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1. Introduction

This document specifies a variant of the Privacy Pass issuance

protocol (as defined in [ARCH]) that allows for tokens to be rate-

limited on a per-origin basis. This enables origins to use tokens

for use cases that need to restrict access from anonymous clients.

The base Privacy Pass issuance protocol [ISSUANCE] defines stateless

anonymous tokens, which can either be publicly verifiable or not.

This variant build upon the publicly verifiable issuance protocol

that uses RSA Blind Signatures [BLINDSIG], and allows tokens to be

rate-limited on a per-origin basis. This means that a client will

only be able to receive a limited number of tokens associated with a

given origin server within a fixed period of time.

This issuance protocol registers the Rate-Limited Blind RSA token

type (Section 11.1), to be used with the PrivateToken HTTP

authentication scheme defined in [AUTHSCHEME].

1.1. Motivation

A client that wishes to keep its IP address private can hide its IP

address using a proxy service or a VPN. However, doing so severely

limits the client's ability to access services and content, since

servers might not be able to enforce their policies without a stable

and unique client identifier.

Privacy Pass tokens in general allow clients to provide anonymous

attestation of various properties. The tokens generated by the base

issuance protocol ([ISSUANCE]) can be used to verify that a client

meets a particular bar for attestation, but cannot be used by a

redeeming server to rate-limit specific clients.
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There are several use cases for rate-limiting anonymous clients that

are common on the Internet. These routinely use client IP address

tracking, among other characteristics, to implement rate-limiting.

One example of this use case is rate-limiting website accesses to a

client to help prevent fraud. Operations that are sensitive to

fraud, such as account creation on a website or logging into an

account, often employ rate-limiting as a defense-in-depth strategy.

Additional verification can be required by these pages when a client

exceeds a set rate-limit.

Another example of this use case is a metered paywall, where an

origin limits the number of page requests from each unique user over

a period of time before the user is required to pay for access. The

origin typically resets this state periodically, say, once per

month. For example, an origin may serve ten (major content) requests

in a month before a paywall is enacted. Origins may want to

differentiate quick refreshes from distinct accesses.

For some applications, the basic issuance protocol from [BASIC-

ISSUANCE] could be used to implement rate limits. In particular, the

'Joint Attester and Issuer' model from [ARCH] could be used to

restrict the number of tokens issued to individual clients over a

time window. However, in this deployment model, the Attester and

Issuer would learn all origins used by a participating client. In

some cases this might be a significant portion of browsing history.

The issuance protocol defined in this document employs the 'Split

Origin, Attester, Issuer' model to combat this, where the issuer

would know all per-origin policies, and the attester would mantain

per-client state without knowing all origins a client visits.

1.2. Properties and Requirements

For rate-limited token issuance, the Attester, Issuer, and Origin as

defined in [ARCH] each have partial knowledge of the Client's

identity and actions, and each entity only knows enough to serve its

function (see Section 2 for more about the pieces of information):

The Attester knows the Client's identity and learns the Client's

public key (Client Key), the Issuer being targeted (Issuer Name),

the period of time for which the Issuer's policy is valid (Issuer

Policy Window), the number of tokens the Issuer is willing to

issue within the current policy window, and the number of tokens

issued to a given Client for the claimed Origin in the policy

window. The Attester does not know the identity of the Origin the

Client is trying to access (Origin Name), but knows a Client-

anonymized identifier for it (Anonymous Origin ID).
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The Issuer knows the Origin's secret (Issuer Origin Secret) and

policy about client access, and learns the Origin's identity

(Origin Name) during issuance. The Issuer does not learn the

Client's identity or information about the Client's access

pattern.

The Origin knows the Issuer to which it will delegate an incoming

Client (Issuer Name), and can verify that any tokens presented by

the Client were signed by the Issuer. The Origin does not learn

which Attester was used by a Client for issuance.

Since an Issuer enforces policies on behalf of Origins, a Client is

required to reveal the Origin's identity to the delegated Issuer. It

is a requirement of this protocol that the Attester not learn the

Origin's identity so that, despite knowing the Client's identity, an

Attester cannot track and concentrate information about Client

activity.

An Issuer expects an Attester to verify its Clients' identities

correctly, but an Issuer cannot confirm an Attester's efficacy or

the Attester-Client relationship directly without learning the

Client's identity. Similarly, an Origin does not know the Attester's

identity, but ultimately relies on the Attester to correctly verify

or authenticate a Client for the Origin's policies to be correctly

enforced. An Issuer therefore chooses to issue tokens to only known

and reputable Attesters; the Issuer can employ its own methods to

determine the reputation of a Attester.

An Attester is expected to employ a stable Client identifier, such

as an IP address, a device identifier, or an account at the

Attester, that can serve as a reasonable proxy for a user with some

creation and maintenance cost on the user.

For the Issuance protocol, a Client is expected to create and

maintain stable and explicit secrets for time periods that are on

the scale of Issuer policy windows. Changing these secrets

arbitrarily during a policy window can result in token issuance

failure for the rest of the policy window; see Section 5.1.1 for

more details. A Client can use a service offered by its Attester or

a third-party to store these secrets, but it is a requirement of

this protocol that the Attester not be able to learn these secrets.

The privacy guarantees of this issuance protocol, specifically those

around separating the identity of the Client from the names of the

Origins that it accesses, are based on the expectation that there is

not collusion between the entities that know about Client identity

and those that know about Origin identity. Clients choose and share

information with Attesters, and Origins choose and share policy with

Issuers; however, the Attester is generally expected to not be
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colluding with Issuers or Origins. If this occurs, it can become

possible for an Attester to learn or infer which Origins a Client is

accessing, or for an Origin to learn or infer the Client identity.

For further discussion, see Section 9.5.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Unless otherwise specified, this document encodes protocol messages

in TLS notation from [TLS13], Section 3.

This draft includes pseudocode that uses the functions and

conventions defined in [HPKE].

Encoding an integer to a sequence of bytes in network byte order is

described using the function "encode(n, v)", where "n" is the number

of bytes and "v" is the integer value. The function "len()" returns

the length of a sequence of bytes.

The following terms are defined in [ARCH] and are used throughout

this document:

Client: An entity that provides authorization tokens to services

across the Internet, in return for authorization.

Issuer: An entity that produces Privacy Pass tokens to clients.

Attester: An entity that can attest to properties about the

client, including previous patterns of access.

Origin: The server from which the client can redeem tokens.

Issuance Protocol: The protocol exchange that involves the

client, attester, and issuer, used to generate tokens.

The following terms are defined in [AUTHSCHEME], which defines the

interactions between clients and origins:

Issuer Name: The name that identifies the Issuer, which is an

entity that can generate tokens for a Client using one or more

issuance protocols.

Token Key: Keying material that can be used with an issuance

protocol to create a signed token.
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Origin Name: The name that identifies the Origin, as included in

a TokenChallenge.

Additionally, this document defines several terms that are unique to

the rate-limited issuance protocol:

Issuer Policy Window: The period over which an Issuer will track

access policy, defined in terms of seconds and represented as a

uint64. The state that the Attester keeps for a Client is

specific to a policy window. The effective policy window for a

specific Client starts when the Client first sends a request

associated with an Issuer.

Issuer Encapsulation Key: The public key used to encrypt values

such as Origin Name in requests from Clients to the Issuer, so

that Attesters cannot learn the Origin Name value. Each Issuer

Encapsulation Key is used across all requests on the Issuer, for

different Origins.

Anonymous Origin ID: An identifier that is generated by the

Client and marked on requests to the Attester, which represents a

specific Origin anonymously. The Client generates a stable

Anonymous Origin ID for each Origin Name, to allow the Attester

to count token access without learning the Origin Name.

Client Key: A public key chosen by the Client and shared only

with the Attester; see Section 8.2 for more details about this

restriction.

Client Secret: The secret key used by the Client during token

issuance, whose public key (Client Key) is shared with the

Attester.

Issuer Origin Secret: A per-origin secret key used by the Issuer

during token issuance, whose public key is not shared with

anyone.

Anonymous Issuer Origin ID: An identifier that is generated by

Issuer based on an Issuer Origin Secret that is per-Client and

per-Origin. See Section 5.6 for details of derivation.

3. Configuration

Issuers MUST provide three parameters for configuration:

Issuer Policy Window: a uint64 of seconds as defined in Section

2.

Issuer Request URI: a token request URL for generating access

tokens. For example, an Issuer URL might be https://
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issuer.example.net/token-request. This parameter uses resource

media type "text/plain".

Issuer Encapsulation Key: a EncapsulationKey structure as

defined below to use when encapsulating information, such as

the origin name, to the Issuer in issuance requests. This

parameter uses resource media type "application/issuer-encap-

key". The Npk parameter corresponding to the HpkeKdfId can be

found in [HPKE].

The Issuer parameters can be obtained from an Issuer via a directory

object, which is a JSON object whose field names and values are raw

values and URLs for the parameters.

Field Name Value

issuer-policy-

window
Issuer Policy Window as a JSON number

issuer-request-

uri
Issuer Request URI resource URL as a JSON string

issuer-encap-key-

uri

Issuer Encapsulation Key URI resource URL as a

JSON string

Table 1

As an example, the Issuer's JSON directory could look like:

Issuer directory resources have the media type "application/json"

and are located at the well-known location /.well-known/token-

issuer-directory.

¶
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opaque HpkePublicKey[Npk]; // defined in RFC9180

uint16 HpkeKemId;          // defined in RFC9180

uint16 HpkeKdfId;          // defined in RFC9180

uint16 HpkeAeadId;         // defined in RFC9180

struct {

  uint8 key_id;

  HpkeKemId kem_id;

  HpkePublicKey public_key;

  HpkeKdfId kdf_id;

  HpkeAeadId aead_id;

} EncapsulationKey;

¶

¶

¶

 {

    "issuer-token-window": 86400,

    "issuer-request-uri": "https://issuer.example.net/token-request"

    "issuer-encap-key-uri": "https://issuer.example.net/encap-key",

 }
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4. Token Challenge Requirements

Clients receive challenges for tokens, as described in [AUTHSCHEME].

For the rate-limited token issuance protocol described in this

document, the name of the origin is sent in an encrypted message

from the Client to the Issuer. If the TokenChallenge.origin_info

field contains a single origin name, that origin name is used. If

the origin_info field contains multiple origin names, the client

selects the single origin name that presented the challenge. If the

origin_info field is empty, the encrypted message is the empty

string "".

The HTTP authentication challenge also SHOULD contain the following

additional attribute:

"issuer-encap-key", which contains a base64url encoding of a 

EncapsulationKey as defined in Section 3 to use when encrypting

the Origin Name in issuance requests.

5. Issuance Protocol

This section describes the Issuance protocol for a Client to request

and receive a token from an Issuer. Token issuance involves a

Client, Attester, and Issuer, with the following steps:

The Client sends a token request containing a token request,

encrypted origin name, and one-time-use public key and

signature to the Attester

The Attester validates the request contents, specifically

checking the request signature, and proxies the request to the

Issuer

The Issuer validates the request against the signature, and

processes its contents, and produces a token response sent back

to the Attester

The Attester verifies the response and proxies the response to

the Client

The Issuance protocol is designed such that Client, Attester, and

Issuer learn only what is necessary for completing the protocol; see

Section 8.3 for more details.
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The Issuance protocol has a number of underlying cryptographic

dependencies for operation:

RSA Blind Signatures [BLINDSIG], for issuing and constructing

Tokens. This support is the same as used in the base publicly

verifiable token issuance protocol [ISSUANCE]

[HPKE], for encrypting the origin server name in transit between

Client and Issuer across the Attester.

Signatures with key blinding, as described in [KEYBLINDING], for

verifying correctness of Client requests.

Clients and Issuers are required to implement all of these

dependencies, whereas Attesters are required to implement signature

with key blinding support.

5.1. State Requirements

The Issuance protocol requires each participating endpoint to

maintain some necessary state, as described in this section.

5.1.1. Client State

A Client is required to have the following information, derived from

a given TokenChallenge:

Origin Name, a hostname referring to the Origin [RFC6454]. This

is the name of the Origin that issued the token challenge. One or

more names can be listed in the TokenChallenge.origin_info field.

Rate-limited token issuance relies on the client selecting a

single origin name from this list if multiple are present.

Token Key, a blind signature public key corresponding to the

Issuer identified by the TokenChallenge.issuer_name.

Issuer Encapsulation Key, a public key used to encrypt request

information corresponding to the Issuer identified by

TokenChallenge.issuer_name.

Clients maintain a stable Client Key that they use for all

communication with a specific Attester. Client Key is a public key,

where the corresponding private key Client Secret is known only to

the client.

If the client loses this (Client Key, Client Secret), they may

generate a new tuple. The Attester will enforce if a client is

allowed to use this new Client Key. See Section 5.1.2 for details on

this enforcement.
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Clients also need to be able to generate an Anonymous Origin ID

value that corresponds to the Origin Name, to send in requests to

the Attester.

Anonymous Origin ID MUST be a stable and unpredictable 32-byte value

computed by the Client. Clients MUST NOT change this value across

token requests for the same Origin Name. Doing so will result in

token issuance failure (specifically, when an Attester rejects a

request upon detecting two Anonymous Origin ID values that map to

the same Origin).

One possible mechanism for implementing this identifier is for the

Client to store a mapping between the Origin Name and a randomly

generated Anonymous Origin ID for future requests. Alternatively,

the Client can compute a PRF keyed by a per-client secret (Client

Secret) over the Origin Name, e.g., Anonymous Origin ID =

HKDF(secret=Client Secret, salt="", info=Origin Name).

5.1.2. Attester State

An Attester is required to maintain state for every authenticated

Client. The mechanism of identifying a Client is specific to each

Attester, and is not defined in this document. As examples, the

Attester could use device-specific certificates or account

authentication to identify a Client.

Attesters must enforce that Clients don't change their Client Key

frequently, to ensure Clients can't regularly evade the per-client

policy as seen by the issuer. Attesters MUST NOT allow Clients to

change their Client Key more than once within a policy window, or in

the subsequent policy window after a previous Client Key change.

Alternative schemes where the Attester stores the encrypted (Client

Key, Client Secret) tuple on behalf of the client are possible but

not described here.

Attesters are expected to know the Issuer Policy Window for any

Issuer Name to which they allow access. This information can be

retrieved using the URIs defined in Section 3.

For each Client-Issuer pair, an Attester maintains a policy window

start and end time for each Issuer from which a Client requests a

token.

For each tuple of (Client Key, Anonymous Origin ID, policy window),

the Attester maintains the following state:

A counter of successful tokens issued

Whether or not a previous request was rejected by the Issuer
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The last received Anonymous Issuer Origin ID value for this

Anonymous Origin ID, if any

5.1.3. Issuer State

Issuers maintain a stable Issuer Origin Secret that they use in

calculating values returned to the Attester for each origin. If this

value changes, it will open up a possibility for Clients to request

extra tokens for an Origin without being limited, within a policy

window. See Section 10.1 for details about generating and rotating

the Issuer Origin Secret.

Issuers are expected to have the private key that corresponds to

Issuer Encapsulation Key, which allows them to decrypt the Origin

Name values in requests.

Issuers also need to know the set of valid Token Key public keys and

corresponding private key, for each Origin Name that is served by

the Issuer. Origins SHOULD update their view of the Token Key

regularly to ensure that Client requests do not fail after Token Key

rotation.

5.2. Issuance HTTP Headers

The Issuance protocol defines four new HTTP headers that are used in

requests and responses between Clients, Attesters, and Issuers (see 

Section 11.2).

The "Sec-Token-Origin" is an Item Structured Header [RFC8941]. Its

value MUST be a Byte Sequence. This header is sent both on Client-

to-Attester requests (Section 5.3) and on Issuer-to-Attester

responses (Section 5.5). Its ABNF is:

The "Sec-Token-Client" is an Item Structured Header [RFC8941]. Its

value MUST be a Byte Sequence. This header is sent on Client-to-

Attester requests (Section 5.3), and contains the bytes of Client

Key. Its ABNF is:

The "Sec-Token-Request-Blind" is an Item Structured Header 

[RFC8941]. Its value MUST be a Byte Sequence. This header is sent on

Client-to-Attester requests (Section 5.3), and contains a per-

request nonce value. Its ABNF is:

*
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    Sec-Token-Origin = sf-binary¶

¶

    Sec-Token-Client = sf-binary¶

¶

    Sec-Token-Request-Blind = sf-binary¶



The "Sec-Token-Request-Key" is an Item Structured Header [RFC8941].

Its value MUST be a Byte Sequence. This header is sent on Client-to-

Attester requests (Section 5.3), and contains a per-request public

key. Its ABNF is:

The "Sec-Token-Limit" is an Item Structured Header [RFC8941]. Its

value MUST be an Integer. This header is sent on Issuer-to-Attester

responses (Section 5.5), and contains the number of times a Client

can retrieve a token for the requested Origin within a policy

window, as set by the Issuer. Its ABNF is:

5.3. Client-to-Attester Request

The Client and Attester MUST use a secure and Attester-authenticated

HTTPS connection. They MAY use mutual authentication or mechanisms

such as TLS certificate pinning, to mitigate the risk of channel

compromise; see Section 8 for additional about this channel.

Requests to the Attester need to indicate the Issuer Name to which

issuance requests will be forwarded. Attesters SHOULD provide

Clients with a URI template that contains one variable that contains

the Issuer Name, "issuer", using Level 3 URI template encoding as

defined in Section 1.2 of [RFC6570].

An example of an Attester URI templates is shown below:

Attesters and Clients MAY agree on other mechanisms to specify the

Issuer Name in requests.

The Client first creates an issuance request message for a random

value nonce using the input TokenChallenge challenge and the Issuer

key identifier key_id as follows:

The Client then uses Client Key to generate its one-time-use request

public key request_key and blind request_blind as described in 

Section 7.1.

¶

    Sec-Token-Request-Key = sf-binary¶

¶

    Sec-Token-Limit = sf-integer¶

¶

¶

¶

https://attester.net/token-request{?issuer}¶

¶

¶

nonce = random(32)

context = SHA256(challenge)

token_input = concat(0x0003, nonce, context, key_id)

blinded_msg, blind_inv = rsabssa_blind(pkI, token_input)
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The Client then constructs a InnerTokenRequest value, denoted 

origin_token_request, combining blinded_msg, request_key, and the

origin name as follows:

This structure is initialized and then encrypted using Issuer

Encryption Key, producing encrypted_token_request, as described in 

Section 6.

Finally, the Client uses Client Secret to produce request_signature

as described in Section 7.1.2.

The Client then constructs a TokenRequest structure. This

TokenRequest structure is based on the publicly verifiable token

issuance path in [ISSUANCE], adding fields for the encrypted origin

name and request signature.

The structure fields are defined as follows:

"token_type" is a 2-octet integer, which matches the type in the

challenge.

"token_key_id" is the least significant byte of the Token Key key

ID, which is generated as SHA256(public_key), where public_key is

a DER-encoded SubjectPublicKeyInfo object carrying Token Key.

"issuer_encap_key_id" is a collision-resistant hash that

identifies the Issuer Encryption Key, generated as

SHA256(EncapsulationKey).

"encrypted_token_request" is an encrypted structure that contains

an InnerTokenRequest value, calculated as described in Section 6.

"request_signature" is computed as described in Section 7.1.2.

The Client then generates an HTTP POST request to send through the

Attester to the Issuer, with the TokenRequest as the body. The media

¶

struct {

  uint8_t blinded_msg[Nk];

  uint8_t request_key[Npk];

  uint8_t padded_origin_name<0..2^16-1>;

} InnerTokenRequest;

¶

¶

¶

¶

struct {

   uint16_t token_type = 0x0003;

   uint8_t token_key_id;

   uint8_t issuer_encap_key_id[32];

   uint8_t encrypted_token_request<1..2^16-1>;

   uint8_t request_signature[Nsig];

} TokenRequest;
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type for this request is "message/token-request". The Client

includes the "Sec-Token-Origin" header, whose value is Anonymous

Origin ID; the "Sec-Token-Client" header, whose value is Client Key;

the "Sec-Token-Request-Blind" header, whose value is request_blind;

and the "Sec-Token-Request-Key" header, whose value is request_key.

The Client sends this request to the Attester's proxy URI. An

example request is shown below, where the Issuer Name is

"issuer.net" and the Attester URI template is "https://attester.net/

token-request{?issuer}"

If the Attester detects a token_type in the TokenRequest that it

does not recognize or support, it MUST reject the request with an

HTTP 400 error.

The Attester also checks to validate that the issuer_encap_key_id in

the client's TokenRequest matches a known Issuer Encapsulation Key

public key for the Issuer. For example, the Attester can fetch this

key using the API defined in Section 3. This check is done to help

ensure that the Client has not been given a unique key that could

allow the Issuer to fingerprint or target the Client. If the key

does not match, the Attester rejects the request with an HTTP 400

error. Note that this can lead to failures in the event of Issuer

Issuer Encapsulation Key rotation; see Section 9 for considerations.

The Attester finally validates the Client's stable mapping request

as described in Section 7.2. If this fails, the Attester MUST return

an HTTP 400 error to the Client.

If the Attester accepts the request, it will look up the state

stored for this Client. It will look up the count of previously

generate tokens for this Client using the same Anonymous Origin ID.

See Section 5.1.2 for more details.

¶

:method = POST

:scheme = https

:authority = attester.net

:path = /token-request?issuer=issuer.net

accept = message/token-response

cache-control = no-cache, no-store

content-type = message/token-request

content-length = <Length of TokenRequest>

sec-token-origin = Anonymous Origin ID

sec-token-client = Client Key

sec-token-request-blind = request_blind

sec-token-request-key = request_key

<Bytes containing the TokenRequest>
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If the Attester has stored state that a previous request for this

Anonymous Origin ID was rejected by the Issuer in the current policy

window, it SHOULD reject the request without forwarding it to the

Issuer.

If the Attester detects this Client has changed their Client Key

more frequently than allowed as described in Section 5.1.2, it

SHOULD reject the request without forwarding it to the Issuer.

5.4. Attester-to-Issuer Request

Assuming all checks in Section 5.3 succeed, the Attester generates

an HTTP POST request to send to the Issuer with the Client's

TokenRequest as the body. The Attester MUST NOT add information that

will uniquely identify a Client, or associate the request with a

small set of possible Clients. Extensions to this protocol MAY allow

Attesters to add information that can be used to separate large

populations, such as providing information about the country or

region to which a Client belongs. An example request is shown below.

The Attester and the Issuer MUST use a secure and Issuer-

authenticated HTTPS connection. Also, Issuers MUST authenticate

Attesters, either via mutual TLS or another form of application-

layer authentication. They MAY additionally use mechanisms such as

TLS certificate pinning, to mitigate the risk of channel compromise;

see Section 8 for additional about this channel.

Upon receipt of the forwarded request, the Issuer validates the

following conditions:

The TokenRequest contains a supported token_type

The TokenRequest.token_key_id and

TokenRequest.issuer_encap_key_id correspond to known Token Keys

and Issuer Encapsulation Keys held by the Issuer.

The TokenRequest.encrypted_token_request can be decrypted using

the Issuer's private key (the private key associated with Issuer

Encapsulation Key), and contains a valid InnerTokenRequest whose

¶

¶

¶

:method = POST

:scheme = https

:authority = issuer.net

:path = /token-request

accept = message/token-response

cache-control = no-cache, no-store

content-type = message/token-request

content-length = <Length of TokenRequest>

<Bytes containing the TokenRequest>
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unpadded origin name matches an Origin Name that is served by the

Issuer. The Origin name associated with the InnerTokenRequest

value might be the empty string "", as described in Section 6, in

which case the Issuer applies a cross-origin policy if supported.

If a cross-origin policy is not supported, this condition is not

met.

If any of these conditions is not met, the Issuer MUST return an

HTTP 400 error to the Attester, which will forward the error to the

client.

The Issuer determines the correct Issuer Key by using the decrypted

Origin Name value and TokenRequest.token_key_id. If there is no

Token Key whose truncated key ID matches TokenRequest.token_key_id,

the Issuer MUST return an HTTP 401 error to Attester, which will

forward the error to the client. The Attester learns that the

client's view of the Origin key was invalid in the process.

5.5. Issuer-to-Attester Response

If the Issuer is willing to give a token to the Client, the Issuer

decrypts TokenRequest.encrypted_token_request to discover a

InnerTokenRequest value. If this fails, the Issuer rejects the

request with a 400 error. Otherwise, the Issuer validates and

processes the token request with Issuer Origin Secret corresponding

to the designated Origin as described in Section 7.3. If this fails,

the Issuer rejects the request with a 400 error. Otherwise, the

output is index_key.

The Issuer completes the issuance flow by computing a blinded

response as follows:

skP is the private key corresponding to Token Key, known only to the

Issuer. The Issuer then encrypts blind_sig to the Client as

described in Section 6.2, yielding encrypted_token_response.

The Issuer generates an HTTP response with status code 200 whose

body consists of blind_sig, with the content type set as "message/

token-response", the index_key set in the "Sec-Token-Origin" header,

and the limit of tokens allowed for a Client for the Origin within a

policy window set in the "Sec-Token-Limit" header. This limit SHOULD

NOT be unique to a specific Origin, such that the Attester could use

the value to infer which Origin the Client is accessing (see Section

9).

¶

¶

¶

¶

¶

blind_sig = rsabssa_blind_sign(skP, InnerTokenRequest.blinded_msg)¶

¶

¶



5.6. Attester-to-Client Response

Upon receipt of a successful response from the Issuer, the Attester

extracts the "Sec-Token-Origin" header, and uses the value to

determine Anonymous Issuer Origin ID as described in Section 7.4.

If the "Sec-Token-Origin" is missing, or if the same Anonymous

Issuer Origin ID was previously received in a response for a

different Anonymous Origin ID within the same policy window, the

Attester MUST drop the token and respond to the client with an HTTP

400 status. If there is not an error, the Anonymous Issuer Origin ID

is stored alongside the state for the Anonymous Origin ID.

The Attester also extracts the "Sec-Token-Limit" header, and

compares the limit against the previous count of accesses for this

Client for the Anonymous Origin ID. If the count is greater than or

equal to the limit, the Attester drops the token and responds to the

client with an HTTP 429 (Too Many Requests) error.

For all other cases, the Attester forwards all HTTP responses

unmodified to the Client as the response to the original request for

this issuance.

When the Attester detects successful token issuance, it MUST

increment the counter in its state for the number of tokens issued

to the Client for the Anonymous Origin ID.

Upon receipt, the Client decrypts the blind_sig from 

encrypted_token_response as described in Section 6.2. If successful,

the Client then processes the response as follows:

If this succeeds, the Client then constructs a token as described in

[AUTHSCHEME] as follows:

:status = 200

content-type = message/token-response

content-length = <Length of blind_sig>

sec-token-origin = index_key

sec-token-limit = Token limit

<Bytes containing the encrypted_token_response>
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authenticator = rsabssa_finalize(pkI, token_input, blind_sig, blind_inv)¶
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6. Encrypting Origin Token Requests and Responses

Clients encapsulate token request information to the Issuer using

the Issuer Encapsulation Key. Issuers decrypt the token request

using their corresponding private key. This process yields the

decrypted token request as well as a shared encryption context

between Client and Issuer. Issuers encapsulate their token response

to the Client using an ephemeral key derived from this shared

encryption context. This process ensures that the Attester learns

neither the token request or response information.

Client to Issuer encapsulation is described in Section 6.1, and

Issuer to Client encapsulation is described in Section 6.2.

6.1. Client to Issuer Encapsulation

Given a EncapsulationKey (Issuer Encapsulation Key), Clients produce

encrypted_token_request using the following values:

the one octet key identifier from the Name Key, keyID, with the

corresponding KEM identified by kemID, the public key from the

configuration, pkI, and;

a selected combination of KDF, identified by kdfID, and AEAD,

identified by aeadID.

Beyond the key configuration inputs, Clients also require the

following inputs defined in Section 5.3: token_key_id, blinded_msg, 

request_key, origin_name, and issuer_encap_key_id.

Together, these are used to encapsulate an InnerTokenRequest and

produce an encrypted token request (encrypted_token_request).

origin_name contains the name of the origin that initiated the

challenge, as taken from the TokenChallenge.origin_info field. If

the TokenChallenge.origin_info field is empty, origin_name is set to

the empty string "".

struct {

    uint16_t token_type = 0x0003

    uint8_t nonce[32];

    uint8_t context[32];

    uint8_t token_key_id[Nid];

    uint8_t authenticator[Nk]

} Token;
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The process for generating encrypted_token_request from blinded_msg,

request_key, and origin_name values is as follows:

Compute an [HPKE] context using pkI, yielding context and

encapsulation key enc.

Construct associated data, aad, by concatenating the values of

keyID, kemID, kdfID, aeadID, and all other values of the

TokenRequest structure.

Pad origin_name with N zero bytes, where N = 31 - ((L - 1) %

32) and L is the length of origin_name. If L is 0, N = 32.

Denote this padding process as the function pad.

Encrypt (seal) the padded origin_name with aad as associated

data using context, yielding ciphertext ct.

Concatenate the values of aad, enc, and ct, yielding

encrypted_token_request.

Note that enc is of fixed-length, so there is no ambiguity in

parsing this structure.

In pseudocode, this procedure is as follows:

Issuers reverse this procedure to recover the InnerTokenRequest

value by computing the AAD as described above and decrypting

encrypted_token_request with their private key skI (the private key

corresponding to pkI). The origin_name value is recovered from

InnerTokenRequest.padded_origin_name by stripping off padding bytes.

In pseudocode, this procedure is as follows:

¶
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¶
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¶

3. 

¶

4. 

¶

5. 

¶

¶

¶

enc, context = SetupBaseS(pkI, "InnerTokenRequest")

aad = concat(encode(1, keyID),

             encode(2, kemID),

             encode(2, kdfID),

             encode(2, aeadID),

             encode(2, token_type),

             encode(1, token_key_id),

             encode(32, issuer_encap_key_id))

padded_origin_name = pad(origin_name)

input = concat(encode(Nk, blinded_msg),

               encode(49, request_key),

               encode(len(padded_origin_name), padded_origin_name))

ct = context.Seal(aad, input)

encrypted_token_request = concat(enc, ct)

¶

¶



The InnerTokenRequest.blinded_msg and InnerTokenRequest.request_key

values, along with the unpadded origin_name value, are used by the

Issuer as described in Section 5.4.

6.2. Issuer to Client Encapsulation

Given an HPKE context context computed in Section 6.1, Issuers

encapsulate their token response blind_sig, yielding an encrypted

token response encrypted_token_response, to the Client as follows:

Export a secret secret from context, using the string

"OriginTokenResponse" as context. The length of this secret is 

max(Nn, Nk), where Nn and Nk are the length of AEAD key and

nonce associated with context.

Generate a random value of length max(Nn, Nk) bytes, called 

response_nonce.

Extract a pseudorandom key prk using the Extract function

provided by the KDF algorithm associated with context. The ikm

input to this function is secret; the salt input is the

concatenation of enc (from enc_request) and response_nonce

Use the Expand function provided by the same KDF to extract an

AEAD key key, of length Nk - the length of the keys used by the

AEAD associated with context. Generating key uses a label of

"key".

Use the same Expand function to extract a nonce nonce of length 

Nn - the length of the nonce used by the AEAD. Generating nonce

uses a label of "nonce".

Encrypt blind_sig, passing the AEAD function Seal the values

of key, nonce, empty aad, and a pt input of request, which

yields ct.

Concatenate response_nonce and ct, yielding an Encapsulated

Response enc_response. Note that response_nonce is of fixed-

enc, ct = parse(encrypted_token_request)

aad = concat(encode(1, keyID),

             encode(2, kemID),

             encode(2, kdfID),

             encode(2, aeadID),

             encode(2, token_type),

             encode(1, token_key_id),

             encode(32, issuer_encap_key_id))

context = SetupBaseR(enc, skI, "TokenRequest")

origin_token_request, error = context.Open(aad, ct)

¶
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length, so there is no ambiguity in parsing either 

response_nonce or ct.

In pseudocode, this procedure is as follows:

Clients decrypt encrypted_token_response by reversing this process.

That is, they first parse enc_response into response_nonce and ct.

They then follow the same process to derive values for aead_key and 

aead_nonce.

The client uses these values to decrypt ct using the Open function

provided by the AEAD. Decrypting might produce an error, as follows:

7. Anonymous Issuer Origin ID Computation

This section describes the Client, Attester, and Issuer behavior in

computing Anonymous Issuer Origin ID, the stable mapping based on

client identity and origin name. At a high level, this functionality

computes y = F(x, k), where x is a per-Client secret and k is a per-

Origin secret, subject to the following constraints:

The Attester only learns y if the Client in possession of x

engages with the protocol;

The Attester prevents a Client with private input x from running

the protocol for input x' that is not equal to x;

The Issuer does not learn x, nor does it learn when two requests

correspond to the same private value x; and

Neither the Client nor Attester learn k.

The interaction between Client, Attester, and Issuer in computing

this functionality is shown below.

¶

¶

secret = context.Export("OriginTokenResponse", Nk)

response_nonce = random(max(Nn, Nk))

salt = concat(enc, response_nonce)

prk = Extract(salt, secret)

aead_key = Expand(prk, "key", Nk)

aead_nonce = Expand(prk, "nonce", Nn)

ct = Seal(aead_key, aead_nonce, "", blind_sig)

encrypted_token_response = concat(response_nonce, ct)

¶

¶

¶

blind_sig, error = Open(aead_key, aead_nonce, "", ct)¶

¶
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The protocol for computing this functionality is divided into

sections for each of the participants. Section 7.1 describes Client

behavior for initiating the computation with its per-Client secret, 

Section 7.2 describes Attester behavior for verifying Client

requests, Section 7.3 describes Issuer behavior for computing the

mapping with its per-Origin secret, and Section 7.4 describes the

final Attester step for computing the client-origin index.

The index computation is based on a signature scheme with key

blinding and unblinding support, denoted BKS, as described in 

[KEYBLINDING]. Such a scheme has the following functions:

BKS-KeyGen(): Generate a random private and public key pair (sk,

pk).

BKS-BlindKeyGen(): Generate a random blinding key bk.

BKS-BlindPublicKey(pk, bk): Produce a blinded public key based on

the input public key pk and blind key bk according to 

[KEYBLINDING], Section 6.1.

BKS-Verify(pk, msg, sig): Verify signature sig over input message

msg against the public key pk, producing a boolean value

indicating success.

BKS-BlindKeySign(sk_sign, sk_blind, msg): Sign input message msg

with signing key sk_sign and blind key sk_blind according to 

[KEYBLINDING], Section 6.2, and produce a signature of size Nsig

bytes.

BKS-SerializePrivatekey(sk): Serialize a private key to a byte

string of length Nsk.

BKS-DeserializePrivatekey(buf): Attempt to deserialize a private

key from an Nsk-byte string buf. This function can fail if buf

does not represent a valid private key.

BKS-SerializePublicKey(pk): Serialize a public key to a byte

string of length Npk.

Client               Attester                Issuer

    (request, signature)

  ---------------------->

                           (request, signature)

                         ---------------------->

                                (response)

                         <----------------------

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶



BKS-DeserializePublicKey(buf): Attempt to deserialize a public

key of length Npk. This function can fail if buf does not

represent a valid public key.

Additionally, each BKS scheme has a corresponding hash function,

denoted Hash. The implementation of each of these functions depends

on the issuance protocol token type. See Section 11.1 for more

details.

7.1. Client Behavior

This section describes the Client behavior for generating an one-

time-use request key and signature. Clients provide their Client

Secret as input to the request key generation step, and the rest of

the token request inputs to the signature generation step.

7.1.1. Request Key

Clients produce request_key by masking Client Key and Client Secret

with a randomly chosen blind. Let pk_sign and sk_sign denote Client

Key and Client Secret, respectively. This process is done as

follows:

Generate a random blind key, sk_blind.

Blind pk_sign with sk_blind to compute a blinded public key, 

request_key.

Output the blinded public key.

In pseudocode, this is as follows:

7.1.2. Request Signature

Clients produce signature of their request based on the following

inputs defined in Section 5.3: token_key_id, blinded_msg, 

request_key, issuer_encap_key_id, encrypted_token_request. This

process requires the blind value sk_blind produced during the 

Section 7.1.1 process. As above, let pk and sk denote Client Key and

Client Secret, respectively. Given these values, this signature

process works as follows:

Concatenate all signature inputs to yield a message to sign.

*
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sk_blind = BKS-BlindKeyGen()

blinded_key = BKS-BlindPublicKey(pk_sign, sk_blind)

request_key = BKS-SerializePublicKey(blinded_key)

request_blind = BKS-SerializePrivatekey(sk_blind)
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Compute a signature with the blind sk_blind over the input

message using Client Secret, sk_sign as the signing key.

Output the signature.

In pseudocode, this is as follows:

7.2. Attester Behavior (Client Request Validation)

Given a TokenRequest request containing request_key, 

request_signature, and request_blind, as well as Client Key 

pk_blind, Attesters verify the signature as follows:

Check that request_key is a valid public key. If this fails,

abort.

Check that request_blind is a valid private key. If this fails,

abort.

Blind the Client Key pk_sign by blind sk_blind, yielding a

blinded key. If this does not match request_key, abort.

Verify request_signature over the contents of the request,

excluding the signature itself, using request_key. If signature

verification fails, abort.

In pseudocode, this is as follows:

7.3. Issuer Behavior

Given an Issuer Origin Secret (denoted sk_origin) and a

TokenRequest, from which request_key and request_signature are

2. 

¶

3. ¶

¶

context = concat(token_type,

                 token_key_id,

                 issuer_encap_key_id,

                 encrypted_token_request)

request_signature = BKS-BlindKeySign(sk_sign, sk_blind, context)

¶
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blind_key = BKS-DeserializePublicKey(request_key)

sk_blind = BKS-DeserializePrivatekey(request_blind)

pk_blind = BKS-BlindPublicKey(pk_sign, sk_blind)

if pk_blind != blind_key:

  raise InvalidParameterError

context = parse(request[..len(request)-Nsig]) // this matches context computed during signing

valid = BKS-Verify(blind_key, context, request_signature)

if not valid:

  raise InvalidSignatureError

¶



parsed, Issuers verify the request signature and compute a response

as follows:

Check that request_key is a valid public key. If this fails,

abort.

Verify request_signature over the contents of the request,

excluding the signature itself, using request_key. If signature

verification fails, abort.

Blind request_key by Issuer Origin Secret, sk_origin, yielding

an index key.

Output the index key.

In pseudocode, this is as follows:

7.4. Attester Behavior (Index Computation)

Given an Issuer response index_key, Client blind sk_blind, and

Client Key (denoted pk_sign), Attesters complete the Anonymous

Issuer Origin ID computation as follows:

Check that index_key is a valid public key. If this fails,

abort.

Unblind the index_key using the Client blind sk_blind, yielding

the index result.

Run HKDF [RFC5869] with the hash function corresponding to the

BKS scheme, using the index result as the secret, Client Key 

pk_sign as the salt, and ASCII string "anon_issuer_origin_id"

as the info string, yielding Anonymous Issuer Origin ID.

In pseudocode, this is as follows:
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blind_key = BKS-DeserializePublicKey(request_key)

context = parse(request[..len(request)-Nsig]) // this matches context computed during signing

valid = BKS-Verify(blind_key, context, request_signature)

if not valid:

  raise InvalidSignatureError

evaluated_key = BKS-BlindPublicKey(request_key, sk_origin)

index_key = BKS-SerializePublicKey(evaluated_key)
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8. Security Considerations

This section describes security considerations relevant to the use

of this protocol.

8.1. Channel Security

An attacker that can act as an intermediate between Attester and

Issuer communication can influence or disrupt the ability for the

Issuer to correctly rate-limit token issuance. All communication

channels use server-authenticated HTTPS. Some connections, e.g.,

between an Attester and an Issuer, require mutual authentication

between both endpoints. Where appropriate, endpoints MAY use further

enhancements such as TLS certificate pinning to mitigate the risk of

channel compromise.

8.2. Token Request Unlinkability and Unforgeability

Client token requests are constructed such that an Issuer cannot

distinguish between any two token requests from the same Client and

two requests from different Clients. We refer to this property as

issuance unlinkability. This property is achieved by the way the

tokens are constructed. In particular, TokenRequest.request_key and

TokenRequest.request_signature are the only value in a TokenRequest

that is derived from per-Client information, i.e., the Client

Secret.

TokenRequest.request_key is computed using a freshly generated blind

for each token request. As a result, the value of

TokenRequest.request_key in one token request is statistically

independent from Client Key. Similarly,

TokenRequest.request_signature is computed using the same freshly

generated blind as TokenRequest.request_key for each token request,

and the resulting signature is therefore independent from signatures

produced using Client Secret. More details about this unlinkability

property can be found in [KEYBLINDING].

This unlinkability property is only intended for requests observed

by the Issuer. In contrast, the Attester is required to link

requests from the same Client together for the purposes of enforcing

rate limits. This Attester does this by observing the Client Key.

evaluated_key = BKS-DeserializePublicKey(index_key)

unblinded_key = BKS-UnblindPublicKey(evaluated_key, sk_blind)

index_result = BKS-SerializePublicKey(unblinded_key)

pk_encoded = BKS-SerializePublicKey(pk_sign)

anon_issuer_origin_id = HKDF-Hash(secret=index_result,

  salt=pk_encoded, info="anon_issuer_origin_id")
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Importantly, the Client Key is not sent to the Issuer during the

issuance flow, as doing this would allow the Issuer to trivially

link two requests to the same Client.

The token request signature is also required to be unforgeable.

Informally, unforgeability means that no entity can produce a valid

(message, signature) pair for any blinding key without access to the

private signing key. Importantly, the means the Attester cannot

forge signatures on behalf of a given Client in an attempt to learn

the origin name.

8.3. Information Disclosure

The protocol in this document is designed such that information

pertaining to issuance of a token is limited to parties that need it

for completing the protocol. In particular, honest-but-curious

Attesters learn only the Anonymous Issuer Origin ID as described in 

Section 7, any per-Client information necessary for attestation, and

the target Issuer for a given token request. The Attester does not

directly learn the origin name associated with a given token

request, though it does learn the distribution of tokens across

Client interactions. This auxiliary information could be used to

infer the Origin for a given token. For example, if an Issuer has

only two configured Origins, each with a different token request

pattern, then the distribution of Client tokens might reveal the

Origin associated with a given token.

Malicious or otherwise compromised Attesters can choose to not

follow the protocol described in this specification, allowing, for

example, Clients to bypass rate limits imposed by Origins. Moreover,

malicious Attesters could reveal the per-request blind

(request_blind) to Issuers, breaking the unlinkability property

described in Section 8.2.

Honest-but-curious Issuers only learn the Attester that vouches for

a particular Client's token request and the origin name associated

with a token request. Issuers do not learn the Anonymous Issuer

Origin ID or any per-Client information used when creating a token

request.

Conversely, malicious Issuers that do not follow the protocol can

choose to not validate the token request signature, thereby allowing

others to forge token requests in an attempt to learn the origin

name. Malicious Issuers can also rotate token signing keys or Issuer

Origin Secret values frequently in an attempt to bypass Attester-

enforced rate limits. Both of these are detectable by the Attester,

though. Issuers can also lie about per-origin rate limits without

detection, e.g., by increasing the limit to a value well beyond any
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configured limit by an Origin, or return different limits for

different origins to the Attester.

Clients learn the output token. They do not learn the Anonymous

Issuer Origin ID, though the security of the protocol does not

depend on keeping this value secret from Clients. Moreover, even

malicious Clients cannot tamper with per-Client state stored on the

Attester for other Clients, as doing so requires knowledge of their

unique Client Secret.

9. Privacy Considerations

This section describes privacy considerations relevant to use of

this protocol.

9.1. Client Token State and Origin Tracking

Origins SHOULD only generate token challenges based on client

action, such as when a user loads a website. Clients SHOULD ignore

token challenges if an Origin tries to force the client to present

tokens multiple times without any new client-initiated action.

Failure to do so can allow malicious origins to track clients across

contexts. Specifically, an origin can abuse per-user token limits

for tracking by assigning each new client a random token count and

observing whether or not the client can successfully redeem that

many tokens in a given context. If any token redemption fails, then

the origin learns information about how many tokens that client had

previously been issued.

By rejecting repeated or duplicative challenges within a single

context, the origin only learns a single bit of information: whether

or not the client had any token quota left in the given policy

window.

9.2. Origin Verification

Rate-limited tokens are defined in terms of a Client authenticating

to an Origin, where the "origin" is used as defined in [RFC6454]. In

order to limit cross-origin correlation, Clients MUST verify that

the name of the origin that is providing the HTTP authentication

challenge is present in the TokenChallenge.origin_info list

([AUTHSCHEME]), where the matching logic is defined for same-origin

policies in [RFC6454]. Clients MAY further limit which

authentication challenges they are willing to respond to, for

example by only accepting challenges when the origin is a web site

to which the user navigated.
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9.3. Client Identification with Unique Keys

Client activity could be linked if an Origin and Issuer collude to

have unique keys targeted at specific Clients or sets of Clients.

To mitigate the risk of a targeted Issuer Encapsulation Key, the

Attester can observe and validate the token_key_id presented by the

Client to the Issuer. As described in Section 5, Attesters MUST

validate that the token_key_id in the Client's TokenRequest matches

a known public key for the Issuer. The Attester needs to support key

rotation, but ought to disallow very rapid key changes, which could

indicate that an Origin is colluding with an Issuer to try to rotate

the key for each new Client in order to link the client activity.

9.4. Origin Identification

As stated in Section 1.2, the design of this protocol is such that

Attesters cannot learn the identity of origins that Clients are

accessing. The Origin Name itself is encrypted in the request

between the Client and the Issuer, so the Attester cannot directly

learn the value. However, in order to prevent the Attester from

inferring the value, additional constraints need to be added:

Each Issuer SHOULD serve tokens to a large number of Origins. A

one-to-one relationship between Origin and Issuer would allow an

Attester to infer which Origin is accessed simply by observing

the Issuer identity.

Issuers SHOULD NOT return rate-limit values that are specific to

Origins, such that an Attester can infer which Origin is accessed

by observing the rate limit. This can be mitigated by having many

Origins share the same rate-limit value.

Some deployments MAY choose to relax these requirements, such as in

cases where the origins being accessed are ubiquitous or do not

correspond to user-specific behavior.

9.5. Collusion Among Different Entities

Collusion among the different entities in the Privacy Pass

architecture can result in exposure of a client's per-origin access

patterns.

For this issuance protocol, Issuers and Attesters should be run by

mutually distinct organizations to limit information sharing. A

single entity running an Issuer and Attester for a single token

issuance flow can view the origins being accessed by a given client.

Running the Issuer and Attester in this 'single Issuer/Attester'

fashion reduces the privacy promises of no one entity being able to

learn Client browsing patterns. This may be desirable for a
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redemption flow that is limited to specific Issuers and Attesters,

but should be avoided where hiding origin names from the Attester is

desirable.

If a Attester and Origin are able to collude, they can correlate a

client's identity and origin access patterns through timestamp

correlation. The timing of a request to an Origin and subsequent

token issuance to a Attester can reveal the Client identity (as

known to the Attester) to the Origin, especially if repeated over

multiple accesses.

10. Deployment Considerations

10.1. Token Key Management

Issuers SHOULD generate a new (Token Key, Issuer Origin Secret)

regularly, and SHOULD maintain old and new secrets to allow for

graceful updates. The RECOMMENDED rotation interval is two times the

length of the policy window for that information. During generation,

issuers must ensure the token_key_id (the 8-bit prefix of

SHA256(Token Key)) is different from all other token_key_id values

for that origin currently in rotation. One way to ensure this

uniqueness is via rejection sampling, where a new key is generated

until its token_key_id is unique among all currently in rotation for

the origin.

11. IANA considerations

11.1. Token Type

This document updates the "Token Type" Registry ([AUTHSCHEME]) with

the following value:

Value Name
Publicly

Verifiable

Public

Metadata

Private

Metadata
Nk Nid Reference

0x0003

Rate-Limited

Blind

RSA(SHA-384,

2048-bit) with

ECDSA(P-384,

SHA-384)

Y N N 512 32
This

document

0x0004

Rate-Limited

Blind

RSA(SHA-384,

2048-bit) with

Ed25519(SHA-512)

Y N N 512 32
This

document

Table 2: Token Types
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The details of the signature scheme with key blinding and unblinding

functions for each token type above are described in the following

sections.

11.1.1. ECDSA-based Token Type

This section describes the implementation details of the signature

scheme with key blinding and unblinding functions introduced in 

Section 7 using [ECDSA] with P-384 as the underlying elliptic curve

and SHA-384 as the corresponding hash function.

BKS-KeyGen(): Generate a random ECDSA private and public key pair

(sk, pk).

BKS-BlindKeyGen(): Generate a random ECDSA private key bk.

BKS-BlindPublicKey(pk, bk): Produce a blinded public key based on

the input public key pk and blind bk according to [KEYBLINDING],

Section 6.1.

BKS-Verify(pk, msg, sig): Verify the DER-encoded [X690] BKS-Sig-

Value signature sig over input message msg against the ECDSA

public key pk, producing a boolean value indicating success.

BKS-BlindKeySign(sk_sign, sk_blind, msg): Sign input message msg

with signing key sk_sign and blind sk_blind according to 

[KEYBLINDING], Section 6.2, and serializes the resulting

signature pair (r, s) in "raw" form, i.e., as the concatenation

of two 48-byte, big endian scalars, yielding an Nsig=96 byte

signature.

BKS-SerializePrivatekey(sk): Serialize an ECDSA private key using

the Field-Element-to-Octet-String conversion according to [SECG].

BKS-DeserializePrivatekey(buf): Attempt to deserialize an ECDSA

private key from a 48-byte string buf using Octet-String-to-

Field-Element from [SECG]. This function can fail if buf does not

represent a valid private key.

BKS-SerializePublicKey(pk): Serialize an ECDSA public key using

the compressed Elliptic-Curve-Point-to-Octet-String method

according to [SECG].

BKS-DeserializePublicKey(buf): Attempt to deserialize a public

key using the compressed Octet-String-to-Elliptic-Curve-Point

method according to [SECG], and then performs partial public-key

validation as defined in section 5.6.2.3.4 of [KEYAGREEMENT].

This validation includes checking that the coordinates are in the

correct range, that the point is on the curve, and that the point

is not the point at infinity.
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11.1.2. Ed25519-based Token Type

This section describes the implementation details of the signature

scheme with key blinding and unblinding functions introduced in 

Section 7 using Ed25519 as described in [RFC8032].

BKS-KeyGen(): Generate a random Ed25519 private and public key

pair (sk, pk), where sk is randomly generated 32 bytes (See 

[RFC4086] for information about randomness generation) and pk is

computed according to [RFC8032], Section 5.1.5.

BKS-BlindKeyGen(): Generate and output 32 random bytes.

BKS-BlindPublicKey(pk, bk): Produce a blinded public key based on

the input public key pk and blind bk according to [KEYBLINDING], 

Section 5.1.

BKS-Verify(pk, msg, sig): Verify the signature sig over input

message msg against the Ed25519 public key pk, as defined in 

[RFC8032], Section 5.1.7, producing a boolean value indicating

success.

BKS-BlindKeySign(sk_sign, sk_blind, msg): Sign input message msg

with signing key sk_sign and blind sk_blind according to 

[KEYBLINDING], Section 5.2, yielding an Nsig=64 byte signature.

BKS-SerializePrivatekey(sk): Identity function which outputs sk

as an Nsk=32 byte buffer.

BKS-DeserializePrivatekey(buf): Identity function which outputs

buf interpreted as sk.

BKS-SerializePublicKey(pk): Identity function which outputs pk as

an Npk=32 byte buffer.

BKS-DeserializePublicKey(buf): Identity function which outputs

buf interpreted as pk.

11.2. HTTP Headers

This document registers four new headers for use on the token

issuance path in the "Permanent Message Header Field Names"

<https://www.iana.org/assignments/message-headers>.
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Appendix B. Test Vectors

This section includes test vectors for Origin Name encryption in 

Section 6 and Anonymous Origin ID computation in Section 7. Test

vectors for the token request and response protocol can be found in 

[ISSUANCE].
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B.1. Origin Name Encryption Test Vector

The test vector below for the procedure in Section 6 lists the

following values:

origin_name: The Origin Name to encrypt, represented as a

hexadecimal string.

kem_id, kdf_id, aead_id: The HPKE algorithms comprising the

ciphersuite DHKEM(X25519, HKDF-SHA256), HKDF-SHA256, AES-128-GCM.

issuer_encap_key_seed: The seed used to derive the private key

corresponding to Issuer Encapsulation Key via the DeriveKeyPair

function as defined in Section 7.1.3. of [HPKE], represented as a

hexadecimal string.

issuer_encap_key: The public Issuer Encapsulation Key,

represented as a hexadecimal string.

token_type: The type of the protocol specified in this document.

token_key_id: The ID of Token Key computed as in Section 5.3, a

single octet.

blinded_msg: A random blinded_msg value, represented as a

hexadecimal string.

request_key: A random request_key value, represented as a

hexadecimal string.

issuer_encap_key_id: The Issuer Encapsulation Key ID computed as

in Section 5.3, represented as a hexadecimal string.

encrypted_token_request: The encrypted InnerTokenRequest,

represented as a hexadecimal string.
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B.2. Anonymous Origin ID Test Vector

The test vector below for the procedure in Section 7 lists the

following values:

sk_client: Client Secret, serialized and represented as a

hexadecimal string.

pk_client: Client Key, serialized and represented as a

hexadecimal string.

sk_origin: Origin Secret, serialized and represented as a

hexadecimal string.

origin_name: 746573742e6578616d706c65

kem_id: 32

kdf_id: 1

aead_id: 1

issuer_encap_key_seed:

d2653816496f400baec656f213f1345092f4406af4f2a63e164956c4c3d240ca

issuer_encap_key: 010020d7b6a2c10e75c4239feb9897e8d23f3f3c377d78e7903611

53167736a24a9c5400010001

token_type: 3

token_key_id: 125

blinded_msg: 89da551a48270b053e53c9eb741badf89e43cb7e66366bb936e11fb2aa0

d30866986a790378bb9fc6a7cf5c32b7b7584d448ffa4ced3be650e354b3136428a52ec0

b27c4103c5855c2b9b4f521ad0713c800d7e6925b6c62e1a6f58b31d13335f468cf509b7

46a16e79b23862d277d0880706c3fb84b127d94faf8d6d2f3e124e681994441b19be084e

c5c159bcd0abab433bbc308d90ea2cabdf4216e1b07155be66a048d686e383ca1e517ab8

0025bb4849d98beb8c3d05d045c1167cb74f4451d8f85695babb604418385464f21f9a81

5fb850ed83fd16a966130427e5637816501f7a79c0010e06adeba55781ceb50f56eae152

ebd06f3cef80dc7ab121d

request_key: 0161d905e4e37f515cb61f863b60e5896aa9e4a17dbe238e752a144c64a

5412e244f0b1f75e010831e185cac023d33cb20

issuer_encap_key_id:

dd2c6de3091f1873643233d229a7a0e9defe0f9fe43f6a7c42ae3a6b16f77837

encrypted_token_request: 82ef7c068506bcabc27d068a51c7ead2cbaf600b76a15e4

d9df99a0da676da5a073fcc8f5ac77b25064d7379037b4e1b186977cface31eceb611978

c73c9aef38c9a0e8ae846881624fa6d454523a0a91d22b02b022891d0469deebd66a912a

a1ab3391b203e92e0a681f0a10c2a2d59b668daf1e5219ed16227d707fa0e8e29188bd58

7ab38b3584564ce9b6538ba82e301cfed4231a2fa4f64a67285a1b9bf648e25f3eb1644c

88d43552bdea6e4bfcbaef0de3ac245e0432be6b019494927fde0743b775f9efe8ca5fef

afbf2048890d54618d408a6001fc8fb276f6828c46f4fe1381e9775eec72ee47593df738

95d18952440d33756d78caea4bd8218950d35afa6c46c535211eda39da277260cb8dab7c

00c6840a745e8150a6ee4893e72b6a51382f877f8c05a15e891a2bde07049760f0f09879

78d78b97e47ecaf90a44996d724dd3720e308abbbf04f672bc5a4db573291986be191b06

03ff521accb6fa081c151c758f3092a89fc6ef591934ff4bc860896c57f83a31b237dd1b

803516c
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request_blind: The request_blind value computed in Section 7.1.1,

represented as a hexadecimal string.

index_key: The index_key value computed in Section 7.3,

represented as a hexadecimal string.

anon_issuer_origin_id: The anon_issuer_origin_id value computed

in Section 7.4, represented as a hexadecimal string.
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sk_sign: f6e6a0c9de38663ca539ff2e6a04e4fca11dc569794dc405e2d17439d6ce4f6

7abb2b81a1852e0db993b6a0452eb60d6

pk_sign: 032db7483c710673e6999a5fb2a2c6eac1d891f89bbf58d985ff168d182ad51

605c4369280efabb7692f661162e683f03c

sk_origin: 85de5fbbd787da5093da0adb240eba0cc6ea90d72032fc4b6925dd7d0ab1d

a1e5ae0be27fe9f59e9ec7e1f1b15b28696

request_blind: 0698a149fb9d16bcb0a856062f74f9191e82b35e91224a57abce60f5b

79f03a669c6b5e093d57e647865f9fd4305b5a9
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anon_issuer_origin_id: 9b0f980e5c1142fddb4401e5cd2107a87d22b73753b0d5dc9

3f9a8f5ed2ee7db78163c6a93cc41ae8158d562381c51ee
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