
CLUE Working Group R. Presta
Internet-Draft S. Romano
Intended status: Standards Track University of Napoli
Expires: November 10, 2014 May 9, 2014

CLUE protocol
draft-presta-clue-protocol-04

Abstract

 The CLUE protocol is an application protocol conceived for the
 description and negotiation of a CLUE telepresence session. The
 design of the CLUE protocol takes into account the requirements and
 the framework defined, respectively, in [I-D.ietf-clue-framework] and
 [I-D.ietf-clue-telepresence-requirements]. The companion document
 [I-D.kyzivat-clue-signaling] delves into CLUE signaling details, as
 well as on the SIP/SDP session establishment phase. CLUE messages
 flow upon the CLUE data channel, based on reliable and ordered SCTP
 over DTLS transport, as described in [I-D.ietf-clue-datachannel].
 Message details, together with the behavior of CLUE Participants
 acting as Media Providers and/or Media Consumers, are herein
 discussed.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 10, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Presta & Romano Expires November 10, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft draft-presta-clue-protocol-04 May 2014

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. Overview of the CLUE protocol 4
4. Protocol messages . 6
4.1. OPTIONS . 8
4.2. OPTIONS RESPONSE . 10
4.3. ADVERTISEMENT . 11
4.4. ADVERTISEMENT ACKNOWLEDGEMENT 12
4.5. CONFIGURE . 13
4.6. CONFIGURE RESPONSE . 14
4.7. READV . 14
4.8. READV RESPONSE . 15
4.9. Response codes and reason strings 16

5. Protocol state machines 18
6. CLUE Participant's state machine 18
6.1. Media Consumer's state machine 21
6.2. Media Provider's state machine 23

7. Versioning . 25
8. Extensions and options . 26
9. XML Schema . 28
10. Diff with the -03 version 33
11. Diff with the -02 version 34
12. Acknowledgments . 34
13. Informative References . 34

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
http://trustee.ietf.org/license-info

Presta & Romano Expires November 10, 2014 [Page 2]

Internet-Draft draft-presta-clue-protocol-04 May 2014

1. Introduction

 The CLUE protocol is an application protocol used by two CLUE
 Participants to enhance the experience of a multimedia telepresence
 session. The main goals of the CLUE protocol are:

 1. enabling a MP to fully announce its current telepresence
 capabilities to a MC in terms of available media captures, groups
 of encodings, simultaneity constraints and other information
 envisioned in [I-D.ietf-clue-framework];

 2. enabling a MC to request the desired multimedia streams to the
 offering MP.

 CLUE-capable endpoints are connected by means of the CLUE data
 channel, an SCTP over DTLS channel which is opened and established as
 depicted respectively in [I-D.kyzivat-clue-signaling] and
 [I-D.kyzivat-clue-signaling]. CLUE protocol messages flowing upon
 such channel are detailed in the following, both syntactically and
 semantically.

 In Section 3 we provide a general overview of the CLUE protocol.
 CLUE protocol messages are detailed in Section 4 The CLUE Participant
 state machine is introduced in Section 5. Versioning and extensions
 are discussed in Section 7 and Section 8, respectively. The XML
 schema defining the CLUE messages is reported in Section 9.

2. Terminology

 This document refers to the same terminology used in
 [I-D.ietf-clue-framework] and in
 [I-D.ietf-clue-telepresence-requirements]. We briefly recall herein
 some of the main terms exploited in the document. We further
 introduce the definition of CLUE Participant.

 CLUE Participant An entity able to use the CLUE protocol within a
 telepresence session. It can be an endpoint or a MCU able to use
 the CLUE protocol.

 Endpoint The logical point of final termination through receiving,
 decoding and rendering, and/or initiation through capturing,
 encoding, and sending of media streams. An endpoint consists of
 one or more physical devices which source and sink media streams,
 and exactly one [RFC4353] Participant (which, in turn, includes
 exactly one SIP User Agent). Endpoints can be anything from
 multiscreen/multicamera room controllers to handheld devices.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/rfc4353

Presta & Romano Expires November 10, 2014 [Page 3]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 MCU Multipoint Control Unit (MCU) - a device that connects two or
 more endpoints together into one single multimedia conference
 [RFC5117]. An MCU may include a Mixer [RFC4353].

 Media Any data that, after suitable encoding, can be conveyed over
 RTP, including audio, video or timed text.

 Media Capture A "Media Capture", or simply "Capture", is a source of
 Media.

 Capture Encoding A specific encoding of a Media Capture, to be sent
 via RTP [RFC3550].

 Media Stream The term "Media Stream", or simply "Stream", is used as
 a synonymous of Capture Encoding.

 Media Provider A CLUE Participant (i.e., an Endpoint or a MCU) able
 to send Media Streams.

 Media Consumer A CLUE Participant (i.e., an Endpoint or a MCU) able
 to receive Media Streams.

3. Overview of the CLUE protocol

 The CLUE protocol has been conceived to enable CLUE telepresence
 session. It is designed in order to address SDP limitations in terms
 of the description of several information about the multimedia
 streams that are involved in a real-time multimedia conference.
 Indeed, by simply using SDP we are not able to convey the information
 about the features of the flowing multimedia streams that is needed
 to enable a "being there" rendering. Such information is designed in
 the CLUE framework document and formally defined and described in the
 CLUE data model document. The CLUE protocol represents the mechanism
 that enables the exchange of CLUE information between CLUE
 Participants. It mainly provides the messages to enable a Media
 Provider to advertise its telepresence capabilities and to enable a
 Media Consumer to select the desired telepresence options.

 The CLUE protocol, as defined in the following, is a stateful,
 client-server, XML-based application protocol. CLUE protocol
 messages flow on realiable and ordered SCTP over DTLS transport
 channel connecting two CLUE Participants. Messages carries
 information taken from the XML-based CLUE data model
 ([I-D.ietf-clue-data-model-schema]). Three main communication layers
 can be identified:

 1. Establishment of the CLUE data channel: in this phase, the CLUE
 data channel setup takes place. If it ends up successfully, the

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/rfc5117
https://datatracker.ietf.org/doc/html/rfc4353
https://datatracker.ietf.org/doc/html/rfc3550

Presta & Romano Expires November 10, 2014 [Page 4]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 CPs are able to communicate and start the initiation phase.

 2. Negotiation of the CLUE protocol version and options (initiation
 phase): the CPs connected via the CLUE data channel agree on the
 version and on the options to be used during the telepresence
 session. Special CLUE messages are used for such a task. At the
 end of that basic negotiation, each CP starts its activity as a
 CLUE MP and/or CLUE MC.

 3. CLUE telepresence capabilities description and negotiation: in
 this phase, the MP-MC offer-answer dialogues take place on the
 data channel by means of the CLUE protocol messages.

 As soon as the channel is ready, the CLUE Participants must agree on
 the protocol version and extensions to be used within the
 telepresence session. CLUE protocol version numbers are
 characterized by a major version number and a minor version number,
 both unsigned integer, separated by a dot. While minor version
 numbers denote backword compatible changes in the context of a given
 major version, different major version numbers generally indicate a
 lack of interoperability between the protocol implementations. In
 order to correctly establish a CLUE dialogue, the involved CPs MUST
 have in common a major version number (see Section 7 for further
 details). The subset of the protocol options and extensions that are
 allowed within the CLUE session is also determined in the initiation
 phase, such subset being the one including only the options that are
 supported by both parties. A mechanism for the negotiation of the
 CLUE protocol version and extensions is envisioned in the initiation
 phase. According to such solution, the CP which is the CLUE Channel
 initiator (CI) issues a proper CLUE message (OPTIONS) to the CP which
 is the Channel Receiver (CR) specifying the supported version and
 extensions. The CR then answers by selecting the subset of the CI
 extensions that it is able to support and determines the protocol
 version to be used.

 After that negotiation phase is completed, CLUE Participants describe
 and agree on the media flows to be exchanged. Indeed, being CPs A
 and B both transmitting and receiving, it is possible to distinguish
 between two dialogues:

 1. the one needed to describe and set up the media streams sent from
 A to B, i.e., the dialogue between A's Media Provider side and
 B's Media Consumer side

 2. the one needed to describe and set up the media streams sent from
 B to A, i.e., the dialogue between B's Media Provider side and
 A's Media Consumer side

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 5]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 CLUE messages for the media session description and negotiation is
 designed by considering the MP side as the server side of the
 protocol, since it produces and provides media streams, and the MC
 side as the client side of the protocol, since it requests and
 receives media streams. The messages that are exchanged to set up
 the telepresence media session are described by focusing on a single
 MP-MC dialogue.

 The MP first advertises its available media captures and encoding
 capabilities to the MC, as well as its simultaneity constraints,
 according to the information model defined in
 [I-D.ietf-clue-framework]. The CLUE message conveing the MP's
 multimedia offer is the ADVERTISEMENT message. Such message
 leverages the XML data model definitions provided in
 [I-D.ietf-clue-data-model-schema].

 The MC selects the desired streams of the MP by using the CONFIGURE
 message, which makes reference to the information carried in the
 previously received ADVERTISEMENT.

 Besides ADVERTISEMENT and CONFIGURE, other messages have been
 conceived in order to provide all the needed mechanisms and
 operations and will be detailed in the following sections.

4. Protocol messages

 CLUE protocol messages are textual, XML-based messages that enable
 the configuration of the telepresence session. The formal definition
 of such messages is provided in the XML Schema provided at the end of
 this document (Section 9).

 The XML definitions of the CLUE information provided in
 [I-D.ietf-clue-data-model-schema] are included within some CLUE
 protocol messages (namely the ADVERTISEMENT, the CONFIGURE, and the
 READV RESPONSE messages), in order to use the concept defined in
 [I-D.ietf-clue-framework].

 The CLUE protocol messages that have been defined up to now are the
 following:

 o OPTIONS

 o OPTIONS RESPONSE

 o ADVERTISEMENT (ADV)

 o ADVERTISEMENT ACKNOWLEDGE (ACK)

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 6]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 o CONFIGURE (CONF)

 o CONFIGURE RESPONSE

 o READV

 o READV RESPONSE

 While the OPTIONS and OPTIONS RESPONSE messages are exchanged in the
 initiation phase between the CPs, the other messages are involved in
 MP-MC dialogues.

 Each CLUE message inherits a basic structure depicted in the
 following figure:

<!-- CLUE MESSAGE TYPE -->
<xs:complexType name="clueMessageType" abstract="true">
<xs:sequence>
<xs:element name="clueId" type="xs:string"/>
<xs:element name="sequenceNr" type="xs:unsignedInt"/>
</xs:sequence>
<xs:attribute name="protocol" type="xs:string" fixed="CLUE" use="required"/>
<xs:attribute name="v" type="xs:string" use="required"/>
</xs:complexType>

 The basic structure determines the mandatory information that is
 carried within each CLUE message. Such an information is made by:

 o clueId: an XML element containing the identifier of the CP within
 the telepresence system;

 o sequenceNr: an XML element containing the local message sequence
 number;

 o protocol: a mandatory attribute set to "CLUE" identifying the
 procotol the messages refer to;

 o v: a mandatory attribute carrying the version of the protocol

 Each CP should manage uo to three streams of sequence numbers: (i)
 one for the messages exchanged in the initiation phase, (ii) one for
 the messages exchanged as MP, and (iii) one for the messages
 exchanged as MC.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 7]

Internet-Draft draft-presta-clue-protocol-04 May 2014

4.1. OPTIONS

 The OPTIONS message is sent by the CP which is the CI to the CP which
 is the CR as soon as the CLUE data channel is ready. Besides the
 information envisioned in the basic structure, it specifies:

 o mediaProvider: a mandatory boolean field set to "true" if the CP
 is able to act as a MP

 o mediaConsumer: a mandatory boolean field set to "true" if the CP
 is able to act as a MC

 o supportedVersions: the list of the supported versions

 o supportedOptions: the list of the supported options

 The XML Schema of such a message is reported below:

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 8]

Internet-Draft draft-presta-clue-protocol-04 May 2014

<!-- CLUE OPTIONS -->
<xs:complexType name="optionsMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="mediaProvider" type="xs:boolean"/>
<xs:element name="mediaConsumer" type="xs:boolean"/>
<xs:element name="supportedVersions" type="versionsListType" minOccurs="0"/>
<xs:element name="supportedOptions" type="optionsListType" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- VERSIONS LIST TYPE -->
<xs:complexType name="versionsListType">
<xs:sequence>
<xs:element name="version" type="xs:string" minOccurs="1"
 maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<!-- OPTIONS LIST TYPE -->
<xs:complexType name="optionsListType">
<xs:sequence>
<xs:element name="option" type="optionType" minOccurs="1"
 maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<!-- OPTION TYPE -->
<xs:complexType name="optionType">
<xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="schemaRef" type="xs:anyURI" minOccurs="0"/>
<xs:element name="version" type="xs:string" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 9]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 <supportedVersions> contains the list of the versions that are
 supported by the CI. Only one <version> element SHOULD be provided
 for each major version supported, containing the maximum minor
 version number of such a version, since all minor versions are
 backward compatible. If no <supportedVersions> is carried whithin
 the OPTIONS message, the CI supports only the version declared in the
 "v" attribute. For example, if the "v" attribute has a value of
 "3.4" and there is not a <supportedVersions> tag in the OPTIONS
 message, it means the CI supports only major version 3 with all the
 minor versions comprised between 3.0 the 3.4 included. If a
 <supportedVersion> is provided, at least one <version> tag MUST be
 included.

 The <supportedOptions> element specifies the list of the options
 supported by the CI. If there is no <supportedOptions> in the
 OPTIONS message, the CI does not support anything more than what is
 envisioned in the versions it supports. For each option, an <option>
 element is provided. An option is characterized by a name, an XML
 schema of reference where the option is defined, and the version of
 the protocol which the option refers to. [to be discussed: difference
 between options and extensions]

4.2. OPTIONS RESPONSE

 The OPTIONS RESPONSE is sent by a CR to a CI as a reply to the
 OPTIONS message. As depicted in the figure below, the OPTIONS
 RESPONSE contains mandatorily a response code and a response string
 indicating the processing result of the OPTIONS message. Following,
 the CR attaches two boolean tags, <mediaProvider> and
 <mediaConsumer>, expressing the supported roles in terms of
 respectively MP and MC, similarly to what the CI does in the OPTIONS
 message. Finally, the highest commonly supported version number is
 expressed in the <version> field and just the commonly supported
 options in the <commonOptions> field.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 10]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 <!-- CLUE OPTIONS RESPONSE (2 WAY) -->
 <xs:complexType name="optionsResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="responseCode" type="xs:string"/>
 <xs:element name="reasonString" type="xs:string"/>
 <xs:element name="mediaProvider" type="xs:boolean" minOccurs="0"/>
 <xs:element name="mediaConsumer" type="xs:boolean" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 <xs:element name="commonOptions" type="optionsListType" minOccurs="0"/>
 <xs:any namespace="##other"
 processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 After the reception of such message, the version to be used is
 determined by each part of the conversation. Indeed, it is the one
 provided in the <version> tag of the OPTIONS RESPONSE message. The
 following CLUE messages will use such a version number in the "v"
 attribute. The allowed options in the CLUE dialogue will be those
 indicated in the <commonOptions> of the OPTIONS RESPONSE message.

4.3. ADVERTISEMENT

 This message is used by the MP to advertise the available media
 captures and related information to the MC. The MP sends to the MC
 an ADV as soon as it is ready after the successful completion of the
 initiation phase. During the telepresence session, the ADV can be
 sent from the MP both periodically and on a per-event basis, i.e.,
 each time there are changes in the MP's CLUE telepresence
 capabilities.

 The ADV structure is defined in the picture below. The ADV contains
 elements compliant with the CLUE data model that characterize the
 MP's telepresence offer. Namely, such elements are: the list of the
 media captures (<mediaCaptures>), of the encoding groups
 (>encodingGroups>), of the capture scenes (>captureScenes>) and of
 the global capture entries (>globalCaptureEntries>), and the list of
 the represented participants (>participants>). Each of them is fully
 described in the CLUE framework document and formally defined in the
 CLUE data model document.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 11]

Internet-Draft draft-presta-clue-protocol-04 May 2014

<!-- CLUE ADVERTISEMENT MESSAGE TYPE -->
<xs:complexType name="advertisementMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<!-- mandatory fields -->
<xs:element name="mediaCaptures" type="dm:mediaCapturesType"/>
<xs:element name="encodingGroups" type="dm:encodingGroupsType"/>
<xs:element name="captureScenes" type="dm:captureScenesType"/>
<xs:element name="simultaneousSets" type="dm:simultaneousSetsType"
 minOccurs="0"/>
<xs:element name="globalCaptureEntries" type="dm:globalCaptureEntriesType"
 minOccurs="0"/>
<xs:element name="participants" type="dm:participantsType" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

 [to be discussed: a "delta" mechanism for advertising only the
 changes with respect to the previous notification should be adopted.
 Similar approaches have been proposed for partial notifications in
 centralized conferencing frameworks ([RFC6502]), leveraging the XML
 diff codification mechanism defined in [RFC5261]].

4.4. ADVERTISEMENT ACKNOWLEDGEMENT

 The ACK message is sent by a MC to a MP to acknowledge an ADV
 message. As it can be seen from the message schema provided in the
 following, the ACK contains a response code and a reason string for
 describing the processing result of the ADV. The <advSequenceNr>
 carries the sequence number of the ADV the ACK refers to.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/rfc6502
https://datatracker.ietf.org/doc/html/rfc5261

Presta & Romano Expires November 10, 2014 [Page 12]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 <!-- ADV ACK MESSAGE TYPE -->
 <xs:complexType name="advAcknowledgementMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="responseCode" type="xs:short"/>
 <xs:element name="reasonString" type="xs:string"/>
 <xs:element name="advSequenceNr" type="xs:unsignedInt"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

4.5. CONFIGURE

 The CLUE CONFIGURE message is sent from a MC to a MP to list the
 advertised captures the MC wants to receive. The MC can send a CONF
 after the reception of an ADV or each time it wants to request other
 captures that have been previously advertised by the MP. The content
 of the CONF message is shown below.

 <!-- CLUE CONFIGURE MESSAGE TYPE -->
 <xs:complexType name="configureMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <!-- mandatory fields -->
 <xs:element name="advSequenceNr" type="xs:unsignedInt"/>
 <xs:element name="ack" type="xs:boolean" minOccurs="0" fixed="true"/>
 <xs:element name="captureEncodings" type="dm:captureEncodingsType"
 minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 In the >advSequenceNr< element is contained the sequence number of
 the ADVERTISEMENT or of the READV RESPONSE message the CONFIGURE
 refers to.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 13]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 The optional boolean <ack> element, set to "true", if present,
 indicates that the CONF message also acknowledge the referred
 advertisement, by applying in that way a piggibacking mechanism for
 simultaneously acknowledging and replying to the ADV message. The
 <ack> element SHOULD not be present at all if an ADV ACK message has
 been already sent back to the MP and if the CONFIGURE refers to a
 READV RESPONSE message.

 The most important content of the CONFIGURE message is the list of
 the capture encodings provided in the <captureEncodings> element.
 Such an element is defined in the CLUE data model document and
 contains a sequence of capture encodings, representing the streams to
 be instantiated.

4.6. CONFIGURE RESPONSE

 <!-- CONFIGURE RESPONSE MESSAGE TYPE -->
 <xs:complexType name="configureResponseMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="responseCode" type="xs:short"/>
 <xs:element name="reasonString" type="xs:string"/>
 <xs:element name="confSequenceNr" type="xs:integer"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 The CONF RESPONSE message is sent from the MP to the MC to
 communicate the processing result of requests carried in the
 previously received CONF message. It contains a response code with a
 reason string indicating either the success or the failure (along
 with failure details) of a CONF request processing. Following, the
 <confSequenceNr> field contains the number of the CONF message the
 response refers to.

4.7. READV

 The READV message is a request the MC issues to the MP to retrieve an
 updated version of the MP's telepresence offer. The content of the
 READV message is specified in the following.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 14]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 <!-- CLUE READV MESSAGE TYPE -->
 <xs:complexType name="readvMessageType">
 <xs:complexContent>
 <xs:extension base="clueMessageType">
 <xs:sequence>
 <xs:element name="lastReceivedAdv" type="xs:short"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 The <lastReceivedAdv> element specifies the sequence number of the
 last ADVERTISEMENT or READV RESPONSE correctly received by the MC.

4.8. READV RESPONSE

 The READV RESPONSE is sent by the MP to the MC to reply to a READV
 message. As shown in the schema below, it contains, besides a
 response code and a reason string, all the information carried within
 an ADVERTISEMENT message (media captures, encoding groups, and so
 on). If there are no updates with respect to the last telepresence
 offer successfully delivered to the MC (i.e, that having the sequence
 number specified in the <lastReceiveAdv> field of the READV message),
 the READV RESPONSE SHOULD carry only the response code with the
 reason string.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 15]

Internet-Draft draft-presta-clue-protocol-04 May 2014

<!-- CLUE READV RESPONSE MESSAGE TYPE -->
<xs:complexType name="readvResponseMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:short"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="readvSequenceNr" type="xs:string" minOccurs="0"/>
<xs:element name="mediaCaptures" type="dm:mediaCapturesType" minOccurs="0"/>
<xs:element name="encodingGroups" type="dm:encodingGroupsType" minOccurs="0"/>
<xs:element name="captureScenes" type="dm:captureScenesType" minOccurs="0"/>
<xs:element name="simultaneousSets" type="dm:simultaneousSetsType"
minOccurs="0"/>
<xs:element name="globalCaptureEntries" type="dm:globalCaptureEntriesType"
minOccurs="0"/>
<xs:element name="participants" type="dm:participantsType" minOccurs="0"/>
<xs:any namespace="##other"
 processContents="lax" minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

4.9. Response codes and reason strings

 Examples of response codes and strings are provided in the following
 table. Response codes can be designed by adhering to the HTTP
 semantics, as shown below.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 16]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 +-----------------+----------------------+--------------------------+
Response code	Response string	Description
+-----------------+----------------------+--------------------------+		
410	Bad syntax	The XML syntax of the
		CONF message is not
		correct.
+-----------------+----------------------+--------------------------+		
411	Invalid value	The CONF message
		contains an invalid
		parameter value.
+-----------------+----------------------+--------------------------+		
412	Invalid identifier	The identifier used for
		requesting a capture is
		not valid or unknown.
+-----------------+----------------------+--------------------------+		
413	Conflicting values	The CONF message
		contains values that
		cannot be used together.
+-----------------+----------------------+--------------------------+		
420	Invalid sequencing	The sequence number of
		the CONF message is out
		of date or corresponds
		to an obsoleted ADV.
+-----------------+----------------------+--------------------------+		
510	Version not supported	The CLUE protocol
		version of the CONF
		message is not supported
		by the MP.
+-----------------+----------------------+--------------------------+		
511	Option not supported	The option requested in
		the CONF message is not
		supported by the MP.
 +-----------------+----------------------+--------------------------+

 ... TBC.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 17]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 +---------------+------------------------+
Response code	Description
family	
+---------------+------------------------+	
1XX	Temporary info
+---------------+------------------------+	
2XX	Success
+---------------+------------------------+	
3XX	Redirection
+---------------+------------------------+	
4XX	Client error
+---------------+------------------------+	
5XX	Server error
 +---------------+------------------------+

5. Protocol state machines

 The CLUE protocol is an application protocol used between two CPs in
 order to properly configure a multimedia telepresence session. CLUE
 protocol messages flow upon the CLUE Data Channel, a DTLS/SCTP
 channel established as depicted in [I-D.kyzivat-clue-signaling].
 Over such a channel there are typically two CLUE streams between the
 channel terminations flowing in opposite directions. In other words,
 typically, both channel terminations act simultaneously as a MP and
 as a MC. We herein discuss the state machines associated,
 respectively, with the CLUE Participant, with MC process and with the
 MP process.

6. CLUE Participant's state machine

 The main state machines focus on describing the states of CLUE
 channel from a CLUE channel initiator/receiver. In the IDLE state,
 when the CP has established a CLUE channel, the main state moves to
 the ESTABLISHED state. When in the ESTABLISHED state, if the CP is
 the Channel Initiator (CI), it prepares sending an OPTIONS message
 for version negotiation; otherwise, if the is the Channel Receiver

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 18]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 (CR), it listens to the channel for an OPTIONS message for version
 negotiation. If an OPTIONS message is sent or is received, the CP
 moves to the NEGOTIATING state. If the CP checks some error in the
 request message received, the main state goes back to the IDLE state.
 [TODO: check this] When in the NEGOTIATING state, the CR prepares an
 OPTIONS RESPONSE message while the CI listens to the channel for an
 OPTIONS RESPONSE. If an OPTIONS RESPONSE message for version
 negotiation is sent or is received, the main state moves to the
 ACTIVE state. If the CI checks some error in the OPTIONS RESPONSE
 message received or receives an OPTIONS RESPONSE indicating an error,
 it goes back to the IDLE state. When the CP enters in the ACTIVE
 state, it creates two sub state machines which are the MC state
 machine and the MP state machine, accordingly to the supported roles.
 When in the ACTIVE state, if the CP receives a further OPTIONS
 message for version negotiation or a further OPTIONS RESPONSE
 messages for version negotiation, it MUST ignore the messages and
 keep in the ACTIVE state. When in the ACTIVE state, the CP delegates
 the sending and the processing of the CLUE messages the appropriate
 MP/MC sub-state machines. The TERMINATED state is reachable from
 each of the aforementioned states whenever the session is canceled or
 released. The IDLE state is reachable from each of the
 aforementioned states whenever the underlying channel is closed due
 to connection error. [TODO: CLUE messages to cancel/release the
 session] [TODO: check the diagram]

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 19]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 +-------------+<------------------------------+---------+
 +----------->+ IDLE +<--------------------------+ + TIMEOUT +
 | +------+------+<-----------+ | +------+--+
 | | | | |
 | | | | |
 Connection CLUE | | |
 error channel | | |
 | has been established | | | |
 | | | | |
 | V Receive error | |
 +------------+-------------+ (version mismatch, | |
 +------------------+ ESTABLISHED + missing elements,...) | time
out
+------+------+			
		Connection	
		error	
Send/Receive OPTIONS			
V			
+-------------+------------+			
+------------+ NEGOTIATING +---------------------------+			
	+------+------+---------------------------	----------+	
	Receive/Send Connection		
	OPTIONS RESPONSE error		
Session			
ends	V		
	+-------------+---------------------------+		
		ACTIVE +<-------------------+	
		+-------+	Receive OPTIONS/
			SUBIDLE
Session		MC	+--------------------+
ends	+-------+		
		+-------+ +<-------------------+	
			SUBIDLE
			MP
		+-------+	
	+------+------+--------------------+		
	Session		
	ends		
	V		
	+-------------+		
+----------->+ TERMINATED +			
 +----------------->+-------------+

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 20]

Internet-Draft draft-presta-clue-protocol-04 May 2014

6.1. Media Consumer's state machine

 An MC in the WAIT FOR ADV state is waiting for an ADV coming from the
 MP. If the timeout expires ("timeout"), the MC switches to the
 TIMEOUT state.

 In the TIMEOUT state, if the number of trials is below the retry
 threshold, the MC sends a READV message to the MP ("send RE-ADV"),
 switching back to the WAIT FOR ADV. Otherwise, the MC moves to the
 TERMINATED state.

 When the ADV has been received ("receive ADV"), the MC goes into the
 ADV RECEIVED state. The ADV is then parsed. If something goes wrong
 with the ADV (bad syntax, missing XML elements, etc.), the MC sends a
 NACK message (an ACK with an error response code) to the MP
 specifying the encountered problem via a proper reason phrase. In
 this way, the MC switches back to the WAIT FOR ADV state, waiting for
 a new copy of the ADV. If the ADV is successfully processed, the MC
 issues a successful ACK message to the MP and moves to the ADV ACKED
 state. When the SDP information arrives, from the ADV RECEIVED or
 the ADV ACKED state the MC switches to the READY TO CONF state. When
 the CONF request is ready, the MC sends it and moves to the TRYING
 state. If the ADV has not been already sent, the MC can piggyback
 the ACK message within the CONF request.

 While in the TRYING state, the MC is waiting for a CONF RESPONSE
 message (to the issued CONF) from the MP. If the timeout expires
 ("timeout"), the MC moves to the TIMEOUT state and sends a READV in
 order to solicit a new ADV from the MP. If a CONF RESPONSE with an
 error code is received ("receive 4xx, 5xx not supported"), then the
 MC moves back to the ADV RECEIVED state and produces a new CONF
 message to be sent to the MP. If a successful CONF RESPONSE arrives
 ("receive 200 OK"), the MC gets into the CONF COMPLETED state. state.

 When the MC is in the CONF COMPLETED state, it means that the
 telepresence session configuration has been set up according to the
 MC's preferences. Both the MP and the MC have agreed on (and are
 aware of) the media streams to be exchanged within the call. If the
 MC decides to change something in the call settings, it issues a new
 CONF ("send CONF") and moves back to the TRYING state. If a new ADV
 arrives from the MP ("receive ADV"), it means that something has
 changed on the MP's side. The MC then moves to the ADV RECEIVED
 state and prepares a new CONF taking into account the received
 updates. When the underlying channel is closed, the MC moves into
 the TERMINATED state.

 The TERMINATED state is reachable from each of the aforementioned
 states whenever the underlying channel is closed. The corresponding

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 21]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 transitions have not been reported for the sake of simplicity. This
 termination condition is a temporary solution.

 +-----+
 +---------------+-------------timeout------>+----+--+ |
 | WAIT FOR ADV |<----+ |TIMEOUT| |
 +---------------+<----+--------send---------+-------+ |
 | | RE-ADV(refresh) ^ | |
 | | | |
 | | | |
 receive send | |
 ADV NACK | |
 +---receive-------+ | (missing elements, | |
 | error RESP | | invalid area,...) | |
 | v v | | |
 +----------------+---------+----+ +--------+ | |
 +---------------->| ADV |---send--->| ADV | timeout |
 | | RECEIVED| ACK | ACKED | | |
 | +---------->| | | | | |
 | recv +----->+-----+---+<--recv----+----+---+ | |
 | error | | ADV | | |
 | CONF | | | | |
 | | | SDP info SDP info | |
 | | | received received | |
 | | | | +--------+ | | +
 + | + +---->|READY TO|<----+ + |
 | | | | CONF | | |
 | + | +-----+--------+-----+ + |
 | | | | + + |
 | | + | | + +
 + + | + | | |
 receive | | send send| | |
 ADV | | CONF+ACK CONF| | |
 | | | | | | |
 | | receive v | | |
 | | ADV +-----------+<----------+ | |
 | | | | |+-------------------------+ |
 | +----|--------+| TRYING | |
 +----------|---------| | |
 +---|---------+-----------+ |
 | | | ^ | |
 | | | | |
 | | | | |
 receive| | receive send retry
 error RESP,| 200 OK CONF expires

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 22]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 retry | | | | |
 expired| | | | |
 | | | | |
 | | v | |
 | | +---------+ | |
 | +-------| CONF | | |
 | |COMPLETED|---+ |
 | +---------+ |
 | | |
 | | |
 | | |
 | | |
 | connection |
 | closed |
 | | |
 | | |
 | | |
 | | |
 | | |
 | v |
 | +----------+<---------------------------------+
 +----------->+TERMINATED|
 +----------+

6.2. Media Provider's state machine

 In the PREPARING ADV state, the MP is preparing the ADV message
 reflecting the actual telepresence capabilities. After the ADV has
 been sent, the MP moves to the WAIT FOR ACK state. If the ACK
 arrives, the MP moves to the WAIT FOR CONF state. If a NACK arrives,
 it goes back to the PREPARING ADV state.

 When in the WAIT FOR ACK state, if a CONF or a CONF+ACK arrives, the
 MP switch to the CONF RECEIVED state directly.

 When in the WAIT FOR CONF state, the MP is listening to the channel
 for a CONF coming from the MC. If a RE-ADV is received, the MP goes
 back to the IDLE state and issues an ADV again. If telepresence
 settings change in the meanwhile, it moves back to the PREPARING ADV
 state and prepares a new ADV to be sent to the MC. If a CONF
 arrives, the MP switches to the CONF RECEIVED state. If nothing
 happens and the timeout expires, than the MC falls into the TIMEOUT
 state.

 In the TIMEOUT state, if the number of trials does not exceed the
 retry threshold, the MC comes back to the PREPARING ADV state for
 sending a new ADV. Otherwise, it goes to the TERMINATED state.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 23]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 The MP in the CONF RECEIVED state is processing the received CONF in
 order to produce a CONF RESPONSE message. If the MP is fine with the
 MC's configuration, then it sends back a 200 OK successful CONF
 RESPONSE and moves to the IN CALL state. If there are errors duting
 CONF processing, then the MC returns a CONF RESPONSE carrying an
 error response code. Finally, if there are changes in the
 telepresence settings, it goes back to the PREPARING ADV state to
 issue an updated ADV.

 When in the CONF COMPLETED state, the MP has successfully configured
 the telepresence session according to the MC's specifications. If a
 new CONF arrives, it switches to the CONF RECEIVED state to analyze
 the new request. If a RE-ADV arrives, or some modifications are
 applied to the telepresence options, then it moves to the PREPARE-ADV
 state to issue the ADV. When the channel is terminated, the MP falls
 into the TERMINATED state.

 The TERMINATED state is reachable from each of the aforementioned
 states whenever the underlying channel is closed. The corresponding
 transitions have not been reported for the sake of simplicity. This
 termination condition is a temporary solution.

 +-----------+
 | |
 | PREPARING |
 +----------------->| ADV |<--------------------------+
 | +------------->| |<-----------retry----------+---------+
	+----->		<--+ not		
		+-----------+	expired		
	change send receive	++------+			
	telepresence ADV NACK		TIMEOUT		
	settings			++--+---+	
					^
		v			
		+-------------+---+			
	+----+ WAIT FOR +------------timeout--------+---------+				
	+--+ ACK				
 change | +-------+-----+ | |
 telepresence | | | |
 settings | recv | +
 + + | ACK + |
 | | | | | |
 | | | v | |

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 24]

Internet-Draft draft-presta-clue-protocol-04 May 2014

		+-----------+			
	recv	WAIT FOR			
			CONF	<-+	
	CONF+ACK +----+------+				
			+		
 + | | receive CONF error, + |
 | + | CONF retry not expired, | +
 | | | | send error RESP | | |
 | | | | | | |
 | | | | | | |
 | | | v | | |
 | | +--->+-----------+---+ | |
 +---+-------------+| CONF | | |
 | +----->| RECEIVED |----CONF error, | | |
 | | +-----+-----+ retry expired | |
 | | | + | |
 | | | | | |
 | | | | | |
 receive receive send | | |
 RE-ADV CONF 200 OK | | retry|
 | | | | | expired
 | | | | | |
 | | | | | |
 | | v | | |
 | | +----------+ | change | |
 | +-------| CONF |----|---telepresence-------+ |
 +---------------| COMPLETED| | settings |
 +----------+ | |
 | | |
 | | |
 | | |
 connection | |
 closed | |
 | | |
 | | |
 v | +
 +----------------+<-+ |
 | TERMINATED |<-------------------------------------+
 | |
 +----------------+

7. Versioning

 CLUE protocol messages are XML messages compliant to the CLUE
 protocol XML schema. The version of the protocol corresponds to the
 version of the schema. Both client and server have to test the

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 25]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 compliance of the received messages with the XML schema of the CLUE
 protocol. If the compliance is not verified, the message cannot be
 processed further.

 Obviously, client and server can not communicate if they do not share
 exactly the same XML schema. Such a schema is the one included in
 the yet to come RFC, and associated with the CLUE URN
 "urn:ietf:params:xml:ns:clue-message". If all CLUE-enabled devices
 use that schema there will be no interoperability problems due to
 schema issues.

 The version of the XML schema contained in the standard document
 deriving from this draft will be 1.0. The version usage is similar
 in philosophy to XMPP (RFC6120). A version number has major and
 minor components, each a non-negative integer. Major version changes
 denote non-interoperable changes. Minor version changes denote
 schema changes that are backward compatible by ignoring unknown XML
 elements, or other backward compatible changes.

 The minor versions of the XML schema MUST be backward compatible, not
 only in terms of schema but also semantically and procedurally as
 well. This means that they should define further features and
 functionality besides those defined in the previous versions, in an
 incremental way, without impacting the basic rules defined in the
 previous version of the schema. In this way, if a MP is able to
 speak, e.g., version 1.5 of the protocol while the MC only
 understands version 1.4, the MP should have no problem in reverting
 the dialogue to version 1.4 without exploiting 1.5 features and
 functionality.

 It is expected that, before the CLUE protocol XML schema reaches a
 steady state, prototypes developed by different organizations will
 conduct interoperability testing. In that case, in order to
 interoperate, they have to be compliant to the current version of the
 XML schema, i.e., the one copied in the most up-to-date version of
 the draft defining the CLUE protocol. The versions of the non-
 standard XML schema will be numbered as 0.01, 0.02, and so on.
 During the standard development phase, the versions of the XML schema
 will probably not be backward compatible so it is left to prototype
 implementers the responsibility of keeping their products up to date.

8. Extensions and options

 Although the standard version of the CLUE protocol XML schema will be
 designed to thoroughly cope with the requirements emerging from the
 application domain, new needs might arise and extensions can be
 designed. Extensions specify information and behaviors that are not
 described in a certain version of the protocol. They can relate to:

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/rfc6120

Presta & Romano Expires November 10, 2014 [Page 26]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 the information carried in the existing messages (for example, we
 may want to add more fields within an existing message);

 the meaning of the messages. This is the case if there is no
 proper message for a certain task, so a brand new CLUE message
 needs to be defined.

 As to the first type of extensions, it is possible to distinguish
 between protocol specific- and data model information. Indeed, CLUE
 messages are envelopes carrying both:

 (i) XML elements defined within the CLUE protocol XML schema
 itself (protocol-specific information)

 (ii) other XML elements compliant to the CLUE data model schema
 (data model information)

 When new protocol-specific information is needed somewhere in the
 protocol messages, it can be added in place of the <any> elements and
 <anyAttribute> elements envisioned by the protocol schema. The
 policy currently defined in the protocol schema for handling <any>
 and <anyAttribute> elements is:

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 In that case, the new information must be qualified by namespaces
 other than "urn:ietf:params:xml:ns:clue-message" (the protocol URN)
 and "urn:ietf:params:xml:ns:clue-info" (the data model URN).
 Elements or attributes from unknown namespaces MUST be ignored.

 The other matter concerns data model information. Data model
 information is defined by the XML schema associated with the URN
 "urn:ietf:params:xml:ns:clue-info". Also for the XML elements
 defined in such a schema there are extensibility issues. Those
 issues are overcome by using <any> and <anyAttribute> placeholders.
 Similarly to what said before, new information within data model
 elements can be added in place of <any> and <anyAttribute> schema
 elements, as long as they are properly namespace qualified.

 On the other hand (second type of extensions), "extra" CLUE protocol
 messages, i.e., messages not envisioned in the last standard version
 of the schema, can be needed. In that case, the messages and the
 associated behavior should be defined in external documents that both
 the communication parties must be aware of.

 Both the types of extensions, i.e., the information and the protocol

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 27]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 extensions, can be characterized by:

 a name;

 an external XML Schema defining the XML information and/or the XML
 messages representing the extension;

 the standard version of the protocol the extension refers to.

 For that reason, the extensions can be represented by means of the
 <option> element as defined below, which is carried within the
 OPTIONS and OPTIONS RESPONSE messages to represent the extensions
 supported by the CI and by the CR.

 <!-- OPTION TYPE -->
 <xs:complexType name="optionType">
 <xs:sequence>
 <xs:element name="name" type="xs:string" />
 <xs:element name="schemaRef" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="version" type="xs:string" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

9. XML Schema

 In this section, the XML schema defining the CLUE messages is
 provided.

<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema
version="0.02"
targetNamespace="urn:ietf:params:xml:ns:clue-message"
xmlns:tns="urn:ietf:params:xml:ns:clue-message"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dm="urn:ietf:params:xml:ns:clue-info"
xmlns="urn:ietf:params:xml:ns:clue-message"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!-- Import data model schema -->
<xs:import namespace="urn:ietf:params:xml:ns:clue-info"

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 28]

Internet-Draft draft-presta-clue-protocol-04 May 2014

schemaLocation="data-model-schema-05.xsd"/>

<!-- ELEMENT DEFINITIONS -->
<xs:element name="options" type="optionsMessageType"/>
<xs:element name="optionsResponse" type="optionsResponseMessageType"/>
<!--<xs:element name="optionsAck" type="optionsAcknowledgementMessageType"/>-->
<xs:element name="advertisement" type="advertisementMessageType"/>
<xs:element name="ack" type="advAcknowledgementMessageType"/>
<xs:element name="configure" type="configureMessageType"/>
<xs:element name="configureResponse" type="configureResponseMessageType"/>
<xs:element name="readv" type="readvMessageType"/>
<xs:element name="readvResponse" type="readvResponseMessageType"/>

<!-- CLUE MESSAGE TYPE -->
<xs:complexType name="clueMessageType" abstract="true">
<xs:sequence>
<xs:element name="clueId" type="xs:string"/>
<xs:element name="sequenceNr" type="xs:unsignedInt"/>
</xs:sequence>
<xs:attribute name="protocol" type="xs:string" fixed="CLUE" use="required"/>
<xs:attribute name="v" type="xs:string" use="required"/>
</xs:complexType>

<!-- CLUE OPTIONS -->
<xs:complexType name="optionsMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="mediaProvider" type="xs:boolean"/>
<xs:element name="mediaConsumer" type="xs:boolean"/>
<xs:element name="supportedVersions" type="versionsListType" minOccurs="0"/>
<xs:element name="supportedOptions" type="optionsListType" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- VERSIONS LIST TYPE -->
<xs:complexType name="versionsListType">
<xs:sequence>
<xs:element name="version" type="xs:string" minOccurs="1"
 maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 29]

Internet-Draft draft-presta-clue-protocol-04 May 2014

<!-- OPTIONS LIST TYPE -->
<xs:complexType name="optionsListType">
<xs:sequence>
<xs:element name="option" type="optionType" minOccurs="1"
 maxOccurs="unbounded"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<!-- OPTION TYPE -->
<xs:complexType name="optionType">
<xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="schemaRef" type="xs:anyURI" minOccurs="0"/>
<xs:element name="version" type="xs:string" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:complexType>

<!-- CLUE OPTIONS RESPONSE (2 WAY) -->
<xs:complexType name="optionsResponseMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:string"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="mediaProvider" type="xs:boolean" minOccurs="0"/>
<xs:element name="mediaConsumer" type="xs:boolean" minOccurs="0"/>
<xs:element name="version" type="xs:string" minOccurs="0"/>
<xs:element name="commonOptions" type="optionsListType" minOccurs="0"/>
<xs:any namespace="##other"
processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- CLUE OPTIONS RESPONSE (3 WAYS) -->
<!-- <xs:complexType name="optionsResponseMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="mediaProvider" type="xs:boolean"/>
<xs:element name="mediaConsumer" type="xs:boolean"/>
<xs:element name="supportedVersions" type="versionsListType"

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 30]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 minOccurs="0"/>
<xs:element name="supportedOptions" type="optionsListType" minOccurs="0"/>
<xs:any namespace="##other"
processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
 -->

<!-- CLUE OPTIONS ACK (3 WAYS)-->
<!--
<xs:complexType name="optionsAckMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:string"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="version" type="xs:string" minOccurs="0"
 maxOccurs="1"/>
<xs:element name="commonOptions" type="supportedOptionsType" minOccurs="0"/>
<xs:any namespace="##other"
processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>
 -->

<!-- CLUE ADVERTISEMENT MESSAGE TYPE -->
<xs:complexType name="advertisementMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<!-- mandatory fields -->
<xs:element name="mediaCaptures" type="dm:mediaCapturesType"/>
<xs:element name="encodingGroups" type="dm:encodingGroupsType"/>
<xs:element name="captureScenes" type="dm:captureScenesType"/>
<xs:element name="simultaneousSets" type="dm:simultaneousSetsType"
 minOccurs="0"/>
<xs:element name="globalCaptureEntries" type="dm:globalCaptureEntriesType"
 minOccurs="0"/>
<xs:element name="participants" type="dm:participantsType" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 31]

Internet-Draft draft-presta-clue-protocol-04 May 2014

</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- ADV ACK MESSAGE TYPE -->
<xs:complexType name="advAcknowledgementMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:short"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="advSequenceNr" type="xs:unsignedInt"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- CLUE CONFIGURE MESSAGE TYPE -->
<xs:complexType name="configureMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<!-- mandatory fields -->
<xs:element name="advSequenceNr" type="xs:unsignedInt"/>
<xs:element name="ack" type="xs:boolean" minOccurs="0" fixed="true"/>
<xs:element name="captureEncodings" type="dm:captureEncodingsType"
 minOccurs="0"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- CONFIGURE RESPONSE MESSAGE TYPE -->
<xs:complexType name="configureResponseMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:short"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="confSequenceNr" type="xs:integer"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

Presta & Romano Expires November 10, 2014 [Page 32]

Internet-Draft draft-presta-clue-protocol-04 May 2014

</xs:complexContent>
</xs:complexType>

<!-- CLUE READV MESSAGE TYPE -->
<xs:complexType name="readvMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="lastReceivedAdv" type="xs:short"/>
<xs:any namespace="##other" processContents="lax" minOccurs="0"/>
</xs:sequence>
<xs:anyAttribute namespace="##other" processContents="lax"/>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<!-- CLUE READV RESPONSE MESSAGE TYPE -->
<xs:complexType name="readvResponseMessageType">
<xs:complexContent>
<xs:extension base="clueMessageType">
<xs:sequence>
<xs:element name="responseCode" type="xs:short"/>
<xs:element name="reasonString" type="xs:string"/>
<xs:element name="readvSequenceNr" type="xs:string" minOccurs="0"/>
<xs:element name="mediaCaptures" type="dm:mediaCapturesType" minOccurs="0"/>
<xs:element name="encodingGroups" type="dm:encodingGroupsType" minOccurs="0"/>
<xs:element name="captureScenes" type="dm:captureScenesType" minOccurs="0"/>
<xs:element name="simultaneousSets" type="dm:simultaneousSetsType"
minOccurs="0"/>
<xs:element name="globalCaptureEntries" type="dm:globalCaptureEntriesType"
minOccurs="0"/>
<xs:element name="participants" type="dm:participantsType" minOccurs="0"/>
<xs:any namespace="##other"
 processContents="lax" minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:schema>

10. Diff with the -03 version

 1. The XML Schema has been deeply revised and completed.

 2. The descriptions of the CLUE messages have been added.

 3. The distinction between major version numbers and minor version

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04

 numbers has been cut and pasted from

Presta & Romano Expires November 10, 2014 [Page 33]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 [I-D.kyzivat-clue-signaling].

 4. Besides the two way one, a three way mechanism for the options
 negotiation has been proposed and provided to foster discussion.

11. Diff with the -02 version

 1. "Terminology" section added.

 2. Introduced the concept of "CLUE Participant" - an Endpoint or a
 MCU able to use the CLUE protocol within a telepresence session.
 A CLUE Participant can act as a Media Provider and/or as a Media
 Consumer.

 3. INtroduced the ACK/NACK mechanism for the ADVERTISEMENT.

 4. MP and MC state machines have been updated. The CP state machine
 has been added.

12. Acknowledgments

 The authors thank all the CLUErs for their precious feedbacks and
 support, in particular Paul Kyzivat, Christian Groves and Scarlett
 Liuyan.

13. Informative References

 [I-D.ietf-clue-data-model-schema] Presta, R. and S. Romano,
 "An XML Schema for the
 CLUE data model", draft-

ietf-clue-data-model-
 schema-04 (work in
 progress), March 2014.

 [I-D.ietf-clue-datachannel] Holmberg, C., "CLUE
 Protocol Data Channel", dr
 aft-ietf-clue-datachannel-
 00 (work in progress),
 March 2014.

 [I-D.ietf-clue-framework] Duckworth, M., Pepperell,
 A., and S. Wenger,
 "Framework for
 Telepresence Multi-
 Streams", draft-ietf-clue-

framework-14 (work in
 progress), February 2014.

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/draft-ietf-clue-data-model
https://datatracker.ietf.org/doc/html/draft-ietf-clue-data-model
https://datatracker.ietf.org/doc/html/draft-ietf-clue-framework-14
https://datatracker.ietf.org/doc/html/draft-ietf-clue-framework-14

Presta & Romano Expires November 10, 2014 [Page 34]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 [I-D.ietf-clue-telepresence-requirements] Romanow, A., Botzko, S.,
 and M. Barnes,
 "Requirements for
 Telepresence Multi-
 Streams", draft-ietf-clue-

telepresence-requirements-
 07 (work in progress),
 December 2013.

 [I-D.kyzivat-clue-signaling] Kyzivat, P., Xiao, L.,
 Groves, C., and R. Hansen,
 "CLUE Signaling", draft-

kyzivat-clue-signaling-08
 (work in progress),
 April 2014.

 [RFC3550] Schulzrinne, H., Casner,
 S., Frederick, R., and V.
 Jacobson, "RTP: A
 Transport Protocol for
 Real-Time Applications",
 STD 64, RFC 3550,
 July 2003.

 [RFC4353] Rosenberg, J., "A
 Framework for Conferencing
 with the Session
 Initiation Protocol
 (SIP)", RFC 4353,
 February 2006.

 [RFC5117] Westerlund, M. and S.
 Wenger, "RTP Topologies",

RFC 5117, January 2008.

 [RFC5261] Urpalainen, J., "An
 Extensible Markup Language
 (XML) Patch Operations
 Framework Utilizing XML
 Path Language (XPath)
 Selectors", RFC 5261,
 September 2008.

 [RFC6502] Camarillo, G., Srinivasan,
 S., Even, R., and J.
 Urpalainen, "Conference
 Event Package Data Format
 Extension for Centralized

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/draft-ietf-clue-telepresence-requirements
https://datatracker.ietf.org/doc/html/draft-ietf-clue-telepresence-requirements
https://datatracker.ietf.org/doc/html/draft-kyzivat-clue-signaling-08
https://datatracker.ietf.org/doc/html/draft-kyzivat-clue-signaling-08
https://datatracker.ietf.org/doc/html/rfc3550
https://datatracker.ietf.org/doc/html/rfc4353
https://datatracker.ietf.org/doc/html/rfc5117
https://datatracker.ietf.org/doc/html/rfc5261

Presta & Romano Expires November 10, 2014 [Page 35]

Internet-Draft draft-presta-clue-protocol-04 May 2014

 Conferencing (XCON)",
RFC 6502, March 2012.

 [RFC6503] Barnes, M., Boulton, C.,
 Romano, S., and H.
 Schulzrinne, "Centralized
 Conferencing Manipulation
 Protocol", RFC 6503,
 March 2012.

Authors' Addresses

 Roberta Presta
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 EMail: roberta.presta@unina.it

 Simon Pietro Romano
 University of Napoli
 Via Claudio 21
 Napoli 80125
 Italy

 EMail: spromano@unina.it

https://datatracker.ietf.org/doc/html/draft-presta-clue-protocol-04
https://datatracker.ietf.org/doc/html/rfc6502
https://datatracker.ietf.org/doc/html/rfc6503

Presta & Romano Expires November 10, 2014 [Page 36]

