
Internet Engineering Task Force J. Pouwelse, Ed.
Internet-Draft Delft University of Technology
Intended status: Informational June 5, 2018
Expires: December 7, 2018

Trustchain protocol
draft-pouwelse-trustchain-01

Abstract

 Trustchain is a protocol for a networked datastructure, designed to
 act as a trust ledger. This protocol acts as a decentralized
 alternative to platforms like eBay, Airbnb, and Uber. It is
 specifically designed to record transactions among strangers without
 central control, support high transaction volumes, be application
 neutral, and avoid vendor lock-in. The protocol defines recording
 transactions in an ordered list using an append-only datastructure, a
 new communication overlay, and a horizontally scalable consensus
 protocol based on checkpoint consensus, called CHECO. Trustchain has
 resistance to traditional blockchain attacks, such as the 51 percent
 majority attack. This is achieved by using a graph-based append-only
 datastructure combined with a personal blockchain for each
 participant with their own genesis block.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 7, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Pouwelse Expires December 7, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Trustchain protocol June 2018

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Purpose . 4
1.2. Requirements Language 4
1.3. Terminology . 4

2. Trustchain Stack: Engineering trust 5
3. Trustchain Fabric: internal data structure 7
3.1. Architecture . 7
3.2. TxBlock specification 9
3.3. Asynchronicity . 10
3.4. CHECO: Consensus protocol and block format 11

4. IPv8: Overlay for identity, discovery and trust 11
4.1. Identity establishment and discovery 12
4.2. Attestations and trust 12
4.3. Peer-to-peer cryptographically signed messaging 25
4.4. NAT traversal . 25

5. Attack resistances . 26
5.1. Sybil attacks . 26
5.2. Double spending attack 26
5.3. Replay attack . 27
5.4. Whitewashing attack 27
5.5. Spam attack . 27
5.6. DDoS . 28

6. Acknowledgements . 28
7. IANA Considerations . 28
8. Security Considerations 28
9. References . 29

 Author's Address . 31

1. Introduction

 For the past 10 years various distributed ledgers have been deployed
 and used. This protocol aims to establish some form of trust using
 software.

 Creating trust between strangers is at the core of numerous
 successful Internet companies. Starting 22 years ago, Craigslist

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Pouwelse Expires December 7, 2018 [Page 2]

Internet-Draft Trustchain protocol June 2018

 offered an unmoderated mailing list of advertisements and gossip on
 which buyer and seller could be trusted. eBay formalised this in
 1997 and introduced a star-based rating system that enables traders
 to build a trustworthy profile [resnick2002trust]. The e-commerce
 platform was launched at a time when people were still hesitant to
 use their credit card on a technology called The Internet. Nowadays,
 people let strangers sleep in their houses using Airbnb (since 2008).
 We trust Uber (since 2009) with our physical security and get into
 cars late at night with a driver that has not undergone a criminal
 background check or given a government license.

 The Trustchain protocol aims to create a generic approach and
 continues this evolution of building trust. Compared to successful
 central platforms, we propose a distributed open underlying
 infrastructure, based on blockchain inspired technology. Bitcoin
 created money without the need for banks [nakamoto2008bitcoin]. In
 the past, people were required to trust a central bank and a host of
 other intermediaries when making payments [kokkola2011payment]. The
 fundamental technology of Bitcoin, blockchain, radically reduced the
 need to trust financial middlemen. It bootstrapped an economy where
 no one can be stopped from spending their money. Despite widespread
 speculation and ecosystems being worth billions, blockchain in
 general suffers from scalability issues due to inefficient mechanisms
 for fraud prevention. Bitcoin is theoretically limited to seven
 transactions per second and Ethereum has a throughput of around 20
 transactions per second [vukolic2015quest]. Despite various
 scalability efforts like proof-of-stake and sharding, broader
 adoption of blockchain stays out. Mt. Gox was at one point the
 largest Bitcoin exchange worldwide. While a majority of Internet
 users trust the company behind popular platforms, the events
 involving Mt. Gox highlighted how digital trust can be established
 and compromised[mcmillan2014inside]. In 2014, hackers stole Bitcoin,
 worth around $460 million at that time. This event, together with
 major data breaches in 2017 at high-profile companies like Uber and
 Equifax, exposed the weakness of centralized architectures
 [apostle2017uber]. These events motivated this proposed protocol
 around decentralised infrastructures, not owned or operated by a
 single authority. The generic problem of building trust between
 strangers resides on the edge of technology, sociology and
 behavioural science [yan2008trust]. The question whether someone can
 be trusted, depends on properties like personality, level of
 authority, culture and past behaviour. In this protocol, we address
 the trust problem from a technological perspective, using tamper-
 proof interactions on a scalable blockchain. This structure is built
 to help ease the detection of fraudulent behaviour and
 misrepresentation. Trust calculations are out of scope of this work,
 we provide the enabling mechanisms.

Pouwelse Expires December 7, 2018 [Page 3]

Internet-Draft Trustchain protocol June 2018

1.1. Purpose

 This draft describes the Trustchain architecture, protocols and the
 used technologies, designed to model application neutral trust
 between interacting parties. Trustchain relies on a new
 communication layer on top of existing communication networks, which
 is designed with carrier-grade NAT infrastructure in mind, as well as
 the network protocol based on the CrawlRequest and TxBlock message
 types. A consensus protocol called CHECO (Cong et al, 2017
 [cong2017blockchain]) is incorporated into Trustchain, which will be
 discussed but not elaborated in this draft. It is based on the
 blockchain paradigm where the complete network represents a ledger
 where agents' transactions infer an amount of trust between the
 involved parties, as is described by pouwelse, 2017
 [pouwelse2017trustlaws].

 As protocols have slowly been moving towards the business layer in
 the past decade, Trustchain is implemented on top of a networking
 overlay and as such is network agnostic. Other examples of moving
 networking to the business layer are: R3 Corda (Brown, 2017
 [brown2017introducing]) and IOTA (Atzori, 2016
 [atzori2016blockchain]). The overlay, audaciously called IPv8,
 provides encrypted communication between public keys. This overlay
 has integrated NAT puncturing to support, for instance, Android-to-
 Android overlay communication, does not require any central server,
 lacks central authorities, and can run directly on top of UDP, TCP,
 or other protocols. As such, IPv8 provides a set of communication
 methods and messages that provide the required functionality to let
 Trustchain function properly on both PC networks or smartphone-only
 networks.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Terminology

 Identity
 The actual user representation, but can not be directly used,
 since all information is identifier based.

 Identifier
 A reference that is owned by a given identity, referring to this
 identity. Any identity can have multiple identifiers, whilst
 staying anonymous.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Pouwelse Expires December 7, 2018 [Page 4]

Internet-Draft Trustchain protocol June 2018

 Agent
 A node in the Trustchain network representing an identifier for a
 given identity.

 Message
 The basic unit of Trustchain communication. A message will have
 different representations on the wire depending on the transport
 protocol used. Messages are typically multiplexed into a
 datagram for transmission.

 Datagram
 A sequence of messages that is offered as a unit to the
 underlying transport protocol (UDP, etc.).

 Transaction
 An interaction between two agents containing information on both
 parties and what has been transacted. This is application
 agnostic, meaning that any given application can infer what type
 of information it needs based on a collection of transactions.

 Signature
 A cryptographic function that used the private key to create a
 representing string, which can be verified by any other party
 using the signer's public key.

 Hash
 The result of applying a cryptographic hash function, more
 specifically SHA-256 [FIPS180-4], to a piece of data.

2. Trustchain Stack: Engineering trust

 Our principal mechanism to establish some form of trust is: if
 everyone keeps their secret keys secure, then no signed transaction
 can be spoofed on the overlay by any significant likelihood. We
 refer to the Trustchain protocol when discussing the mechanism to
 record interactions which are cryptographically signed by multiple
 parties. We explicitly do not support transactions signed by only a
 single party, which is the foundation of Bitcoin. Our foundation is
 a multi-signature agreement, without mono-signature support. The
 Trustchain stack refers to the full system which also includes the
 upper application layer, the network overlay and self-sovereign
 identity layer. Together they form a complete solution stack.

 The concept of a Self-Sovereign Identity (SSI) (Abraham, 2017
 [abrahamself]) means that agents have full control over their
 identity data, and provide it to those who need to validate it,
 without relying on a central repository of identity data of any kind.
 A large part of any SSI based system is rooted in the problem of

Pouwelse Expires December 7, 2018 [Page 5]

Internet-Draft Trustchain protocol June 2018

 proofs and attestations: proof can be anything, such as a secret
 message that is re-encrypted with a shared secret. But the most
 challenging part is working with attestations. An Attestation refers
 to the process wherein a third party validates that according to
 their records, the claims are true, that is, a more transitive
 property of trust: C attests to B that A is who it claims to be,
 Azouvi et al, 2017 [azouvi2017secure]. As such, an attestation from
 the right authority could be more trustworthy than a proof, which
 might have been forged. However, attestations can be a burden on the
 agent as the information can be sensitive, hence, the information
 needs to be maintained so that only specific agents can access it.
 Our stack does not constrain the choice of SSI system, but our
 implementation is focused on the Boneh-Franklin [boneh2004secure]
 2-DNF scheme ("Evaluating 2-DNF Formulas on Ciphertexts").

 Based upon the assumption that these identities are persistent and
 secure, the new architecture (or Fabric) is designed to use Peer-to-
 Peer communication to increase the transaction throughput. This
 communication is based on the new networking overlay: IPv8, which
 handles peer discovery, making connections with them across NAT boxes
 and peer-to-peer cryptographically signed messaging. As IPv8 is
 transport and application agnostic, it can run over any transport
 protocol: it does not depend on IP and may run on top of NDN, XIA,
 and other new Internet architectures.

 To ensure that the blockchain is always in a valid state, a new
 horizontal scaling consensus protocol is proposed: CHECO. CHECO is
 specifically designed to counter the vulnerabilities that a
 distributed, permissionless, multi-chain architecture will have to
 cope with (although this also creates innate vulnerabilities to other
 kinds of attacks). By creating an indication of the state of
 validity for each agent, the responsibility of verification lies with
 the agent itself. A malicious agent in an invalid state can easily
 be detected, and should be avoided for interactions.

 We do not constrain or limit the applications utilising this
 blockchain, as each transaction block can contain information of
 arbitrary content and length. Currently, there is a basic
 decentralised market implemented. More specialised markets have to
 also be implemented and emulated such as an open Taxi service market
 and a mortgage investment market. Multiple applications can be used
 at the same time, next to the decentralised market, for instance: it
 could be used for byte accounting in an ad-hoc Manet
 [jethanandani2017accounting].

Pouwelse Expires December 7, 2018 [Page 6]

Internet-Draft Trustchain protocol June 2018

 +--------------------------+
 | |
 | <Application layer> |
 | |
 +--------------------------+
 | |
 | CHECO |
 | |
 +--------------------------+
 | |
 | Trustchain Fabric |
 | |
 +--------------------------+
 | |
 | IPv8 |
 | |
 +--------------------------+
 | |
 | Self-Souvereign Identity |
 | |
 +--------------------------+

 Figure 1

3. Trustchain Fabric: internal data structure

 Trustchain is designed to be a non-blocking format for agents that
 supports simultaneous interactions with other agents. Non-blocking
 is a requirement rooted in the immutability of the chain and the
 strict ordering of the blocks. To support this, the blocks are
 designed to be dependent on signing by all participating agents, and
 will be called TxBlocks henceforth, as is described in this section,
 along with the macro data structure in which these blocks are used.

3.1. Architecture

 In contrast to traditional blockchains, in Trustchain every agent in
 the network has its own genesis node, in essence creating a personal
 blockchain for each agent. Each interaction creates a new
 transaction block, which is based on the last block of the two (or
 more) concerned parties. This does not only influence the block-
 creation speed, but also the amount of effort needed to verify a
 chain. Along with some other security properties, this is one of the
 implicit capabilities of this protocol.

 By removing the proof-of-work mechanism needed for classic blockchain
 implementations, Trustchain yields inherent horizontal scalability.

Pouwelse Expires December 7, 2018 [Page 7]

Internet-Draft Trustchain protocol June 2018

 However the cost of scalability is that each application requires a
 mechanism to guard against transaction spam and abuse. Trustchain is
 based on the assumption that both parties agree on the transaction
 before signing it, making tampering inherently easy to detect. One
 of the aspects that supports this is the fact that Trustchain is
 organised as a set of temporally ordered, intertwining chains, which
 form a Directed Acyclic Graph (DAG). This is called a "bottom-up
 consensus model", giving the participants the responsibility to
 verify the correctness of the transaction instead of a central
 (sometimes randomly chosen) elected leadership.

 Trustchain depends on signatures from all participants in a
 transaction, creating an n-to-n node. This system is extendable, as
 mentioned before, by extending the transaction description to provide
 specific properties. Each transaction is stored in a block, in
 agreement-block format, each block has parts that are signed and
 submitted by all participating parties, where the initial request is
 called the block-proposal and a completely signed and validated block
 is called an agreement-block (where a pair indicates the cooperation,
 not the limitation to two participating parties). These are signed
 and sequenced so that each sequence number is unique in its accessory
 chain, as can be seen below in the general structure diagram.

 +---------+--+---------+
 | |
 | Transaction A with D |
 | |
 | |
 +----------------------+
 | sequence number A: 3 |
 +----------------------+
 | signed by A |
 +----------------------+
 | sequence number D: 49|
 +----------------------+
 | signed by D |
 +---------+--+---------+
 | |
 | +----------------------+
 | | |
 +---------+--+---------+ +---------+--+---------+
 | | | |
 | Transaction A with C | | Transaction D with B |
 | | | |
 | | | |
 +----------------------+ +----------------------+
 | sequence number A: 2 | | sequence number D: 48|

Pouwelse Expires December 7, 2018 [Page 8]

Internet-Draft Trustchain protocol June 2018

 +----------------------+ +----------------------+
 | signed by A | | signed by D |
 +----------------------+ +----------------------+
 | sequence number C: 4 | | sequence number B: 12|
 +----------------------+ +----------------------+
 | signed by C | | signed by B |
 +---------+--+---------+ +---------+--+---------+
 | | |
 | +----------------------+
 | |
 +---------+--+---------+
 | |
 | Transaction A with B |
 | |
 | |
 +----------------------+
 | sequence number A: 1 |
 +----------------------+
 | signed by A |
 +----------------------+
 | sequence number B: 11|
 +----------------------+
 | signed by B |
 +---------+--+---------+

 Figure 2

3.2. TxBlock specification

 Using the proposal-block and agreement-block formats means singing
 the blocks on the current views of the respective parties: the
 requester and the responder(s). Each party signs and fills the block
 with the information that it has at that specific point in time. The
 requester fills the structure with its own previous hash and its own
 part of the transaction data, signs it and sends it to the
 responder(s), which in turn construct the other sections of the
 block, if it agrees with the content before sending it back. This
 nullifies any ordering and asynchronicity issues, since the requester
 constructs the block with the information that it has, and keeps it
 in memory while it waits on the responder to send the finished block
 back.

Pouwelse Expires December 7, 2018 [Page 9]

Internet-Draft Trustchain protocol June 2018

 +--------+----------------------------+--------------+--------------+
 | Number | Description | Type | Size (bytes) |
 +--------+----------------------------+--------------+--------------+
1	Requester public key	Char array	74
2	Requester sequence number	Unsigned int	4
3	Responder public key	Char array	74
4	Responder sequence number	Unsigned int	4
5	Requester previous hash	Char array	32
6	Signature	Char array	64
7	Transaction block size (n)	Unsigned int	4
8	Transaction block	Char array	n
	Total:		256 + n
 +--------+----------------------------+--------------+--------------+

 Table 1: TxBlock fields description

3.3. Asynchronicity

 Because there is the need to communicate between the requester and
 responder(s), there will be a delay which may be significant. To
 have a high level of asynchronicity and enable multiple peers
 interacting simultaneously, extending the chain should be possible
 while waiting for a response. In order to do this, the block refers
 to the previous block using the hash of the requester's part, since
 this is the only stable reference at that point. The other hash
 reference (the "previous hash responder") can then either be the
 "hash requester" or "hash responder" part of the head-block of the
 responder chain. Which one is used depends on whether the responder
 was the requester or responder in its previous interaction. This
 mechanic is also used for the "previous hash requester" field, but
 this reference is known when the block is created. In effect, this
 results to theoretically unlimited horizontal scalability: the more
 actors are active on the chain, the more throughput can be achieved.
 Though this is in fact limited by the memory speed, or database
 slowdown when the chain grows.

 One of the drawbacks of this mechanic is when the responder does not
 sign and respond, whether because it will/can not. In such cases,
 there will be an orphan block. While this is not a vulnerability in
 itself, it might be the starting point of a certain type of attack
 (the other "normal" types of attacks used for blockchains can be
 mitigated, at least to a certain level, as is described in
 resistances (Section 5).). The adversary might let someone initiate
 a transaction, i.e. a block creation, after which it will create an
 orphan. Doing this multiple times in a short time span will force
 the requester to use a considerable amount of processing power and
 memory, all the while injecting orphan blocks into its chain. As
 mentioned before, this is not a vulnerability in itself, but might be

Pouwelse Expires December 7, 2018 [Page 10]

Internet-Draft Trustchain protocol June 2018

 a launchpad for a more elaborate attack. Although, one coping method
 could be to split larger, more vulnerable transactions up into
 multiple smaller transactions. This way, the consequences stay the
 same for the malicious actor, but the losses are smaller.

3.4. CHECO: Consensus protocol and block format

 The final part of the Trustchain Fabric is CHECO, a horizontally
 scaling consensus protocol specifically designed for multi-chain
 implementation and completely application agnostic. CHECO is based
 on three separate protocols: A consensus protocol, a transaction
 protocol and a validation protocol, as well as an extension of the
 architecture by introducing a new type of block next to the TxBlock:
 CpBlock. Every round a set of so-called facilitators is selected at
 random, which collect the CP and TX blocks, to feed to the validation
 protocol, after which, the results are broadcast before a new round
 starts.

 CHECO is designed to create an internal state ledger for each chain,
 without having to rely on separate methods or instances. This is
 achieved by introducing a new block: the Checkpoint block (CpBlock),
 which contains a hash pointer to the previous block, along with a
 hash of the consensus result, round and sequence number and, lastly,
 a signature. The consensus result is defined as a tuple containing
 the validity states of the blocks agreed on by the facilitators of
 that round and the round number. If your chain is deemed valid, a
 CpBlock is injected, thus validating the state of the chain. While
 the content of the injected CpBlock differs from the TxBlock, these
 blocks do not interfere with the transaction protocol, since they fit
 in the architecture without modifying it.

 Instead of requiring a proof-of-work (as seen in more conventional
 blockchain implementations), CHECO is round based, creating a
 consensus state every so often, thus enabling a fully asynchronous
 and horizontally scaling protocol. These facilitators are chosen
 randomly each round, and will collect the CpBlocks from all other
 nodes since their last CpBlock. Validation is done using the
 Asynchronous Common Subset (ACS) algorithm based on HoneyBadgerBFT
 (Miller et al, 2016 [miller2016honey]), a byzantine consensus
 algorithm.

4. IPv8: Overlay for identity, discovery and trust

 To enable this new platform to function properly, a new method to
 find, connect to and manage agents was needed. Additionally, new
 models for identity verification, network discovery and inter-peer
 trust were required to enable these agent methods. IPv8 is a network
 stack, a set of protocols and models, that separates concerns and

Pouwelse Expires December 7, 2018 [Page 11]

Internet-Draft Trustchain protocol June 2018

 enables applications (such as Trustchain) to use the needed methods
 and protocols, without giving up interoperability and upgradeability.
 On top of this interface lies the actual Trustchain overlay, which
 uses the components and protocols of the IPv8 interface to create the
 specific functionalities needed for Trustchain to function.

 IPv8 is built by closely abiding to the Unix Philosophy of creating
 small components that are easy to understand and test. This is
 mainly why the complete networking system used in Tribler was re-
 written as a generic networking interface, enabling modifications and
 additions without losing any functionality. Although agents might
 use different protocols based on their capabilities, IPv8 is a basic
 layer over a multitude of networking components and subsystems,
 creating a means to communicate with other agents regardless of
 networking capabilities. An open source reference implementation
 based on Python is available on Github, called py-ipv8.
 Interoperable open implementations in Java and Kotlin are still only
 partially functional.

4.1. Identity establishment and discovery

 Identities are created, attested and distributed over the Trustchain
 using IPv8 as the communication interface. These are all public and
 self sovereign, leading to distribution when an agent creates a new
 identity, and are organised using a Public Key Infrastructure (PKI).
 This distribution is done to agents who have (or might have) an
 interest in obtaining the identity of this agent, since they are in
 the same cluster or due to other factors. Spreading information this
 way is called Gossiping, since agents learn of new identities, and
 spreading them among directly connected agents like a gossip would
 spread.

 Discovering identities is done based on Distributed Hash Tables
 (DHT), somewhat similar to the Domain Name System (DNS) currently
 used for the web, using Random-Walk and Live-Edge-Walk: discovery
 protocols for DHTs, respectively based on making random DHT queries
 in order to learn about a large number of identities quickly and
 making pseudo-randomised queries about the agents with the highest
 trust scores in the network. The use of random-walks enables DHTs to
 converge much faster, whilst having a small load at the very
 beginning. Furthermore, by traversing the live edges, Trustchain is
 more spam and Sybil attack resistant.

4.2. Attestations and trust

 The primary problem with identities and proofs is falsification, and,
 thus, these need to be verified to prevent this. However, even
 proofs can be forged, leading to the problem of needing trust in a

Pouwelse Expires December 7, 2018 [Page 12]

Internet-Draft Trustchain protocol June 2018

 proving party, which can not be solved by having a more centralised
 proving party. This is where attestations are used: a witness
 reports that the identity in question is actually valid. This
 requires some level of trust between the agents. Attestations are a
 method to enable agents to validate interactive zero-knowledge proofs
 (ZKPs) within a network of agents, a so-called web-of-trust
 [azouvi2017secure], where the transitive property of trust is used to
 prevent the need for every agent to verify an identity itself as is
 noted in Section 2.

 In this case, the probabilistic homomorphic asymmetrical encryption
 scheme of Boneh-Franklin [boneh2004secure] is used to validate these
 proofs, meaning that a form of randomness is used in the encryption,
 and computations on the ciphertext result in a valid plaintext.
 Using Boneh-Franklin leads to these ZKPs to be hardened against
 chosen plaintext attacks (an attacker can encrypt the suspected
 plaintext to see if the ciphertexts match) with the probabilistic
 aspect. These attestations are tied to metadata, which can be
 verified separately. The related identities are stored internally in
 a database, and the aforementioned metadata attributes are gossiped
 around the network using Trustchain.

4.2.1. Technical view of Attestations and Verifications

4.2.1.1. Attributes

 Attributes are a generic term which can essentially refer to any
 verifiable piece of information. For instance, an attribute may
 define a peer's identity, the amount of cryptocurrency in one's
 digital wallet, or perhaps, something as simple as one's previous
 number of transactions. In the context of Trustchain, Attributes
 mainly refer one's identity.

4.2.1.2. Attestations

 In a truly distributed peer-to-peer system, where peers regularly
 communicate and exchange information (hence they exchange attributes)
 there is a need of verifying the veracity of attributes, without
 relying on a well-known, well-trusted tertiary party / peer.
 Attestations are a means which make this task possible. They allow
 peers to verify the truthfulness of Attributes through a validation
 process, using interactive zero-knowledge proofs. A system based on
 Attestations is founded on the fact that, intrinsically, there exists
 a degree of trust between the peers of a system. To this extent,
 attestations are, generally speaking, a means through which peer C
 vouches to peer B that A is indeed telling the truth. Unlike normal
 centralized systems, where C is a well-known entity, in this case, C
 may be any trustworthy fellow peer. This enforces the idea that

Pouwelse Expires December 7, 2018 [Page 13]

Internet-Draft Trustchain protocol June 2018

 trust is transitive, hence there is no need for a trusted central
 peer to exist, since one can rely on other peers to attest for the
 veracity of Attributes.

4.2.1.2.1. The Attestation process

 As its name suggests, the Attestation Process is a mechanism through
 which a peer (the Attestee) requests the attestation of one of its
 Attributes from another fellow peer (the Attester). The process is
 initiated by the Attestee. If the process is successful, and the
 Attribute has indeed been attested, the Attester produces an
 attestation as proof, which is returned to the Attestee. This should
 complete the process. In the sections that follow, the messages
 exchanged during the aforementioned process are detailed.
 Additionally, a more detailed, high-level description of the peer
 interaction is also presented.

4.2.1.2.2. Message types

 The following sections present the different types of messages that
 are exchanged between the Attestee and Attester peers during the
 attestation process, namely the Attestation Request message and the
 Attestation Response message. A section on the prefix field, which
 is employed in all messages used towards peer communication, is also
 presented in what follows.

4.2.1.2.2.1. Preamble field

 The preamble field is present in all the messages employed in
 Trustchain towards peer communication. Consequently, it plays an
 important role in inter-peer communication. Figure 3 presents its
 generic structure.

 +-------------+-------------+---------------------+---------------+
 | 0 (1B) | ver_nr (1B) | peer_key_hash (20B) | msg_type (1B) |
 +-------------+-------------+---------------------+---------------+

 Figure 3: The structure of the Preamble / Prefix field. The size of
 each field is specified in parentheses in Bytes.

 A description of the Preamble field's elements is presented in
 Table 2.

Pouwelse Expires December 7, 2018 [Page 14]

Internet-Draft Trustchain protocol June 2018

 +---------------+--------+--+
 | FIELD | OCTETS | DESCRIPTION |
 +---------------+--------+--+
0	1	The initial byte of any message is 0
		(0x00).
ver_nr	1	The current implementation version.
peer_key_hash	20	A hash of the key of the message
		sender's master peer.
msg_type	1	Indicates the nature of the message. For
		instance, when 'msg_type = 5', the
		message will be an ATTREQ. Similarly,
		when 'msg_type = 2', the message is
		either ATTRESP or VFRESP. Other types
		are also available.
 +---------------+--------+--+

 Table 2: Description of fields in the Preamble / Prefix field

4.2.1.2.2.2. The Attestation Request Message

 The Attestation Request message (ATTREQ), is forwarded by the
 Attestee towards the Attester, in order to indicate the Attestee's
 desire to have one of its attributes attested by the Attester. The
 structure of the ATTREQ message is presented in Figure 4.

+--------+---------------------------------+----------------------
+----------------+
| Number | Description | Type | Size
(bytes) |
+--------+---------------------------------+----------------------
+----------------+
| 0 | Preamble / Prefix | Char Array |
23 |
+--------+---------------------------------+----------------------
+----------------+
| 1 | Public Key in Binary Format | Unsigned Short Array |
n |
+--------+---------------------------------+----------------------
+----------------+
| 2 | Global Time (Lamport Timestamp) | Unsigned Long Long |
8 |
+--------+---------------------------------+----------------------
+----------------+
| 3 | Attestation Metadata | Char Array (Raw) | 33 +

m |
+--------+---------------------------------+----------------------
+----------------+
| | *Total:* | | 64 + n +
m |
+--------+---------------------------------+----------------------
+----------------+

 Figure 4: The structure of an ATTREQ message.

 A description of the ATTREQ's fields is presented in Table 3.

Pouwelse Expires December 7, 2018 [Page 15]

Internet-Draft Trustchain protocol June 2018

 +-------------+--------+----------+---------------------------------+
 | FIELD | OCTETS | TYPE | DESCRIPTION |
 +-------------+--------+----------+---------------------------------+
Preamble /	23	Char	Generic message preamble, as
Prefix		Array	presented in Section
			4.2.1.2.2.1, with msg_type = 5.
Public Key	n	Unsigned	The Attestee's public key in
		Short	binary format. n =
		Array	bin_public_key_char_length * 2,
			since each Unsigned Short
			element is 2 Bytes in size.
Global Time	8	Unsigned	A Lamport Timestamp (Scalar
		Long	Clock) associated with the
		Long	message.
Attestation	33 + m	Char	Holds a string having the
Metadata		Array	pattern: '{"attribute":
		(Raw)	"attr_name", "public_key":
			pub_key}' (without the '
			characters). The attr_name and
			pub_key tokens are replaced by
			actual values. The minimal size
			of the field is 33 Bytes (if
			both tokens would be omitted).
			m is the cumulative string
			length of the values in the
			attr_name and pub_key tokens.
 +-------------+--------+----------+---------------------------------+

 Table 3: Description of the fields in an ATTREQ message

4.2.1.2.2.3. The Attestation Response Message

 The Attestation Response message (ATTRESP), is forwarded by the
 Attester towards the Attestee, in order to send the previously
 requested attestation to the Attestee. It should be noted that
 ATTRESP messages are sent only in case the attestation is successful.
 If the attestation fails, no such messages are sent. Furthermore,
 the attestation may be of arbitrary length, hence, it is impractical
 to send it entirely at once. Consequently, the attestation is broken
 up into smaller chunks (at most 800 Bytes) and each chunk is packed
 as part of an ATTRESP message. The structure of an ATTRESP message
 is presented in Figure 5

Pouwelse Expires December 7, 2018 [Page 16]

Internet-Draft Trustchain protocol June 2018

+--------+---------------------------------+----------------------
+--------------+
| Number | Description | Type | Size
(Bytes) |
+--------+---------------------------------+----------------------
+--------------+
| 0 | Preamble / Prefix | Char Array |
23 |
+--------+---------------------------------+----------------------
+--------------+
| 1 | Public Key in Binary Format | Unsigned Short Array |
n |
+--------+---------------------------------+----------------------
+--------------+
| 2 | Global Time (Lamport Timestamp) | Unsigned Long Long |
8 |
+--------+---------------------------------+----------------------
+--------------+
| 3 | Attestation Blob Hash | Char Array |
20 |
+--------+---------------------------------+----------------------
+--------------+
| 4 | Sequence Number | Unsigned Short |
2 |
+--------+---------------------------------+----------------------
+--------------+
| 5 | Attestation Blob Chunk | Char Array (Raw) |
800 |
+--------+---------------------------------+----------------------
+--------------+
| | *Total:* | | 853 +
n |
+--------+---------------------------------+----------------------
+--------------+

 Figure 5: The structure of an ATTRESP message.

 A description of the ATTRESP's fields is presented in Table 4.

Pouwelse Expires December 7, 2018 [Page 17]

Internet-Draft Trustchain protocol June 2018

 +-------------+--------+----------+---------------------------------+
 | FIELD | OCTETS | TYPE | DESCRIPTION |
 +-------------+--------+----------+---------------------------------+
Preamble /	23	Char	Generic message preamble, as
Prefix		Array	presented in Section
			4.2.1.2.2.1, with msg_type = 2.
Public Key	n	Unsigned	The Attester's public key in
		Short	binary format. n =
		Array	bin_public_key_char_length * 2,
			since each Unsigned Short
			element is 2 Bytes in size.
Global Time	8	Unsigned	A Lamport Timestamp (Scalar
		Long	Clock) associated with the
		Long	message.
Attestation	20	Char	A hash of the entire
Blob Hash		Array	attestation blob. This can be
			used to check the integrity and
			completeness of the
			reconstructed blob on the
			Attestee's side.
Sequence	2	Unsigned	The message's sequence number
Number		Short	in the sequence of ATTRESP
			messages sent for the
			particular attestation.
Attestation	800	Char	A chunk of the attestation
Blob Chunk		Array	blob.
		(Raw)	
 +-------------+--------+----------+---------------------------------+

 Table 4: Description of the fields in an ATTRESP message

4.2.1.2.3. Attestee-Attester Interaction - Attestation Process

 The following summary refers to the interaction between Attestee and
 Attester during the attestation process. The timeline diagram in
 Figure 6 shows the timing relationships in such an interaction.
 Table 5 gives a brief reminder of the messages employed in the
 attestation process.

 The Attestee forwards an ATTREQ message to the Attester, with the
 aim of requesting attestation for an Attribute, as indicated in
 the ATTREQ message.

Pouwelse Expires December 7, 2018 [Page 18]

Internet-Draft Trustchain protocol June 2018

 After receiving the ATTREQ, and successfully completing the
 attestation process, the Attester responds with a series of
 ATTRESP messages. The message sequence may be of arbitrary
 length. At a high-level, the sequence of ATTRESP message returns
 the new attestation, hence, each message will contain a chunk of
 the attestation blob. Additionally, each ATTRESP message also
 contains a hash of the entire attestation blob, a message sequence
 number, and additional message fields. If the attestation is
 unsuccessful, no ATTRESP messages are returned.

 The Attestee receives the sequence of ATTREQ messages from the
 Attester, and puts them together. The Attestee will know it has
 received the entire attestation blob, when the hash of the
 attestation blob, present in the ATTREQ messages, matches a
 locally computed hash of the reconstructed attestation blob.

 Attestee Attester

 v v
 | |
 | ATTREQ |
 | +------------------> |
 | |
 | |
 | Attest
 | |
 | |
 | ATTRESP #1 |
 | <------------------+ |
 | . |
 | . |
 | . |
 | ATTRESP #N |
 | <------------------+ |
 | |
 | |
 Attestation |
 Complete |
 | |
 | |
 v v

 Figure 6: Timeline diagram of the messages exchanged between Attestee
 and Attester during the attestation process.

Pouwelse Expires December 7, 2018 [Page 19]

Internet-Draft Trustchain protocol June 2018

 +---------+---+
 | MESSAGE | USE |
 +---------+---+
ATTREQ	Attestee message to Attester requiring the attestation
	of an indicated Attribute.
ATTRESP	Attester message to Attestee provided that attestation
	was successful. Each ATTRESP carries a part of the
	successful attestation blob.
 +---------+---+

 Table 5: Attestation process message summary

4.2.1.3. Attestation Verification

 Whilst Attestations are employed towards ensuring that peers are
 truthful in regards to some of their Attributes, the Attestation
 Verification request is employed towards ensuring that the
 Attestations themselves are valid. The employed mechanism does not
 stray far away from that which is employed in the case of
 Attestations. In fact, they are structurally similar: during the
 process of an Attestation Verification a peer C vouches to peer B
 that A is indeed telling the truth regarding a supplied Attestation.
 Once more, this enforces the idea that trust is transitive, hence
 there is no need for a trusted central peer to exist, since one can
 rely on other peers to attest for the veracity of an Attestation.

4.2.1.3.1. Attestation Verification Process

 The Verification process defines an interaction between two peers,
 the Requester peer, and the Verifier peer, wherein the Requester
 demands that the Verifier verifies one of its attestations (that is,
 an attestation of the Verifier). Intuitively, the Requester peer
 initiates the process. If the verification is successful, the
 Verifier should return the verified attestation. This should
 complete the process. In the sections that follow, the messages
 exchanged during the aforementioned process are detailed.
 Additionally, a more detailed, high-level description of the peer
 interaction is also presented.

4.2.1.3.1.1. Attestation Verification message types

 The following sections present the different types of messages that
 are exchanged between the Requester and Verifier peers during the
 verification process, namely, the Verification Request message and
 the Verification Response message. Incidentally, the Verification
 Response message is identical to the Attestation Response message,
 which was presented in Section 4.2.1.2.2.3.

Pouwelse Expires December 7, 2018 [Page 20]

Internet-Draft Trustchain protocol June 2018

4.2.1.3.1.1.1. The Verification Request Message

 The Verification Request message (VFREQ), is forwarded by the
 Requester towards the Verifier, so as to demand that the Verifier
 verifies one of its attestations, and then sends it back to the
 Requester. The structure of the VFREQ message is presented in
 Figure 7.

+--------+-----------------------------------+----------------------
+--------------+
| Number | Description | Type | Size
(Bytes) |
+--------+-----------------------------------+----------------------
+--------------+
| 0 | Preamble / Prefix | Char Array |
23 |
+--------+-----------------------------------+----------------------
+--------------+
| 1 | Public Key in Binary Format | Unsigned Short Array |
n |
+--------+-----------------------------------+----------------------
+--------------+
| 2 | Global Time (Lamport Timestamp) | Unsigned Long Long |
8 |
+--------+-----------------------------------+----------------------
+--------------+
| 3 | Hash of the Verified Attestation | Char Array |
20 |
+--------+-----------------------------------+----------------------
+--------------+
| | *Total:* | | 51 +
n |
+--------+-----------------------------------+----------------------
+--------------+

 Figure 7: The structure of an VFREQ message.

 A description of the VFREQ's fields is presented in Table 6.

Pouwelse Expires December 7, 2018 [Page 21]

Internet-Draft Trustchain protocol June 2018

 +-------------+--------+----------+---------------------------------+
 | FIELD | OCTETS | TYPE | DESCRIPTION |
 +-------------+--------+----------+---------------------------------+
Preamble /	23	Char	Generic message preamble, as
Prefix		Array	presented in Section
			4.2.1.2.2.1, with msg_type = 1.
Public Key	n	Unsigned	The Requester's public key in
		Short	binary format. n =
		Array	bin_public_key_char_length * 2,
			since each Unsigned Short
			element is 2 Bytes in size.
Global Time	8	Unsigned	A Lamport Timestamp (Scalar
		Long	Clock) associated with the
		Long	message.
Verified	20	Char	A hash of the attestation which
Attestation		Array	needs to be verified.
Hash			
 +-------------+--------+----------+---------------------------------+

 Table 6: Description of the fields in an VFREQ message

4.2.1.3.1.1.2. The Verification Response Message

 The Verification Response message (VFRESP) is identical in structure
 to the Attestation Response message (ATTRESP), since both return an
 attestation. For the VFRESP's structure please see section

Section 4.2.1.2.2.3. The two messages differ only slightly in terms
 of semantics, since one is returned as a response to a successful
 attestation request, thus returning a new attestation, while the
 other (the verification) is returned upon a successful verification
 request, thus returning the recently verified attestation. A
 sequence of VFRESP messages should only be returned when the
 verification was successful, i.e. the attestation could be verified.
 As was the case in the ATTRESP messages, the verified attestation may
 be of arbitrary length, hence, it is impractical to send it entirely
 at once. Consequently, the attestation is broken up into smaller
 chunks (at most 800 Bytes) and each chunk is packed as part of a
 VFRESP message.

 Since the semantics of some of the fields in the VFRESP messages
 slightly differ than those in the ATTRESP messages, a description of
 the VFRESP's fields is presented in Table 7.

Pouwelse Expires December 7, 2018 [Page 22]

Internet-Draft Trustchain protocol June 2018

 +-------------+--------+----------+---------------------------------+
 | FIELD | OCTETS | TYPE | DESCRIPTION |
 +-------------+--------+----------+---------------------------------+
Preamble /	23	Char	Generic message preamble, as
Prefix		Array	presented in Section
			4.2.1.2.2.1, with msg_type = 2.
Public Key	n	Unsigned	The Verifier's public key in
		Short	binary format. n =
		Array	bin_public_key_char_length * 2,
			since each Unsigned Short
			element is 2 Bytes in size.
Global Time	8	Unsigned	A Lamport Timestamp (Scalar
		Long	Clock) associated with the
		Long	message.
Attestation	20	Char	A hash of the entire
Blob Hash		Array	attestation blob. This can be
			used to check the integrity and
			completeness of the
			reconstructed blob on the
			Requester's side.
Sequence	2	Unsigned	The message's sequence number
Number		Short	in the sequence of VFRESP
			messages sent for the
			verification.
Attestation	800	Char	A chunk of the attestation
Blob Chunk		Array	blob.
		(Raw)	
 +-------------+--------+----------+---------------------------------+

 Table 7: Description of the fields in an VFRESP message

4.2.1.3.2. Requester-Verifier Interaction - Verification Process

 The following summary refers to the interaction between Requester and
 Verifier during the verification process. The timeline diagram in
 Figure 8 shows the timing relationships in such an interaction.
 Table 8 gives a brief reminder of the messages employed in the
 verification process.

 The Requester forwards a VFREQ message to the Verifier, with the
 aim of requesting the verification of an Attribute's attestation,
 as indicated by the attestation hash in the VFREQ message.

Pouwelse Expires December 7, 2018 [Page 23]

Internet-Draft Trustchain protocol June 2018

 After receiving the VFREQ, and successfully completing the
 verification process, the Verifier responds with a series of
 VFRESP messages. The message sequence may be of arbitrary length.
 At a high-level, the sequence of VFRESP message returns the
 recently verified attestation, hence, each message will contain a
 chunk of the attestation blob. Additionally, each VFRESP message
 also contains a hash of the entire attestation blob, a message
 sequence number, and additional message fields. If the
 verification is unsuccessful, no VFRESP messages are returned.

 The Requester receives the sequence VFRESP messages from the
 Verifier, and puts them together. The Requester will know it has
 received the entire attestation blob, when the hash of the
 attestation blob present in the VFRESP messages matches a locally
 computed hash of the reconstructed attestation blob.

 Requester Verifier

 v v
 | |
 | VFREQ |
 | +------------------> |
 | |
 | |
 | Verify
 | |
 | |
 | VFRESP #1 |
 | <------------------+ |
 | . |
 | . |
 | . |
 | VFRESP #N |
 | <------------------+ |
 | |
 | |
 Verification |
 Complete |
 | |
 | |
 v v

 Figure 8: Timeline diagram of the messages exchanged between
 Requester and Verifier during the verification process.

Pouwelse Expires December 7, 2018 [Page 24]

Internet-Draft Trustchain protocol June 2018

 +---------+---+
 | MESSAGE | USE |
 +---------+---+
VFREQ	Requester to Verifier requiring the verification of an
	attestation, as indicated in the VFREQ message.
VFRESP	Verifier to Requester provided that verification was
	successful. Each VFRESP carries a part of the recently
	verified attestation.
 +---------+---+

 Table 8: Verification process message summary

4.3. Peer-to-peer cryptographically signed messaging

 Most messages that are sent between peers are encrypted, the keys are
 retrieved from either the PKI, and verified based on the key
 attestations, or from the internal database after verification has
 already been done. Encryption is done using the ECDSA encryption
 scheme [johnson2001elliptic], which is an Elliptic Curve based
 cryptography system. This enables IPv8 to send messages effectively
 to a multitude of agents when (at the least) their identities are
 known, preferably also attested for. Having such a low bar to
 encrypt messages discourages the use of unencrypted communication
 channels, making interactions secure almost as early as the
 handshake, since the first message sent to any agent can be already
 encrypted with its respective key (which is retrieved from the
 database, other agents or the initial bootstrapping list).

4.4. NAT traversal

 Network Address Translation (NAT) is omnipresent in the modern
 Internet, mostly due to networks being separated and the limited
 amount of global IP addresses available. Most consumer devices are
 behind a number of layers of NAT, but data center nodes can be behind
 NAT for security or virtualisation reasons. Containerised
 deployments are making things worse, as every peer based
 communication scheme must have a way to traverse NATs, otherwise
 operations will be affected. Even nodes meant to run with real IP
 addresses must implement NAT traversal techniques, as they may need
 to establish connections to peers behind NAT. Message puncturing
 based on UDP is key to this overlay. It conducts a random network
 walk to preserve connectivity under churn. Participants help each
 other to puncture the NAT infrastructure. Each participant will
 periodically introduce and connect some of its neighbors. When their
 random neighbors do not yet know each other, a new participant is
 discovered. Carefully timed concurrent UDP messages are used to
 traverse carrier-grade NAT infrastructures. Implementation,

Pouwelse Expires December 7, 2018 [Page 25]

Internet-Draft Trustchain protocol June 2018

 deployment and measurements of smartphone users has shown that it is
 possible to build a healthy overlay without servers, even if nearly
 100 percent of users are behind a NAT (Android-to-android overlay
 [TUDelft2018trustchain]).

5. Attack resistances

 For blockchain implementations, attack resistance is an important
 requirement, especially with horizontal scalability. Therefore,
 Trustchain will have to cope with the same difficulties and attacks
 that other blockchain implementations have to, but due to the novel
 structure it introduces, these threats can be countered. With this
 novel structure, validation, uncertainty, and tamper proofing can be
 handled in a more intuitive manner while throughput does not need to
 suffer.

5.1. Sybil attacks

 One of the most difficult attacks to repel, for a blockchain
 implementation, is the Sybil attack, where many agents are injected
 into the chain (and authenticity cannot easily be verified) to
 subvert a large portion of the system's voting power or trust (see

section 3.3). Usually peer verification is used to protect against
 this kind of attacks (for instance: proof-of-work), usually resulting
 in slow systems. But when the influence of the attacker is large
 enough, even these methods will not be able to stop such an attack.

 Trustchain deals with this problem by having an inherently different
 structure, where each peer has its own origin. On top of that,
 transaction injection can only be done with two valid signatures,
 meaning a Sybil attacker can only create trust with itself. This
 results in a network of disconnected agents that have no relation
 outside of their own cluster, which can easily be identified. Even
 when the Sybils acquire some degree of trust from outside of their
 cluster, by using accounting mechanisms, the profit from such an
 attack can only be weakly beneficial with bounded profit (using
 Netflow, not discussed in this paper) (Otte et al, 2017
 [otte2017trustchain]).

5.2. Double spending attack

 Using control over the blockchain to create a fork and creating two
 different transaction branches is called double spending. This kind
 of attack can be applied with relative ease to single chain
 implementations of the blockchain by injecting two conflicting
 transactions at the same time. Trustchain deals with this kind of
 attack by having the chain verified with each CHECO round, during
 which the hidden transaction can be easily found. By broadcasting

Pouwelse Expires December 7, 2018 [Page 26]

Internet-Draft Trustchain protocol June 2018

 both blocks as a proof-of-fraud the malicious agent will have
 decreased trust and can be blacklisted or refused service.

5.3. Replay attack

 Using the transaction signature of the counterpart, a malicious agent
 can try to replay a transaction on the blockchain, which results in
 increased trust or may be used to gain credits. CHECO and the novel
 structure make it trivial to find the conflicting blocks when
 verifying the counterparty's chain. The two blocks with the same
 outgoing pointer together make the proof-of-fraud, which then can
 then be used to decrease the trust in the malicious party and can be
 blacklisted or refused service.

5.4. Whitewashing attack

 Abusing the permissionless structure of Trustchain to create
 additional identities at any given point can negate the effect of
 having trust, so this kind of attack differs from a Sybil attack.
 When an agent suffers from reputation loss, it can simply discard its
 current identity and take on a new one. Since refusing service to
 agents with little trust will affect usability and willingness to
 join the network, an adequate solution can be prioritising
 strategies. One method for implementing this is described in the
 paper discussing Netflow (not discussed in this paper) (Otte et al,
 2017 [otte2017trustchain]).

5.5. Spam attack

 Since the TxBlocks have dynamic size, spam (in the sense of useless
 data in the transaction field) can be used to clog an agent's network
 or database with excessively large messages, slowing down its
 operations or bringing it to a complete halt due to memory/network
 being full. This kind of attack can be coped with by having a
 throttle per connection to keep some bandwidth available and a limit
 on the size of the message. If large messages are to be expected, a
 file based buffer will enable large message transfer without
 exceeding the memory capacity.

 Another type of spam can be identified as a collection of useless
 messages, clogging the network and database with large amounts of
 empty messages, which is possible since transactions do not require
 an agent to pay transaction costs (as BitCoin does). Though this is
 easily countered by not accepting those messages, leading to the
 malicious agent having a lot of orphan blocks.

Pouwelse Expires December 7, 2018 [Page 27]

Internet-Draft Trustchain protocol June 2018

5.6. DDoS

 When massive quantities of useless or empty messages are sent over a
 network, it might get congested, leading to dropped operations,
 network congestion, unreachability of agents, or, in the most extreme
 cases, even to system failure due to overload. Due to the
 distributed, peer based communications architecture, this is not
 feasible without flooding the network of the malicious agent itself,
 as it has to send messages to each target individually.

6. Acknowledgements

 We very much thank the European Union for providing us the required
 funding for this work. Through EU FP6 and FP7 funding instruments we
 have been developing and deploying our own distributed ledger fabric
 since August 2007. An estimated 3.4 million Euro has been granted
 through these specific projects and leading directly to this work
 ([P2P-Fusion], [P2P-Next],[QLectives]).

 We thank master student Stijn for his help with writing of this
 draft.

7. IANA Considerations

 This memo includes no request to IANA.

 All drafts are required to have an IANA considerations section (see
 Guidelines for Writing an IANA Considerations Section in RFCs
 [RFC5226] for a guide). If the draft does not require IANA to do
 anything, the section contains an explicit statement that this is the
 case (as above). If there are no requirements for IANA, the section
 will be removed during conversion into an RFC by the RFC Editor.

8. Security Considerations

 From a security perspective, the usage of novel structures such as
 Trustchain might lead to new kinds of attacks. We consider this risk
 of less importance for a private and consortium network, where all
 participants are known to the operator and authentication mechanisms
 are used to restrict access to the network.

 For the public blockchain networks, the usage of Trustchain might
 lead to new kinds of attacks. For instance, an attacker might be
 able to pollute the chain with refusal to sign attacks to decrease
 trust. The scope of such attacks and security violations needs to be
 investigated and is not part of this draft.

https://datatracker.ietf.org/doc/html/rfc5226

Pouwelse Expires December 7, 2018 [Page 28]

Internet-Draft Trustchain protocol June 2018

9. References

 [abrahamself]
 Abraham, A., "Self-Sovereign Identity", 2017,
 <https://www.egiz.gv.at/files/download/

Self-Sovereign-Identity-Whitepaper.pdf>.

 [apostle2017uber]
 Apostle, J., "The Uber data breach has implications for us
 all.", 2014, <https://www.ft.com/content/

e2bf6caa-d2cb-11e7-a303-9060cb1e5f44>.

 [atzori2016blockchain]
 Atzori, M., "Blockchain-based architectures for the
 internet of things: a survey", 2016,
 <https://papers.ssrn.com/sol3/

papers.cfm?abstract_id=2846810>.

 [azouvi2017secure]
 Azouvi, S., Al-Bassam, M., and S. Meiklejohn, "Who am i?
 Secure identity registration on distributed ledgers",
 2017, <https://link.springer.com/

chapter/10.1007/978-3-319-67816-0_21>.

 [boneh2004secure]
 Boneh, D. and X. Boyen, "Secure identity based encryption
 without random oracles", 2004,
 <http://link.springer.com/content/pdf/10.1007/

b99099.pdf#page=454>.

 [brown2017introducing]
 Brown, R., "Introducing R3 Corda: A Distributed Ledger for
 Financial Services", 2016,
 <http://www.r3cev.com/blog/2016/4/4/introducing-r3-corda-

a-distributed-ledger-designed-for-financial-services>.

 [cong2017blockchain]
 Cong, K., Ren, Z., and J. pouwelse, "A Blockchain
 Consensus Protocol With Horizontal Scalability", 2017,
 <https://repository.tudelft.nl/islandora/object/
 uuid:86b2d4d8-642e-4d0f-8fc7-d7a2e331e0e9>.

 [FIPS180-4]
 Gallagher, P., "Secure hash standard (shs)", 2008,
 <http://www.cs.haifa.ac.il/~orrd/IntroToCrypto/online/

fips180-3_final.pdf>.

https://www.egiz.gv.at/files/download/Self-Sovereign-Identity-Whitepaper.pdf
https://www.egiz.gv.at/files/download/Self-Sovereign-Identity-Whitepaper.pdf
https://www.ft.com/content/e2bf6caa-d2cb-11e7-a303-9060cb1e5f44
https://www.ft.com/content/e2bf6caa-d2cb-11e7-a303-9060cb1e5f44
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2846810
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2846810
https://link.springer.com/chapter/10.1007/978-3-319-67816-0_21
https://link.springer.com/chapter/10.1007/978-3-319-67816-0_21
http://link.springer.com/content/pdf/10.1007/b99099.pdf#page=454
http://link.springer.com/content/pdf/10.1007/b99099.pdf#page=454
http://www.r3cev.com/blog/2016/4/4/introducing-r3-corda-a-distributed-ledger-designed-for-financial-services
http://www.r3cev.com/blog/2016/4/4/introducing-r3-corda-a-distributed-ledger-designed-for-financial-services
https://repository.tudelft.nl/islandora/object/
http://www.cs.haifa.ac.il/~orrd/IntroToCrypto/online/fips180-3_final.pdf
http://www.cs.haifa.ac.il/~orrd/IntroToCrypto/online/fips180-3_final.pdf

Pouwelse Expires December 7, 2018 [Page 29]

Internet-Draft Trustchain protocol June 2018

 [jethanandani2017accounting]
 Jethanandani, M., "Accounting in NETCONF and RESTCONF",
 2017, <https://www.ietf.org/id/

draft-mahesh-netconf-accounting-03.txt>.

 [johnson2001elliptic]
 Johnson, D., Menezes, A., and S. Vanstone, "The elliptic
 curve digital signature algorithm (ECDSA)", 2001,
 <http://www.springerlink.com/index/0L7A1W9W38XL6W6R.pdf>.

 [kokkola2011payment]
 Kokkola, T., "The payment system: Payments, securities and
 derivatives, and the role of the Eurosystem.", 2011,
 <https://www.ecb.europa.eu/pub/pdf/other/

paymentsystem201009en.pdf>.

 [mcmillan2014inside]
 McMillan, R., "The inside story of Mt. Gox, Bitcoin's $460
 million disaster.", 2014,
 <https://www.wired.com/2014/03/bitcoin-exchange/>.

 [miller2016honey]
 Miller, A., Xia, Y., Croman, K., Shi, E., and D. Song,
 "The honey badger of BFT protocols", 2016,
 <http://dl.acm.org/citation.cfm?id=2978399>.

 [nakamoto2008bitcoin]
 Nakamoto, S., "Bitcoin: A peer-to-peer electronic cash
 system", 2008, <http://www.academia.edu/download/32413652/

BitCoin_P2P_electronic_cash_system.pdf>.

 [otte2017trustchain]
 Otte, P., de Vos, M., and J. Pouwelse, "Trustchain: A
 Sybil-resistant scalable blockchain", 2017,
 <https://www.sciencedirect.com/science/article/pii/

S0167739X17318988>.

 [P2P-Fusion]
 "P2P-Fusion project", 2018,
 <http://cordis.europa.eu/project/rcn/105290_en.html>.

 [P2P-Next]
 "Next Generation Peer-to-Peer Content Delivery Platform",
 2018, <http://cordis.europa.eu/project/rcn/85326_en.html>.

https://www.ietf.org/id/draft-mahesh-netconf-accounting-03.txt
https://www.ietf.org/id/draft-mahesh-netconf-accounting-03.txt
http://www.springerlink.com/index/0L7A1W9W38XL6W6R.pdf
https://www.ecb.europa.eu/pub/pdf/other/paymentsystem201009en.pdf
https://www.ecb.europa.eu/pub/pdf/other/paymentsystem201009en.pdf
https://www.wired.com/2014/03/bitcoin-exchange/
http://dl.acm.org/citation.cfm?id=2978399
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
http://www.academia.edu/download/32413652/BitCoin_P2P_electronic_cash_system.pdf
https://www.sciencedirect.com/science/article/pii/S0167739X17318988
https://www.sciencedirect.com/science/article/pii/S0167739X17318988
http://cordis.europa.eu/project/rcn/105290_en.html
http://cordis.europa.eu/project/rcn/85326_en.html

Pouwelse Expires December 7, 2018 [Page 30]

Internet-Draft Trustchain protocol June 2018

 [pouwelse2017trustlaws]
 Pouwelse, J. and M. de Vos, "Laws for creating trust in
 the blockchain age", 2017, <https://github.com/blockchain-

lab/shared_vision_towards_programmable_economy>.

 [QLectives]
 "QLectives project", 2018,
 <http://cordis.europa.eu/project/rcn/89031_en.html>.

 [resnick2002trust]
 Resnick, P. and R. Zeckhauser, "Trust among strangers in
 Internet transactions: Empirical analysis of eBay's
 reputation system", 2002,
 <http://www.emeraldinsight.com/doi/pdf/10.1016/
 S0278-0984(02)11030-3>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 5226,
 DOI 10.17487/RFC5226, May 2008,
 <https://www.rfc-editor.org/info/rfc5226>.

 [TUDelft2018trustchain]
 Pouwelse, J., "Trustchain - creating trust with software",
 2018, <https://play.google.com/store/apps/

details?id=nl.tudelft.cs4160.trustchain_android>.

 [vukolic2015quest]
 Vukolic, M., "The quest for scalable blockchain fabric:
 Proof-of-work vs. BFT replication.", 2011,
 <http://link.springer.com/

chapter/10.1007/978-3-319-39028-4_9>.

 [yan2008trust]
 Holtmanns, S. and Z. Yan, "Trust modeling and management:
 from social trust to digital trust.", 2008,
 <http://lib.tkk.fi/Diss/2007/isbn9789512291205/

article1.pdf>.

Author's Address

https://github.com/blockchain-lab/shared_vision_towards_programmable_economy
https://github.com/blockchain-lab/shared_vision_towards_programmable_economy
http://cordis.europa.eu/project/rcn/89031_en.html
http://www.emeraldinsight.com/doi/pdf/10.1016/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5226
https://www.rfc-editor.org/info/rfc5226
https://play.google.com/store/apps/details?id=nl.tudelft.cs4160.trustchain_android
https://play.google.com/store/apps/details?id=nl.tudelft.cs4160.trustchain_android
http://link.springer.com/chapter/10.1007/978-3-319-39028-4_9
http://link.springer.com/chapter/10.1007/978-3-319-39028-4_9
http://lib.tkk.fi/Diss/2007/isbn9789512291205/article1.pdf
http://lib.tkk.fi/Diss/2007/isbn9789512291205/article1.pdf

Pouwelse Expires December 7, 2018 [Page 31]

Internet-Draft Trustchain protocol June 2018

 Dr. J.A. Pouwelse (editor)
 Delft University of Technology
 Delft
 Netherlands

 Phone: +31 15 2782539
 Email: j.a.pouwelse@tudelft.nl

Pouwelse Expires December 7, 2018 [Page 32]

