
Network Working Group R. Presuhn, Ed.
Internet-Draft Retired
Intended status: Informational February 15, 2008
Expires: August 18, 2008

Requirements for a Configuration Data Modeling Language
draft-presuhn-rcdml-03

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 18, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This memo contains a compilation of requirements for a Configuration
 Data Modeling Language. Although focusing on the needs of the
 NETCONF Protocol, these requirements potentially have broader
 applicability. Comments should be sent to ngo@ietf.org.

Presuhn Expires August 18, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Data Modeling Language Requirements February 2008

Table of Contents

1. Introduction . 4
2. Previous Work . 4
3. Taxonomy of Requirements 5
3.1. Consequences of NETCONF 6
3.1.1. Notification Definition (Agreed) 6
3.1.2. Notification Get (NOT Agreed) 6
3.1.3. Locking (Agreed) 7
3.1.4. All Base Operations (Agreed) 7
3.1.5. Define new NETCONF Operations (Agreed) 7
3.1.6. Separation of Operations and Payload (Agreed) 8
3.1.7. Error Annotation (Agreed) 8
3.1.8. No Mixed Content (Agreed) 8

3.2. Model Representation Requirements 8
3.2.1. Human Readable (Agreed) 8
3.2.2. Machine Readable (Agreed) 9
3.2.3. Textual Representation (Agreed) 9
3.2.4. Document Information (Agreed) 9
3.2.5. Ownership and Change Control (Agreed) 9
3.2.6. Dependency Risk Reduction (Agreed) 9
3.2.7. Diff-Friendly (Agreed) 9
3.2.8. Internationalization and Localization 9

3.3. Reusability Requirements 11
3.3.1. Modularity (Agreed) 11
3.3.2. Reusable Definitions (Agreed) 11
3.3.3. Modular extension (Agreed) 11

3.4. Instance Data Requirements 11
3.4.1. Default Values on the Wire (Agreed) 11
3.4.2. Ordering . 11
3.4.3. Validation . 12
3.4.4. Instance Canonicalization (Agreed) 13
3.4.5. Character Set and Encoding (Agreed) 13
3.4.6. Model Instance Localization (NOT Agreed) 13

3.5. Semantic Richness Requirements 13
3.5.1. Human-Readable Semantics (Agreed) 13
3.5.2. Basic Types (Agreed) 14
3.5.3. Handling Opaque Data (Agreed) 14
3.5.4. Keys . 14
3.5.5. Relationships . 15
3.5.6. Hierarchical Data 16
3.5.7. Referential Integrity 16
3.5.8. Characterize Data (Agreed) 17
3.5.9. Defaults . 18
3.5.10. Formal Constraints 18
3.5.11. Units (Agreed) . 19
3.5.12. Define Actions (NOT Agreed) 20

3.6. Extensibility Requirements 20

Presuhn Expires August 18, 2008 [Page 2]

Internet-Draft Data Modeling Language Requirements February 2008

3.6.1. Language Extensibility 20
3.6.2. Model Extensibility 21
3.6.3. Instance Data Extensibility 21

3.7. Talking About Conformance 22
3.7.1. Conformance to the Modeling Language (NOT Agreed) . . 22
3.7.2. Conformance to a Model (Agreed) 22

3.8. Techno-Political Constraints 24
3.8.1. Standard Technology (NOT Agreed) 24
3.8.2. Translate Models to Other Forms (Agreed) 24
3.8.3. Minimize SMI Translation Pain (NOT Agreed) 24
3.8.4. Generate Models from Other Forms (NOT Agreed) 24
3.8.5. Isolate Models from Protocol (NOT Agreed) 24
3.8.6. Library Support (NOT Agreed) 25
3.8.7. RFC 3139 Considerations 25
3.8.8. RFC 3216 Considerations 25

4. Requirement Interactions 25
5. IANA Considerations . 25
6. Security Considerations 25
7. References . 26
7.1. Normative References 26
7.2. Informative References 26

Appendix A. Acknowledgments 28
Appendix B. Use Cases . 28
B.1. Multi-Version Scenarios 28
B.1.1. Tightly Coupled 28
B.1.2. Loosely Coupled - Support Matrix 29
B.1.3. Forwards Compatibility 29
B.1.4. Mixed-Mode Forwards and Backwards Compatibility . . . 29
B.1.5. Multiple Extensions 29

Appendix C. Example Instance Documents 29
 Author's Address . 32
 Intellectual Property and Copyright Statements 33

https://datatracker.ietf.org/doc/html/rfc3139
https://datatracker.ietf.org/doc/html/rfc3216

Presuhn Expires August 18, 2008 [Page 3]

Internet-Draft Data Modeling Language Requirements February 2008

1. Introduction

 Following discussions at the Vancouver IETF meeting (IETF 70), Dan
 Romascanu organized a design team to work on Requirements for a
 Configuration Data Modeling Language with participation from the
 Applications area as well as the Operations and Management area.
 This memo is that design team's product.

 The principal goal of this memo is to increase the chances for a
 successful BOF in Philadelphia at the seventy-first IETF meeting.
 The goal of the BOF is to decide what needs to be done to support the
 development of data models for configuration in the IETF, focusing on
 the immediate requirements for the NETCONF protocol [RFC4741]. To
 expedite the process, the design team started with requirements
 gathered at previous IETF meetings where data modeling languages had
 been discussed, as well as collecting requirements from the various
 teams working in this space. These included both efforts to develop
 new solutions as well as ones reusing or extending existing data
 modeling languages and tools. The team identified the common
 requirements, as well as ones motivating particular choices made in
 specific solutions.

 The focus of the requirements described here is on the immediate
 needs of the Operations and Management Area and the NETCONF protocol,
 and builds on precedent work, such as [RFC3535]. The design team
 recognizes that a data modeling language based on these requirements
 MAY have applicability beyond NETCONF, and that consequently the
 decision to support any of these requirements SHOULD always be
 considered in the light of the potential impact on extensibility and
 broader applicability envisioned.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Previous Work

 Numerous languages exist to describe data types and structured data
 in the abstract, with associated sets of rules to describe how that
 data can be transfered over networks. Important ones include:
 o ASN.1 (Abstract Syntax Notation One) with various encoding rules,
 such as
 * BER (Basic Encoding Rules)
 * XER (XML Encoding Rules)
 o XML (Extensible Markup Language) Schema

https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc2119

Presuhn Expires August 18, 2008 [Page 4]

Internet-Draft Data Modeling Language Requirements February 2008

 o RelaxNG (Regular Language for XML, New Generation)
 o XDR (External Data Representation) [RFC4506]
 All of these describe type systems and the structuring of
 information, with relatively little emphasis given to representing
 the information's semantics.

 There have been numerous efforts over the years to develop languages
 with the additional semantics needed to be suitable for defining
 models for management data in general and configuration data in
 particular. Some of the more important ones include:
 o GDMO (Guidelines for the Definition of Managed Objects) with GRM
 (General Relationship Model) extensions;
 o SMIv2 (Structure of Management Information version 2) [RFC2578]
 with its facilities for defining Textual Conventions [RFC2579] and
 conformance Statements [RFC2580];
 o SPPI (Structure of Policy Provisioning Information) [RFC3159];
 o SMIng (Next Generation Structure of Management Information)
 [RFC3780];
 o CIM (Common Information Model).
 All of these presume a particular meta-model of the information to be
 managed. To varying degrees these are all associated with specific
 management protocol suites. None of these has yet gained serious
 support as a model definition language for the NETCONF environment,
 although some show pockets of use.

 Efforts in the area of general-purpose information modeling have
 largely converged in the UML effort. There has been little interest
 in the IETF in using UML to standardize configuration data models.
 There have been previous efforts to define a protocol-neutral data
 modeling language in the IETF, including both requirements gathering
 [RFC3216] and language definition [RFC3780]. While true protocol
 neutrality is a laudable goal in theory, the experience documented in
 the work-in-progress [I-D.schoenw-sming-lessons] shows that this
 property taken to its extreme can have negative consequences, even
 for very similar underlying information models.

 The design team recognizes that any effort like this will necessarily
 be incomplete, whether considered from the perspective of breadth or
 depth. The work-in-progress [I-D.linowski-netconf-dml-requirements]
 provides additional requirements along with their motivation.

3. Taxonomy of Requirements

 The grouping of requirements in this section is merely one chosen by
 the design team for its convenience in helping separate easily-
 confused requirements. The major categories are:

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3159
https://datatracker.ietf.org/doc/html/rfc3780
https://datatracker.ietf.org/doc/html/rfc3216
https://datatracker.ietf.org/doc/html/rfc3780

Presuhn Expires August 18, 2008 [Page 5]

Internet-Draft Data Modeling Language Requirements February 2008

 1. Consequences of Netconf
 2. Representation of Models
 3. Reusability
 4. Instance Data
 5. Semantics of Models
 6. Extensibility
 7. Conformance
 8. Techno-Political Constraints
 The reader will notice that certain similar-sounding issues arise in
 multiple categories. For example, representation of multilingual
 information is a concern both for the representation of models as
 well as for the representation of instance data. The issues are
 included in both areas because they potentially afford different
 solutions.

 The notations "Agreed" and "NOT Agreed" merely indicate whether the
 members of the design team agreed that the requirement in question
 was an appropriate requirement to impose on solution candidates. In
 cases, requirements were not agreed to despite being adequately met
 by all the proposals of which the design team was aware. The
 "minimize SMI translation pain" requirement was an example of this.

3.1. Consequences of NETCONF

 Some requirements are direct consequences of the way the NETCONF
 protocol works, and might be inappropriate for a protocol-neutral
 configuration data modeling language. These are distinct from
 requirements driven by the NETCONF environment's information modeling
 needs. Whether addressed as part of the modeling language itself, or
 as part of a "binding" of that language for use with the NETCONF
 environment, a solution needs to address these concerns.

3.1.1. Notification Definition (Agreed)

 The solution MUST support defining notifications. The solution MUST
 describe any transformations or adaptations necessary to transport
 notifications using the mechanisms defined in the work-in-progress
 [I-D.ietf-netconf-notification].

3.1.2. Notification Get (NOT Agreed)

 The solution MAY support defining notifications in a way that
 minimizes duplication of definitions for polled or configured
 content. This reduces errors caused by the failure to maintain
 syntactic and semantic alignment of separate definitions. It also
 permits what is logically the same chunk of information to be sent
 via a get (or modified using edit-config) as would be conveyed
 asynchronously in a notification. There is disagreement on just how

Presuhn Expires August 18, 2008 [Page 6]

Internet-Draft Data Modeling Language Requirements February 2008

 much of a need there is for this kind of feature. Possible analogues
 which have been used to argue both for and against including this
 requirement include Syslog [RFC3164] and the SNMP Notification Log
 MIB [RFC3014].

 There are three ways to define notifications:
 1. Completely separate the definition of the data elements and their
 container from the definitions of the information objects defined
 for get and edit-config operations.
 2. Re-use the element definitions from get and edit-config
 operations, but define a new container object for the
 notification itself (as with SNMP)
 3. Re-use both element definitions and containers from the
 definition of content for get and edit-config operations. In
 this method, notifications can almost be said to not require
 defining. (This begs the question of what the semantics of the
 notification itself are bound to. One possibility might be to
 have a definition which consists simply of the binding of the
 notification semantic to whatever they payload container will
 be.)

 The solution SHOULD describe whether and how each of these is
 handled. Some specific use cases for this are data change
 notifications as well as being able to store and send alarm
 definitions with the same definition. Note that the third option
 makes log records much easier than approaches (like that used in
 GDMO) which require the definition of an ad hoc notification syntax
 and a separate definition for the log record for each notification
 type, and that both the second and third options may simplify fine-
 grained access control, if that is required.

3.1.3. Locking (Agreed)

 The solution MUST NOT preclude fine grained locking, as described for
 the NETCONF environment in the work-in-progress
 [I-D.ietf-netconf-partial-lock].

3.1.4. All Base Operations (Agreed)

 The solution MUST unambiguously describe how all NETCONF [RFC4741]
 base operations work with data defined under a model produced using
 the solution. This includes both how information appears on the wire
 as well as any effects on the configuration data store.

3.1.5. Define new NETCONF Operations (Agreed)

 The solution MUST provide a means to define new NETCONF operations
 and their parameters (base, vendor extensions, and so on) in the same

https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc3014
https://datatracker.ietf.org/doc/html/rfc4741

Presuhn Expires August 18, 2008 [Page 7]

Internet-Draft Data Modeling Language Requirements February 2008

 language as is used for defining models. One could argue that this
 is a layering violation, however there is a clear need for this
 function in the NETCONF space, and the members of the design team
 felt there was no particular advantage to requiring a separate
 mechanism.

3.1.6. Separation of Operations and Payload (Agreed)

 If the solution provides a means for defining new NETCONF operations,
 it MUST allow a clear separation between data model definitions and
 the definition of new NETCONF operations. This requirement exists to
 mitigate that apparent layering violation caused by the requirement
 to be able to define new NETCONF operations.

3.1.7. Error Annotation (Agreed)

 The solution MUST be able to define specific error messages for a
 given element. Note that this could interact with support for
 internationalization and localization. The solution MUST describe
 how specific error strings are associated with error conditions as
 required by the NETCONF protocol.

3.1.8. No Mixed Content (Agreed)

 The solution MUST prevent mixed content, i.e., tags and data mixed
 together as part of a value, other than to treat it as opaque
 information. This requirement is a consequence of the NETCONF
 protocol environment.

3.2. Model Representation Requirements

 The requirements in this section are all connected to the mechanics
 of how models are represented and manipulated, rather than what they
 express. One issue which appeared in earlier versions of this memo,
 model canonicalization, straddles the border between this grouping
 and the group on model semantics. It was in this group because the
 use case for it is associated with others in this group, such as
 performing a "diff" between versions of a model. However, the
 consensus of the design team was that this was not a requirement, so
 it was been removed.

3.2.1. Human Readable (Agreed)

 The solution MUST support a human-readable representation of data
 models. This requirement is independent of how an instance of a
 model is represented.

Presuhn Expires August 18, 2008 [Page 8]

Internet-Draft Data Modeling Language Requirements February 2008

3.2.2. Machine Readable (Agreed)

 The solution MUST support a machine-readable representation of data
 models.

3.2.3. Textual Representation (Agreed)

 The solution MUST support a text-based representation for models. It
 MAY support other representations. It MUST be possible to represent
 model definitions as ASCII text in 72 columns so standard data models
 can be included in RFCs. This requirement is independent of how an
 instance of a model is represented.

3.2.4. Document Information (Agreed)

 The solution MUST provide a means to specify document information for
 a data model, such as when it was created, its revision history,
 point of contact, and so on.

3.2.5. Ownership and Change Control (Agreed)

 It MUST be clear who exercises change control and ownership over the
 data modeling framework, e.g., the IETF. This MUST also be clear for
 the technologies on which it depends.

3.2.6. Dependency Risk Reduction (Agreed)

 In cases where a proposed solution depends on other specifications,
 there MUST be a way to reference the specific versions required, in
 case that specification evolves in incompatible ways. This
 requirement is motivated by bad experiences with how the ASN.1
 specification mutated after its first version.

3.2.7. Diff-Friendly (Agreed)

 It MUST be possible for an operator using existing tools such as
 "diff" to determine what has changed between two versions of a data
 model.

3.2.8. Internationalization and Localization

 There are several requirements associated with issues related to
 languages and character sets in the representation of models. Note
 that, with the exception of literal strings, these are distinct from
 the questions about what appears in an instance of a model.

Presuhn Expires August 18, 2008 [Page 9]

Internet-Draft Data Modeling Language Requirements February 2008

3.2.8.1. Descriptions using Local Languages (Agreed)

 The solution MUST be able to support the use of Unicode text in a
 model definition to provide human readable descriptions of
 information semantics. This is effectively required by [RFC2277].
 This is not the same thing as requiring a mechanism for the
 internationalization and localization of models, but rather a way of
 allowing the model definer to work in his or her preferred language.

3.2.8.2. UTF-8 Encoding (Agreed)

 It MUST be possible to encode model definitions using UTF-8. This is
 effectively required by [RFC2277] as a consequence of the need for a
 textual representation and the need to be able to include descriptive
 text in the model definer's language of choice.

3.2.8.3. Localization Support (Agreed)

 The solution MUST outline how localization of an existing model would
 proceed. The strong preference of members of the design team was to
 treat model localization as a user interface issue. The solution
 MUST be in alignment with the guidance given by [RFC2277].

3.2.8.4. Error String Localization (Agreed)

 The solution MUST NOT preclude localization for user display of
 NETCONF error strings defined in conjunction with a data model.
 (Since the NETCONF protocol itself does not provide for language
 negotiation, such localization would presumably take place within the
 NETCONF client. The question is how to associate an error string
 defined as part of a model with its localization.)

3.2.8.5. Tag Names and Strings in Local Languages (NOT agreed)

 The solution MAY support the use of Unicode text for tag names and
 strings in definitions. Note that this is not a question of
 internationalization and localization, but rather the use of Unicode
 for what are effectively protocol elements in an instance document
 for a model defined using the solution. Even if a solution does
 support the use of Unicode text for tag names and strings in
 definitions, it SHOULD provide guidance on the use of an ASCII subset
 for tags, since specifications for publication in an RFC will almost
 certainly need to be written with such a restriction in mind. Note
 also that this requirement can interact badly with solutions that use
 labels taken directly (without any mapping) from models to generate
 code in programming languages, which may have severe restrictions on
 identifiers.

https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2277

Presuhn Expires August 18, 2008 [Page 10]

Internet-Draft Data Modeling Language Requirements February 2008

3.3. Reusability Requirements

 The reusability requirements could also be thought of as a sub-
 category of the semantic richness requirements, since they focus on
 the expressiveness of the modeling language. Their inclusion as a
 top-level category of requirement reflects their importance to
 standards-making.

3.3.1. Modularity (Agreed)

 The solution MUST provide a means to define data models in discrete
 pieces, and support the publication of portions of models in separate
 files.

3.3.2. Reusable Definitions (Agreed)

 The solution MUST support a way to reuse definitions from another
 model. A type definition is a type of reusable definition. Note
 that this potentially interacts with requirements to be able to
 revise or extend a model.

3.3.3. Modular extension (Agreed)

 It MUST be possible to extend a published data model without
 modifying the original data model. Those specifying solutions are
 advised to carefully consider how this capability might interact with
 the ability to revise definitions and the ability to reference
 definitions in other models.

3.4. Instance Data Requirements

 This section contains specific requirements on what instance
 documents for models defined using the solution will look like.
 These are largely independent of requirements for what the modeling
 language would look like, but do interact with the semantic
 capabilities of the language.

3.4.1. Default Values on the Wire (Agreed)

 The solution MUST specify how default values affect what is and is
 not explicitly encoded in an instance document. Possibilities
 include a default-free data modeling language, protocol-specific
 default handling, or protocol-independent prescribed behavior.

3.4.2. Ordering

 The common factor in this group of requirements is the ordering of
 pieces of data on the wire. The cases differ in what is being

Presuhn Expires August 18, 2008 [Page 11]

Internet-Draft Data Modeling Language Requirements February 2008

 ordered, and whether the ordering of itself conveys information. The
 order in which things can appear in an instance document potentially
 affects not only the complexity of the code to validate or parse it,
 but can also interact with attempts to extend the corresponding
 models.

3.4.2.1. Ordered Lists (Agreed)

 The solution MUST support the ability to specify whether the order of
 list entries in an instance document has semantic significance, and
 MUST consequently be preserved. An example of such a list might be a
 list of access control rules. An example of a list where the order
 would have no semantic significance might be a list of users. In
 cases where a list's order would have no semantic significance, the
 solution SHOULD nonetheless specify whether order is maintained,
 since this would affect instance data canonicalization.

3.4.2.2. Order within Containers (NOT Agreed)

 A solution MAY support the ability to specify that in an instance of
 a data model, the order of child elements within a containing element
 needs to be preserved, due to semantics, backward compatibility
 requirements, or processing efficiency considerations.

3.4.2.3. Interleaving (NOT Agreed)

 A solution MAY support the ability for a model to allow interleaving
 elements in the XML representation of an instance of a data model.
 This means that those child elements MAY appear in any order on the
 wire.

3.4.3. Validation

 This section contains requirements pertaining to the validation of an
 instance document. The term "valid" means more than merely well-
 formed, and in the context of network management it includes the
 notion of conforming to the semantics of a schema. A solution
 proposal MUST describe precisely what is meant when by terms like
 "valid" and "well-formed".

3.4.3.1. Validate Instance Data (Agreed)

 A solution proposal MUST provide sufficient detail to allow a
 determination to be made whether an instance of a data model is well-
 formed and valid in terms of the schema, as well as any additional
 considerations.

Presuhn Expires August 18, 2008 [Page 12]

Internet-Draft Data Modeling Language Requirements February 2008

3.4.3.2. Tools to Validate Instance Data (NOT Agreed)

 A solution MAY provide a means of determining whether an instance
 document is a valid instance of a model. (The difference between the
 previous requirement and this one is that the former (agreed) merely
 requires that a solution is known, while the latter (not agreed)
 requires that a solution have been implemented.)

3.4.4. Instance Canonicalization (Agreed)

 The solution MUST describe how to produce a canonicalized version of
 the instance. This is a transform which can put the data in a form
 which is suitable for comparison. See "Canonical XML Version 1.0"
 [RFC3076] for more information. This does not imply that there is
 any requirement for data on the wire to be sent in canonicalized
 form. The design team recognizes that there is a point of
 diminishing returns in canonicalizing human-readable strings, and
 advises those proposing solutions to consider the trade-offs and not
 get carried away.

3.4.5. Character Set and Encoding (Agreed)

 The solution SHOUL support the creation of models which can handle
 human-readable information in any language in an instance document.
 In keeping with [RFC2277], this means that models MUST be able to
 handle UTF-8 data appropriately.

3.4.6. Model Instance Localization (NOT Agreed)

 Tags and other human-readable portions of an instance of a model
 SHOULD be localizable. Underlying this requirement is the question
 of whether tags in an instance document are really "human-readable"
 or merely protocol elements. This requirement needs clarification:
 is it a question of what an instance document looks like between a
 NETCONF client and server, or is it a question of how an instance
 document might be transformed for presentation to a user?

3.5. Semantic Richness Requirements

 The requirements in this section are all related to the need to
 describe information models in more than purely syntactic terms.

3.5.1. Human-Readable Semantics (Agreed)

 The solution MUST provide a means for the developer of an information
 model to associate human-readable text with components of that model,
 in order to describe their semantics and use.

https://datatracker.ietf.org/doc/html/rfc3076
https://datatracker.ietf.org/doc/html/rfc2277

Presuhn Expires August 18, 2008 [Page 13]

Internet-Draft Data Modeling Language Requirements February 2008

3.5.2. Basic Types (Agreed)

 The solution MUST define frequently used types. This could be
 accomplished in a standard data model definition as part of a
 solution or part of the language definition, for example.

3.5.3. Handling Opaque Data (Agreed)

 It MUST be possible to perform certain operations on opaque data.
 This means that completely replacing the data would be supported, but
 not merging, for example. This data potentially does not conform to
 any schema definition, but may happen to be well-formed XML within
 the opaque data.

 In light of the negative experience with the opaque date type in
 SNMP, one might regard this requirement as a "necessary evil."

3.5.4. Keys

 The issues in this section all relate to the problem of uniquely
 identifying an entity in an instance of a model. A solution SHOULD
 spell out whether and how it supports creating models which permit
 instances which are not uniquely identified using keys.

3.5.4.1. Define Keys (Agreed)

 The solution MUST support defining keys to data (i.e. the list of
 fields which uniquely identify an element, or a specially created
 identifier like an ifIndex or an XML id.)

3.5.4.2. Deep Keys (NOT Agreed)

 The solution SHOULD support using as a key the value of an element
 which is not an immediate descendant of the element being "keyed".

 <staticRoutes>
 <staticRoute>
 <prefix>
 <address>1.2.0.0</address>
 <length>16</length>
 </prefix>
 <nextHop>5.6.7.8</nextHop>
 </staticRoute>
 ...
 </staticRoutes>

 Here the desired key is constructed using both address and length.
 Though it could also have been be modeled with prefixAddress and

Presuhn Expires August 18, 2008 [Page 14]

Internet-Draft Data Modeling Language Requirements February 2008

 prefixLength, doing so this would prevent reuse of the prefix data
 type. This example actually illustrates two distinct features:
 "deep" keys and compound keys. Support for one does not imply
 support for the other.

3.5.5. Relationships

 Issues discussed with respect to relationships included:
 o the tools available for modeling relationships in the solution;
 o the syntactic means available for representing relationships in
 configuration data;
 o the kinds of constraints on relationships that can be expressed in
 a model.
 On the issue of constraints, the design team found it helpful to
 consider them as conceptually belonging to various phases,
 characterized by the kind of information needed to determine whether
 a particular relationship was "valid" or not. Specifically:
 o constraints that could be enforced purely syntactically, as in the
 case, for example, of a foreign key (like ifIndex) being of the
 correct type;
 o constraints that could be evaluated in the context of a candidate
 configuration as it was "under construction";
 o constraints requiring a "complete" candidate configuration to
 evaluate;
 o constraints requiring a running system to evaluate, such as a
 relationship to a physical piece of hardware;
 o constraints which can only be evaluated in a network context, such
 as a relationship to a peer entity on another system.
 It's important to note that these kinds of validation are far beyond
 what is normally understood as XML validation, but have been long-
 standing the practice in network management.

3.5.5.1. Simple Relationships (Agreed)

 The solution MUST support defining cross references between elements
 in different hierarchies. This SHOULD be a formal machine readable
 definition rather than the value of an implicitly known field. The
 solution SHOULD support defining reference pointers for both 1:1 and
 1:n relationships.

3.5.5.2. Many-to-Many Relationships (NOT Agreed)

 The solution SHOULD support defining many to many cross reference
 relationships.

Presuhn Expires August 18, 2008 [Page 15]

Internet-Draft Data Modeling Language Requirements February 2008

3.5.5.3. Retrieve Relationships instance (NOT Agreed)

 The solution SHOULD support a means of specifying relationships which
 can be represented in a configuration or on the wire with minimal
 redundancy. Knowledge of the model would be needed to transform this
 representation into a fully qualified instance identifier. The use
 of an integer interface index in a MIB, rather than a rowPointer
 [RFC2579], would be analogous to this capability. Ideally, the
 knowledge required to generate the fully qualified instance
 identifier would be present in the model in machine-readable form.

3.5.5.4. Retrieve Relationships - qualified (NOT Agreed)

 The language SHOULD support the ability to learn about specific
 relationships in the instance document, including some context. For
 example, if there is a general relationship between a card and a
 port, it SHOULD be possible in the instance document to learn that it
 is specifically card 12 that is involved in the relationship and the
 information would be provided in a more descriptive manner to enable
 some interpretation of in the absence of the schema - by being
 displayed to a user as text for example.

3.5.6. Hierarchical Data

 The solution MUST support defining data in hierarchies of arbitrary
 depth. This enables closer modeling of data to real world
 relationships, such as containment.

 <device>
 <shelf>
 <card>
 <port>
 <subPort/>
 </port>
 </card>
 </shelf>
 </device>

3.5.7. Referential Integrity

 The issues related to referential integrity can consume a significant
 amount of time. There are significant differences in expectation
 regarding what is meant by "referential integrity checking," and the
 following sub-sections reflect those differences.

https://datatracker.ietf.org/doc/html/rfc2579

Presuhn Expires August 18, 2008 [Page 16]

Internet-Draft Data Modeling Language Requirements February 2008

3.5.7.1. Referential Integrity (NOT Agreed)

 It SHOULD be possible to describe in the modeling language that
 validation (at configuration create / merge time) of data cross
 references is required for a given piece of the model. For example,
 it SHOULD be possible to verify that related data exists, and reject
 a configuration if it is does not. Note this is only performed when
 a NETCONF operation is being done. There is no requirement to
 maintain this integrity over time and report issues. Cross
 references are only within a given device's configuration (see also
 extended referential integrity requirement).

 This kind of checking will not always be possible while a candidate
 configuration is under construction, since there may be cycles in
 relationships which prevent checking of an incomplete instance
 document.

3.5.7.2. Extended Referential Integrity (NOT Agreed)

 It SHOULD be possible to support more complex validating of instance
 data cross references. Examples, pre-provisioning, validating
 against unreachable resources (not just configuration data present on
 the device - non-configuration data on this device or configuration
 on other devices)

3.5.7.3. Referential Integrity Robustness (NOT Agreed)

 The solution SHOULD provide a means of indicating that the presence
 of data cross reference which cannot be verified, or which is known
 to not exist at the moment a configuration becomes the active
 configuration, is nonetheless not to be considered a configuration
 error. An example of a use case would be a relationship configured
 with respect to a hot-swappable component, which potentially can be
 absent from the system being configured when the configuration is
 made active.

3.5.8. Characterize Data (Agreed)

 The solution MUST be able to model configuration data. The solution
 MUST be able to model non-configuration data, such as status
 information and statistics. The solution MUST support characterizing
 data definitions in a model as configuration or non-configuration.
 The solution MAY support further characterization, such as
 identifying status or statistics.

Presuhn Expires August 18, 2008 [Page 17]

Internet-Draft Data Modeling Language Requirements February 2008

3.5.9. Defaults

 Discussion on IETF mailing lists as well as among the members of the
 design team has made it clear that there are many different ways of
 understanding "default" and correspondingly many different use cases.
 However, among the members of the design team, we were able to reach
 agreement that if a notion of "default" is to be at all useful in the
 context of configuration management, where knowing precisely what the
 configuration of a system is, and being able to bring the
 configuration of a system to a precisely known state are essential,
 "default"needs to be understood in terms of a binding contract
 between client and server.

 A consequence of this understanding of defaults would be to minimize
 their use in standardized definitions, since experience has shown
 that there are relatively few cases where a truly standard default is
 possible. Furthermore, vendor experience with defaults has shown
 that they can be problematic to versioning; what is an appropriate
 default in one version of a product might not make sense in a later
 release. Consequently, it might make sense to assume that if
 defaults are supported, their primary application would be as
 extensions to a model reflecting a particular implementation.

3.5.9.1. Default Values (NOT Agreed)

 The solution SHOULD support defining static default values for
 elements. In the content of NETCONF, this is understood to mean that
 in an edit-config "create" request, if the client does not provide
 the value, the server will assume the specific value defined in the
 model as the default. The solution SHOULD specify how this feature
 interacts with backwards compatibility, canonicalization, and any
 other NETCONF operations. The solution SHOULD specify the
 implications for claims of conformance to a default if the server
 uses a different default value.

3.5.9.2. Dynamic Defaults (NOT Agreed)

 The solution must support dynamic default values. These are defaults
 whose value depends on the value of other fields. For example, if
 the disk size is 2 gigs then the maximum file size is 1 meg, but if
 the disk is 1 meg, then the maximum file size is 1 K.

3.5.10. Formal Constraints

 As with relationships, one way of conceptualizing the validation of
 formal constraints is to think of them in terms of what information
 is needed to determine whether a particular constraint is satisfied.
 Roughly, these are:

Presuhn Expires August 18, 2008 [Page 18]

Internet-Draft Data Modeling Language Requirements February 2008

 o syntactic constraints determined by the base data type
 o range and pattern constraints which can be evaluated without
 considering any other configuration or status data
 o constraints which can be evaluated in terms of other information
 present in a candidate configuration, but which do not require
 that the complete configuration be present
 o constraints which can be evaluated in the context of a complete
 candidate configuration
 o constraints which require knowledge of non-configuration data
 expressed in the model
 o constraints which can only be evaluated in a running system
 o constraints which require knowledge of resources elsewhere in the
 network

3.5.10.1. Formal Description of Constraints (Agreed)

 It MUST be possible to specify constraints on the value of an element
 such as uniqueness, ranges, patterns, etc. These constraints can be
 evaluated in isolation and not related to other elements.

3.5.10.2. Multi-element Constraints (NOT Agreed)

 A solution MAY provide a means to define constraints on an element
 which involve another element of the configuration. An example would
 be where the value of an MTU depends on the ifType. Additional use
 cases might include dependencies on some non-configuration data, such
 as presence of a particular piece of hardware, or inter-system
 constraints.

3.5.10.3. Non-Key Uniqueness (Agreed)

 The solution MUST provide a way to specify constraints on uniqueness
 of non-key data elements. The scope of the uniqueness MUST be
 specified (parent, device, etc.) The extent of checking and
 enforcement needs to be spelled out. The solution MUST spell out
 whether, for a model to be valid, this constraint always holds true,
 or is it only required to be true at the time the configuration is
 created or merged.

3.5.11. Units (Agreed)

 The solution MUST provide a means of associating units with values,
 since unit errors in the configuration of values have potentially
 catastrophic consequences.

Presuhn Expires August 18, 2008 [Page 19]

Internet-Draft Data Modeling Language Requirements February 2008

3.5.12. Define Actions (NOT Agreed)

 The solution MAY provide a way to define specific actions to be
 performed. Here "actions" are understood as being associated with
 specific elements (objects) of information models. This requirement
 is distinct from the requirement to support the addition of new
 "operations", even though the two may be indistinguishable at the
 level of the protocol. If supported, the solution MUST describe how
 these are mapped into the NETCONF protocol. One of the motivations
 for this feature is the desire to avoid mapping action semantics onto
 data, as was necessary in the SNMP SMI [RFC2578]. The resulting "go
 buttons" proved unpopular. Another concern with this kind of feature
 is how to accommodate actions in a fine-grained access control
 framework, if one is ever developed.

3.6. Extensibility Requirements

 There are two broad categories of extensibility requirements: those
 having to do with the modeling language, and those related to the
 extensibility of models defined using that language.

3.6.1. Language Extensibility

 This section lists requirements concerned with the extensibility of
 the modeling language itself, rather than of models defined using
 that language.

3.6.1.1. Language Versioning (Agreed)

 The modeling language itself MUST be versioned. This requirement is
 motivated by the requirements for language extensibility below.

3.6.1.2. User Extensions (NOT Agreed)

 It SHOULD be possible for the users to extend the language. This
 means the ability of the user of the data modeling language, to add
 new statements or functionality to the language.

 It is useful for two things:
 o standards evolution;
 o proprietary / vendor-specific annotations.
 Extensibility SHOULD be done in a way that unknown extensions MAY be
 ignored.

3.6.1.3. Mandatory Extensions (NOT Agreed)

 The solution SHOULD support defining language extensions which the
 solution MUST understand; a tool which does not understand one of

https://datatracker.ietf.org/doc/html/rfc2578

Presuhn Expires August 18, 2008 [Page 20]

Internet-Draft Data Modeling Language Requirements February 2008

 these modeling language extensions MUST treat it as an error.

3.6.2. Model Extensibility

 The requirements in this section concern the extensibility of
 specific models.

3.6.2.1. Model Version Identification (Agreed)

 Different versions of a given schema MUST be unambiguously
 identified. This assumes that the schema itself can be uniquely
 identified.

3.6.2.2. Interaction with defaults (NOT Agreed)

 The solution SHOULD define interaction of model definition with
 defaults. What happens when defaults are added to model or whether a
 default can be changed.

3.6.2.3. Conformance Interference (NOT Agreed)

 The solution SHOULD define how revising a model interacts with claims
 of conformance to its earlier versions, as well as what the impact is
 on claims for conformance to other models which have re-used
 definitions from the earlier version.

3.6.2.4. Obsolete Portions of a Model (Agreed)

 The solution MUST provide a way to signify that elements of a schema
 are obsolete.

3.6.3. Instance Data Extensibility

 These requirements deal with the impact on the instance data of
 modifications to the model. Use cases for some of the requirements
 discussed in this section are described in Appendix B.1.

3.6.3.1. Schema Version of Instance (NOT Agreed)

 The solution SHOULD provide a means to determine what schema version
 was used to generate an instance document.

3.6.3.2. Interaction with default Values (NOT Agreed)

 The solution SHOULD define its interactions with default values in
 the instance, if supported. How does the fact that something is
 defaulted show up on the wire and what happens when defaults are
 added, removed or modified, for example.

Presuhn Expires August 18, 2008 [Page 21]

Internet-Draft Data Modeling Language Requirements February 2008

3.6.3.3. Backwards Compatibility (Agreed)

 The solution MUST support the ability to extend the model and still
 be usable to use it. A NETCONF client familiar with an older version
 of the schema should still be able to function. An old client should
 be able to work with a new server.

3.6.3.4. Forwards Compatibility (NOT Agreed)

 The solution should support the ability to extend the model and still
 interoperate with older versions. A NETCONF client employing a newer
 version of the schema should still be able to function with a server
 using an older version.

3.6.3.5. Must-Understand Model Extensions (NOT Agreed)

 The solution should support defining model extensions which the
 client MUST understand or otherwise error. Adding mandatory objects
 to an update to a Schema for example.

3.7. Talking About Conformance

 This section contains several requirements, all tied to the question
 of what it means to claim conformance. The two major categories are:
 o Conformance to the modeling language
 o Conformance to a specific data model
 Discussion of issues related to conformance to a specific data model
 can also be further refined into questions of what "conformance"
 means for a NETCONF server and what it means for a NETCONF client.

3.7.1. Conformance to the Modeling Language (NOT Agreed)

 A solution MUST spell out what is meant by "conformance" to that
 particular modeling language specification. This requirement is
 motivated by the need to evaluate whether or not a tool supports the
 chosen solution.

3.7.2. Conformance to a Model (Agreed)

 When a solution is used to define specific data models, it is
 important to be able to know what is meant by a claim of
 "conformance" to a particular model, both from the perspective of a
 client implementation and of a server implementation. The solution
 SHOULD support indicating conformance requirements for a Schema.
 There is not a requirement that conformance requirements would be
 stated separately from the model

Presuhn Expires August 18, 2008 [Page 22]

Internet-Draft Data Modeling Language Requirements February 2008

3.7.2.1. Conditional Conformance (NOT Agreed)

 The solution should provide a means of providing conditional
 compliance. If this is MPLS, then you need the following stuff
 supported, for example.

3.7.2.2. Server Conformance to Schema (Agreed)

 The solution MUST support a method of indicating whether support of
 an object is required in order to claim conformance to a particular
 schema.

 A solution MUST spell out whether a means for specifying server
 conformance to a schema exists. If such a means exists, it SHOULD
 allow an automated determination of the elements (and possibly
 subtypes or extensions) which MUST be processed (and not merely
 ignored) by a server handling a NETCONF edit-config create or merge
 operation.

3.7.2.3. Client Conformance To Schema (NOT Agreed)

 The solution should support a method of indicating whether presence
 of an object is required in order to be a valid configuration. This
 has been explained as "mandatory to use (in a create) as NETCONF
 client as opposed to mandatory to implement on NETCONF server", but
 this explanation begs the question of what the server that doesn't
 implement the object is supposed to do with the create request in
 which the object is required to be present.

 A solution MUST spell out whether a means for specifying client
 conformance to a schema exists. If such a means exists, it SHOULD
 allow an automated determination of the elements (and possibly
 subtypes or extensions) which MUST be processed (and not merely
 ignored) by a server handling the response to NETCONF get-config
 operation.

 Note that one could formulate this in terms of what is sent in an
 edit-config operation, but that could be problematic if the solution
 supports some types of defaults.

3.7.2.4. Versioned Conformance (NOT Agreed)

 The solution should provide a means of specifying what is required
 for compliance when the schema is updated. One of the motivations
 for this requirement is the need to know both what conformance to the
 current version of a schema entails, as well as what conformance to a
 previous version would entail. This becomes particularly important
 when definitions are incorporated by reference in another model,

Presuhn Expires August 18, 2008 [Page 23]

Internet-Draft Data Modeling Language Requirements February 2008

 which is itself subject to revision.

3.8. Techno-Political Constraints

 The requirements in this section arise mainly from the relationship
 of this work to other standards, and technical constraints motivated
 by factors other than the need to define network configuration
 management data.

3.8.1. Standard Technology (NOT Agreed)

 The solution SHOULD leverage existing widely used language and tools
 to define the NETCONF content, redefining as little as possible the
 work that w3c and other relevant bodies have already done.

3.8.2. Translate Models to Other Forms (Agreed)

 The solution MUST support the ability to translate a model definition
 to RelaxNG and XML Schema. Any proposed solution MUST describe
 whether this translation is lossy or lossless and if lossy, what
 information is lost.

3.8.3. Minimize SMI Translation Pain (NOT Agreed)

 Minimize translation pain from SMI into NETCONF content. Translation
 of NETCONF content into SMI is not a consideration. Disagreement
 about this requirement stems from concern about the possibility that
 this might be interpreted as requiring the perpetuation of SMI-style
 models, rather than merely accommodating the basic types, as
 described in the work-in-progress
 [I-D.ietf-opsawg-smi-datatypes-in-xsd].

3.8.4. Generate Models from Other Forms (NOT Agreed)

 The solution SHOULD support higher level modeling languages. An
 example would be generating configuration data models from UML
 descriptions. This requirement gets interesting regarding the
 question of whether anything needed in a network configuration data
 model might be impossible to represent in UML in machine-readable
 form.

3.8.5. Isolate Models from Protocol (NOT Agreed)

 The solution, and data models developed using the solution, SHOULD
 NOT be too tightly coupled to the NETCONF protocol. It should be
 possible to evolve the NETCONF protocol and data models
 independently. One use case is that it should also be possible to
 transport the data model instance (NETCONF content) over other

Presuhn Expires August 18, 2008 [Page 24]

Internet-Draft Data Modeling Language Requirements February 2008

 protocols, such as FTP.

3.8.6. Library Support (NOT Agreed)

 The solution SHOULD have wide support from development languages C,
 etc. The element of disagreement among the members of the design
 team is whether the evaluation of a solution depends on the existence
 or on the feasibility of such support.

3.8.7. RFC 3139 Considerations

 [RFC3139] defines "Requirements for Configuration Management of IP-
 based Networks", which should be taken into consideration when
 identifying a solution for use with NETCONF. Note that it is
 possible that not all of these requirements will necessarily be
 applicable to the current problem.

3.8.8. RFC 3216 Considerations

 [RFC3216] defines "SMIng Objectives", which should be taken into
 consideration when identifying a solution for use with NETCONF. Note
 that not all of these requirements will necessarily be applicable to
 the current problem.

4. Requirement Interactions

 Numerous interactions are identified in conjunction with individual
 requirements. In general, the interactions between re-use,
 extensibility, and conformance demand special attention.

5. IANA Considerations

 This document requires no action by IANA. Specifications based upon
 these requirements will specify what, if any, IANA considerations are
 appropriate.

6. Security Considerations

 Although this document only lists requirements, some of these
 requirements have security implications. For example, the
 requirements for modular definitions open up the consideration of
 possible attacks based on the modification of a component of a model
 which is not under the control of the model developer. Other
 concerns include robustness when an instance document conforms to a
 model different from the one to which it purportedly conforms. The

https://datatracker.ietf.org/doc/html/rfc3139
https://datatracker.ietf.org/doc/html/rfc3216

Presuhn Expires August 18, 2008 [Page 25]

Internet-Draft Data Modeling Language Requirements February 2008

 evaluation of constraints specified in a model, which require
 examining other configuration data, possibly even data from other
 systems, opens another possible avenue of attack for consideration.
 The kinds of models that can be defined by a solution will have
 implications for an access control framework. Finally, as has long
 been known, compilers and code generation tools are themselves open
 to attack.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and
 Languages", BCP 18, RFC 2277, January 1998.

7.2. Informative References

 [I-D.ietf-netconf-notification]
 Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", draft-ietf-netconf-notification-11 (work
 in progress), November 2007.

 [I-D.ietf-netconf-partial-lock]
 Lengyel, B. and M. Bjorklund, "Partial Lock RPC for
 NETCONF", draft-ietf-netconf-partial-lock-00 (work in
 progress), January 2008.

 [I-D.ietf-opsawg-smi-datatypes-in-xsd]
 Natale, B. and Y. Li, "Expressing SNMP SMI Datatypes in
 XML Schema Definition Language",

draft-ietf-opsawg-smi-datatypes-in-xsd-00 (work in
 progress), February 2008.

 [I-D.linowski-netconf-dml-requirements]
 Linowski, B., Storch, M., Ersue, M., and M. Lahdensivu,
 "NETCONF Data Modeling Language Requirements",

draft-linowski-netconf-dml-requirements-00 (work in
 progress), January 2008.

 [I-D.schoenw-sming-lessons]
 Schoenwaelder, J., "Protocol Independent Network
 Management Data Modeling Languages - Lessons Learned from
 the SMIng Project", draft-schoenw-sming-lessons-01 (work
 in progress), September 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp18
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-11
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-partial-lock-00
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-smi-datatypes-in-xsd-00
https://datatracker.ietf.org/doc/html/draft-linowski-netconf-dml-requirements-00
https://datatracker.ietf.org/doc/html/draft-schoenw-sming-lessons-01

Presuhn Expires August 18, 2008 [Page 26]

Internet-Draft Data Modeling Language Requirements February 2008

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3014] Kavasseri, R., "Notification Log MIB", RFC 3014,
 November 2000.

 [RFC3076] Boyer, J., "Canonical XML Version 1.0", RFC 3076,
 March 2001.

 [RFC3139] Sanchez, L., McCloghrie, K., and J. Saperia, "Requirements
 for Configuration Management of IP-based Networks",

RFC 3139, June 2001.

 [RFC3159] McCloghrie, K., Fine, M., Seligson, J., Chan, K., Hahn,
 S., Sahita, R., Smith, A., and F. Reichmeyer, "Structure
 of Policy Provisioning Information (SPPI)", RFC 3159,
 August 2001.

 [RFC3164] Lonvick, C., "The BSD Syslog Protocol", RFC 3164,
 August 2001.

 [RFC3216] Elliott, C., Harrington, D., Jason, J., Schoenwaelder, J.,
 Strauss, F., and W. Weiss, "SMIng Objectives", RFC 3216,
 December 2001.

 [RFC3535] Schoenwaelder, J., "Overview of the 2002 IAB Network
 Management Workshop", RFC 3535, May 2003.

 [RFC3780] Strauss, F. and J. Schoenwaelder, "SMIng - Next Generation
 Structure of Management Information", RFC 3780, May 2004.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3014
https://datatracker.ietf.org/doc/html/rfc3076
https://datatracker.ietf.org/doc/html/rfc3139
https://datatracker.ietf.org/doc/html/rfc3159
https://datatracker.ietf.org/doc/html/rfc3164
https://datatracker.ietf.org/doc/html/rfc3216
https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc3780
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc4741

Presuhn Expires August 18, 2008 [Page 27]

Internet-Draft Data Modeling Language Requirements February 2008

Appendix A. Acknowledgments

 This members of the design team that produced this memo were:
 Martin Bjorklund
 Sharon Chisholm
 Alex Clemm
 Rohan Mahy
 Chris Newman
 David Partain
 Randy Presuhn
 The editor would like to thank everyone for the time, thought, and
 text they contributed to make this memo possible.

 Many of the ideas gathered here were extracted from discussions held
 at various IETF meetings and on IETF mailing lists.

 The members of the design team would also like to thank those who
 have provided helpful comments on earlier versions of this memo:
 Andy Bierman
 Balasz Lengyel
 David Harrington
 Eric Rescorla

Appendix B. Use Cases

 The use cases presented here were chosen to illustrate requirements
 which proved contentious or were not agreed by the members of the
 design team or otherwise needed clarification. For requirements
 which were not contentious, we did not specifically devise use cases.

B.1. Multi-Version Scenarios

 The following discusses typical deployment scenarios behind backwards
 and forwards requirements described in Section 3.6.3.

B.1.1. Tightly Coupled

 This is the simplest case. This is where the application which
 manages the device is upgraded at the same time as the devices and
 only needs to worry about managing a single version of a single type
 of network element. Tightly coupled solutions can be costly and
 impractical, so are not a realistic solution to the problem of
 version management.

Presuhn Expires August 18, 2008 [Page 28]

Internet-Draft Data Modeling Language Requirements February 2008

B.1.2. Loosely Coupled - Support Matrix

 It is more typical that a single application is required to support
 different types of network elements and often more than one version
 of that network element. A support window of the current version and
 some set of older versions is commonly assumed. It should be
 possible to support multiple versions of the same schema with as few
 changes to application code (including data-driven configuration) as
 possible.

B.1.3. Forwards Compatibility

 There are a number of reasons that the management application might
 not be upgraded when network elements are upgraded, including being
 developed by a third party releasing on a different cadence. In this
 case, the earlier version of the management application should be
 able to continue to provide the same level of support against the
 newer versions of the schema as it did in the older version.

B.1.4. Mixed-Mode Forwards and Backwards Compatibility

 In mixed mode, different network elements, all supporting different
 versions of the schema are present. There are also different
 applications in the network, which each support different versions of
 the schema.

 All the applications should be able to support all the versions of
 the schema. As in the case of forwards compatibility, best effort
 support will be provided.

B.1.5. Multiple Extensions

 This case is the same as the mixed-mode case above, except that
 different network element support zero, one or more extensions to the
 model.

Appendix C. Example Instance Documents

 The instance documents presented here are examples to illustrate
 specific requirements or their possible consequences.

<?xml version="1.0" encoding="UTF-8"?>
<dhcp xmlns="http://example.org/ns/dhcp"
 xmlns:cal="http://example.org/ns/cal">

 <!-- one simple validation constraint is that the default-lease-time

Presuhn Expires August 18, 2008 [Page 29]

Internet-Draft Data Modeling Language Requirements February 2008

 can't be larger than max-lease-time. These times are in
 seconds -->
 <default-lease-time>600</default-lease-time>
 <max-lease-time>7200</max-lease-time>

 <!-- There is a list of subnets followed by a list of
 shared-networks. In this instance document some lists have
 their own parent container and some do not -->
 <subnet>
 <!-- The key to the list of subnets is the combination of the
 network and prefix-length elements. -->
 <!-- validation: check that none of the subnets overlap -->
 <network>10.254.240.0</network>
 <prefix-length>22</prefix-length>

 <!-- A subnet has an optional range definition. If a range is
 given, it means that the clients on the subnet get
 addresses dynamically. If a range element is present, a low
 and high address MUST be specified. dynamic-bootp is
 optional. -->
 <range>
 <dynamic-bootp/>
 <low>10.254.240.10</low>
 <high>10.254.240.230</high>
 </range>

 <!-- Next is a collection of DHCP options -->
 <dhcp-options>
 <!-- router-list is a list of routers where the order is
 semantically significant -->
 <router-list>
 <router>10.254.240.1</router>
 <router>10.254.240.2</router>
 </router-list>
 <!-- Here the data model was extended to support a new DHCP
 option in the cal namespace -->
 <cal:timezone>US/Indiana</cal:timezone>
 </dhcp-options>

 <!-- This is a per-subnet maximum lease time -->
 <max-lease-time>1200</max-lease-time>

 <!-- The leases top level container contains status information
 about active leases. This container cannot be present in a
 configuration operation (ex: Netconf set/get-config) -->
 <leases>
 <!-- The IP address attribute is the key to the lease -->
 <lease ip-address="10.254.240.12">

Presuhn Expires August 18, 2008 [Page 30]

Internet-Draft Data Modeling Language Requirements February 2008

 <starts>2008-10-10T08:00:00Z</starts>
 <ends>2008-10-10T08:20:00Z</ends>
 <mac-address>00:11:22:33:44:55</mac-address>
 </lease>
 <lease ip-address="10.254.240.47">
 <starts>2008-10-10T08:04:22Z</starts>
 <ends>2008-10-10T08:24:22Z</ends>
 <mac-address>11:22:33:44:55:66</mac-address>
 </lease>
 </leases>

 <!-- The DHCP server will only respond to requests for this subnet
 when they come from one of these interfaces -->
 <interface-filter>
 <!-- lo0 and en2 are keyrefs. They refer to a key in the
 ifName element in a list of interfaces in a module with
 the http://example.com/ns/int namespace -->
 <interface>lo0</interface>
 <interface>en2</interface>
 </interface-filter>
 </subnet>

 <!-- Shared networks contain one of more subnets. The DHCP server
 can provide addresses on any subnet in the shared network.
 For the sake of this example, assume that the name attribute
 is the key to the list of shared-networks. The key could be
 an XML ID in a real instance. -->
 <shared-network name="Lab network">
 <subnet>
 <network>10.17.224.0</network>
 <prefix-length>24</prefix-length>

 <range>
 <low>10.17.224.10</low>
 <high>10.17.224.250</high>
 </range>
 <dhcp-options>
 <router-list>
 <router>10.17.224.1</router>
 </router-list>
 <!-- domain-list is a list of domains where order is not
 semantically significant -->
 <domain-list>
 <domain>example.org</domain>
 <domain>example.net</domain>
 </domain-list>
 <!-- custom options can either contain a single IPv4 address
 (expressed as four octets in the DHCP packet) or an

Presuhn Expires August 18, 2008 [Page 31]

Internet-Draft Data Modeling Language Requirements February 2008

 opaque string. The option attribute is the key. -->
 <custom option="150">
 <ip-address>192.168.45.29</ip-address>
 </custom>
 <custom option="171">
 <string>192.168.45.29,foo.example.com</string>
 </custom>
 </dhcp-options>
 </subnet>
 <subnet>
 <network>10.0.29.0</network>
 <prefix-length>24</prefix-length>
 <range>
 <dynamic-bootp/>
 <low>10.0.29.10</low>
 <high>10.0.29.230</high>
 </range>
 <dhcp-options>
 <router-list>
 <router>10.0.29.1</router>
 </router-list>
 </dhcp-options>
 </subnet>
 </shared-network>
</dhcp>

Author's Address

 Randy Presuhn (editor)
 Retired

 Email: randy_presuhn@mindspring.com

Presuhn Expires August 18, 2008 [Page 32]

Internet-Draft Data Modeling Language Requirements February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Presuhn Expires August 18, 2008 [Page 33]

