ¶

* ¶

¶

¶

The server then exposes the RateLimit headers to inform the client

that:

it has only 100 quota-units left;

the window will reset in 10 hours;

the expiring-limit is 5000.

Request:

Response:

7. Security Considerations

7.1. Throttling does not prevent clients from issuing requests

This specification does not prevent clients to make over-quota

requests.

Servers should always implement mechanisms to prevent resource

exhaustion.

7.2. Information disclosure

Servers should not disclose operational capacity informations that

can be used to saturate its resources.

While this specification does not mandate whether non 2xx responses

consume quota, if 401 and 403 responses count on quota a malicious

client could probe the endpoint to get traffic informations of

another user.

7.3. Remaining quota-units are not granted requests

RateLimit-* headers convey hints from the server to the clients in

order to avoid being throttled out.

¶

* ¶

* ¶

* ¶

¶

GET /items/123¶

¶

HTTP/1.1 200 OK

Content-Type: application/json

RateLimit-Limit: 5000, 1000;w=3600, 5000;w=86400

RateLimit-Remaining: 100

RateLimit-Reset: 36000

{"hello": "world"}

¶

¶

¶

¶

¶

¶

Clients MUST NOT consider the quota-units returned in RateLimit-

Remaining as a service level agreement.

In case of resource saturation, the server MAY artificially lower

the returned values or not serve the request anyway.

7.4. Reliability of RateLimit-Reset

Consider that request-quota may not be restored after the moment

referenced by RateLimit-Reset, and the RateLimit-Reset value should

not be considered fixed nor constant.

Subsequent requests may return an higher RateLimit-Reset value to

limit concurrency or implement dynamic or adaptive throttling

policies.

7.5. Resource exhaustion

When returning RateLimit-Reset you must be aware that many throttled

clients may come back at the very moment specified.

This is true for Retry-After too.

For example, if the quota resets every day at 18:00:00 and your

server returns the RateLimit-Reset accordingly

there's a high probability that all clients will show up at

18:00:00.

This could be mitigated adding some jitter to the field-value.

7.6. Denial of Service

RateLimit header fields may assume unexpected values by chance or

purpose. For example, an excessively high RateLimit-Remaining value

may be:

used by a malicious intermediary to trigger a Denial of Service

attack or consume client resources boosting its requests;

passed by a misconfigured server;

or an high RateLimit-Reset value could inhibit clients to contact

the server.

Clients MUST validate the received values to mitigate those risks.

¶

¶

¶

¶

¶

¶

¶

 Date: Tue, 15 Nov 1994 08:00:00 GMT

 RateLimit-Reset: 36000

¶

¶

¶

¶

*

¶

* ¶

¶

¶

8. IANA Considerations

8.1. RateLimit-Limit Header Field Registration

This section registers the RateLimit-Limit header field in the

"Permanent Message Header Field Names" registry ([RFC3864]).

Header field name: RateLimit-Limit

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 3.1 of this document

8.2. RateLimit-Remaining Header Field Registration

This section registers the RateLimit-Remaining header field in the

"Permanent Message Header Field Names" registry ([RFC3864]).

Header field name: RateLimit-Remaining

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 3.2 of this document

8.3. RateLimit-Reset Header Field Registration

This section registers the RateLimit-Reset header field in the

"Permanent Message Header Field Names" registry ([RFC3864]).

Header field name: RateLimit-Reset

Applicable protocol: http

Status: standard

Author/Change controller: IETF

Specification document(s): Section 3.3 of this document

9. References

9.1. Normative References

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3864]

[RFC5234]

[RFC6454]

[RFC7230]

[RFC7231]

[RFC7234]

[RFC7405]

[RFC8174]

[UNIX]

[RFC3339]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Klyne, G., Nottingham, M., and J. Mogul, "Registration

Procedures for Message Header Fields", BCP 90, RFC 3864,

DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Message Syntax and

Routing", RFC 7230, DOI 10.17487/RFC7230, June 2014,

<https://www.rfc-editor.org/info/rfc7230>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/info/rfc7234>.

Kyzivat, P., "Case-Sensitive String Support in ABNF", RFC

7405, DOI 10.17487/RFC7405, December 2014, <https://

www.rfc-editor.org/info/rfc7405>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

The Open Group, ., "The Single UNIX Specification,

Version 2 - 6 Vol Set for UNIX 98", February 1997.

9.2. Informative References

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc7230
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc7405
https://www.rfc-editor.org/info/rfc8174

[RFC6585]

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Nottingham, M. and R. Fielding, "Additional HTTP Status

Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,

<https://www.rfc-editor.org/info/rfc6585>.

Appendix A. Change Log

RFC EDITOR PLEASE DELETE THIS SECTION.

Appendix B. Acknowledgements

Thanks to Willi Schoenborn, Alejandro Martinez Ruiz, Alessandro

Ranellucci, Amos Jeffries, Martin Thomson, Erik Wilde and Mark

Nottingham for being the initial contributors of these

specifications. Kudos to the first community implementors: Aapo

Talvensaari, Nathan Friedly and Sanyam Dogra.

Appendix C. RateLimit headers currently used on the web

RFC EDITOR PLEASE DELETE THIS SECTION.

Commonly used header field names are:

X-RateLimit-Limit, X-RateLimit-Remaining, X-RateLimit-Reset;

X-Rate-Limit-Limit, X-Rate-Limit-Remaining, X-Rate-Limit-Reset.

There are variants too, where the window is specified in the header

field name, eg:

x-ratelimit-limit-minute, x-ratelimit-limit-hour, x-ratelimit-

limit-day

x-ratelimit-remaining-minute, x-ratelimit-remaining-hour, x-

ratelimit-remaining-day

Here are some interoperability issues:

X-RateLimit-Remaining references different values, depending on

the implementation:

seconds remaining to the window expiration

milliseconds remaining to the window expiration

seconds since UTC, in UNIX Timestamp

¶

¶

¶

¶

* ¶

* ¶

¶

*

¶

*

¶

¶

*

¶

- ¶

- ¶

- ¶

https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc6585

a datetime, either IMF-fixdate [RFC7231] or [RFC3339]

different headers, with the same semantic, are used by different

implementers:

X-RateLimit-Limit and X-Rate-Limit-Limit

X-RateLimit-Remaining and X-Rate-Limit-Remaining

X-RateLimit-Reset and X-Rate-Limit-Reset

The semantic of RateLimit-Remaining depends on the windowing

algorithm. A sliding window policy for example may result in having

a ratelimit-remaining value related to the ratio between the current

and the maximum throughput. Eg.

If this is the case, the optimal solution is to achieve

At this point you should stop increasing your request rate.

Appendix D. FAQ

Why defining standard headers for throttling?

To simplify enforcement of throttling policies.

Can I use RateLimit-* in throttled responses (eg with status

code 429)?

Yes, you can.

Are those specs tied to RFC 6585?

No. [RFC6585] defines the 429 status code and we use it just as

an example of a throttled request, that could instead use even

403 or whatever status code.

Why don't pass the trottling scope as a parameter?

I'm open to suggestions. File an issue if you think it's worth

;).

- ¶

*

¶

- ¶

- ¶

- ¶

¶

RateLimit-Limit: 12, 12;w=1

RateLimit-Remaining: 6 ; using 50% of throughput, that is 6 units/s

RateLimit-Reset: 1

¶

¶

RateLimit-Limit: 12, 12;w=1

RateLimit-Remaining: 1 ; using 100% of throughput, that is 12 units/s

RateLimit-Reset: 1

¶

¶

1. ¶

¶

2.

¶

¶

3. ¶

¶

4. ¶

¶

Why using delta-seconds instead of a UNIX Timestamp? Why not

using subsecond precision?

Using delta-seconds aligns with Retry-After, which is returned

in similar contexts, eg on 429 responses.

delta-seconds as defined in [RFC7234] section 1.2.1 clarifies

some parsing rules too.

Timestamps require a clock synchronization protocol (see

[RFC7231] section 4.1.1.1). This may be problematic (eg. clock

adjustment, clock skew, failure of hardcoded clock

synchronization servers, IoT devices, ..). Moreover timestamps

may not be monotonically increasing due to clock adjustment.

See Another NTP client failure story

We did not use subsecond precision because:

that is more subject to system clock correction like the one

implemented via the adjtimex() Linux system call;

response-time latency may not make it worth. A brief

discussion on the subject is on the httpwg ml

almost all rate-limit headers implementations do not use it.

Why not support multiple quota remaining?

While this might be of some value, my experience suggests that

overly-complex quota implementations results in lower

effectiveness of this policy. This spec allows the client to

easily focusing on RateLimit-Remaining and RateLimit-Reset.

Shouldn't I limit concurrency instead of request rate?

You can do both. The goal of this spec is to provide guidance

for clients in shaping their requests without being throttled

out.

Limiting concurrency results in unserviced client requests,

which is something we want to avoid.

A standard way to limit concurrency is to return 503 + Retry-

After in case of resource saturation (eg. thrashing, connection

queues too long, Service Level Objectives not meet, ..).

Availability can be improved by dynamically lowering the values

returned by the RateLimit-* headers to slow down clients, and

Retry-After can be used to push them back.

5.

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

6. ¶

¶

7. ¶

¶

¶

¶

¶

https://community.ntppool.org/t/another-ntp-client-failure-story/1014/
https://lists.w3.org/Archives/Public/ietf-http-wg/2019JulSep/0202.html

Saturation conditions can be either dynamic or static: all this

is out of the scope for the current document.

Do a positive value of RateLimit-Remaining imply any service

guarantee for my future requests to be served?

No. The returned values were used to decide whether to serve or

not the current request and do not imply any guarantee that

future requests will be successful.

Instead they help to understand when future requests will

probably be throttled. A low value for RateLimit-Remaining

should be interpreted as a yellow traffic-light for either the

number of requests issued in the time-window or the request

throughput.

Is the quota-policy definition Section 2.3 too complex?

You can always return the simplest form of the 3 headers

The key runtime value is the first element of the list: expiring-

limit, the others quota-policy are informative. So for the following

header:

the key value is the one referencing the lowest limit: 100

Can we use shorter names? Why don't put everything in one

header?

The most common syntax we found on the web is X-RateLimit-* and when

starting this I-D we opted for it

The basic form of those headers is easily parseable, even by

implementors procesing responses using technologies like dynamic

interpreter with limited syntax.

Using a single header complicates parsing and takes a significantly

different approach from the existing ones: this can limit adoption.

Authors' Addresses

Roberto Polli

Team Digitale, Italian Government

¶

8.

¶

¶

¶

9. ¶

¶

RateLimit-Limit: 100

RateLimit-Remaining: 50

RateLimit-Reset: 60

¶

¶

RateLimit-Limit: 100, 100;w=60;burst=1000;comment="sliding window", 5000;w=3600;burst=0;comment="fixed window"¶

¶

1.

¶

¶

¶

¶

https://github.com/ioggstream/draft-polli-ratelimit-headers/issues/34#issuecomment-519366481

Email: robipolli@gmail.com

Alejandro Martinez Ruiz

Red Hat

Email: amr@redhat.com

mailto:robipolli@gmail.com
mailto:amr@redhat.com

	RateLimit Header Fields for HTTP
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Rate-limiting and quotas
	1.2. Current landscape of rate-limiting headers
	1.2.1. Interoperability issues

	1.3. This proposal
	1.4. Goals
	1.5. Notational Conventions

	2. Expressing rate-limit policies
	2.1. Time window
	2.2. Request quota
	2.3. Quota policy

	3. Header Specifications
	3.1. RateLimit-Limit
	3.2. RateLimit-Remaining
	3.3. RateLimit-Reset

	4. Providing RateLimit headers
	5. Receiving RateLimit headers
	6. Examples
	6.1. Unparameterized responses
	6.1.1. Throttling informations in responses
	6.1.2. Use in conjunction with custom headers
	6.1.3. Use for limiting concurrency
	6.1.4. Use in throttled responses

	6.2. Parameterized responses
	6.2.1. Throttling window specified via parameter
	6.2.2. Dynamic limits with parameterized windows
	6.2.3. Dynamic limits for pushing back and slowing down

	6.3. Dynamic limits for pushing back with Retry-After and slow down
	6.3.1. Missing Remaining informations
	6.3.2. Use with multiple windows

	7. Security Considerations
	7.1. Throttling does not prevent clients from issuing requests
	7.2. Information disclosure
	7.3. Remaining quota-units are not granted requests
	7.4. Reliability of RateLimit-Reset
	7.5. Resource exhaustion
	7.6. Denial of Service

	8. IANA Considerations
	8.1. RateLimit-Limit Header Field Registration
	8.2. RateLimit-Remaining Header Field Registration
	8.3. RateLimit-Reset Header Field Registration

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Change Log
	Appendix B. Acknowledgements
	Appendix C. RateLimit headers currently used on the web
	Appendix D. FAQ
	Authors' Addresses

