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Abstract

This document defines a protocol for issuing and redeeming privacy-

preserving access tokens. These tokens can adhere to an issuance
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1. Introduction

Servers commonly use passive and persistent identifiers associated

with clients, such as IP addresses or device identifiers, for

enforcing access and usage policies. For example, a server might

limit the amount of content an IP address can access over a given

time period (referred to as a "metered paywall"), or a server might

rate-limit access from an IP address to prevent fraud and abuse.

Servers also commonly use the client's IP address as a strong

indicator of the client's geographic location to limit access to

services or content to a specific geographic area (referred to as

"geofencing").

However, passive and persistent client identifiers can be used by

any entity that has access to it without the client's express

consent. A server can use a client's IP address or its device

identifier to track client activity. A client's IP address, and

therefore its location, is visible to all entities on the path

between the client and the server. These entities can trivially

track a client, its location, and servers that the client visits.

A client that wishes to keep its IP address private can hide its IP

address using a proxy service or a VPN. However, doing so severely

limits the client's ability to access services and content, since

servers might not be able to enforce their policies without a stable

and unique client identifier.

This document describes an architecture for Private Access Tokens

(PATs), using RSA Blind Signatures as defined in [BLINDSIG], as an

explicit replacement for these passive client identifiers. These

tokens are privately issued to clients upon request and then

redeemed by servers in such a way that the issuance and redemption

events for a given token are unlinkable.
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At first glance, using PATs in lieu of passive identifiers for

policy enforcement suggests that some entity needs to know both the

client's identity and the server's policy, and such an entity would

be trivially able to track a client and its activities. However,

with appropriate mediation and separation between the parties

involved in the issuance and the redemption protocols, it is

possible to eliminate this information concentration without any

functional regressions. This document describes such a protocol.

The relationship of this work to Privacy Pass ([I-D.ietf-

privacypass-protocol]) is discussed in Appendix A.

1.1. Motivation

This section describes classes of use cases where an origin would

traditionally use a stable and unique client identifier for

enforcing attribute-based policy. Hiding these identifiers from

origins would therefore require an alternative for origins to

continue enforcing their policies. Using the Privacy Address Token

architecture for addressing these use cases is described in Section

6.

1.1.1. Rate-limited Access

An origin provides rate-limited access to content to a client over a

fixed period of time. The origin does not need to know the client's

identity, but needs to know that a requesting client has not

exceeded the maximum rate set by the origin.

One example of this use case is a metered paywall, where an origin

limits the number of page requests to each unique user over a period

of time before the user is required to pay for access. The origin

typically resets this state periodically, say, once per month. For

example, an origin may serve ten (major content) requests in a month

before a paywall is enacted. Origins may want to differentiate quick

refreshes from distinct accesses.

Another example of this use case is rate-limiting page accesses to a

client to help prevent fraud. Operations that are sensitive to

fraud, such as account creation on a website, often employ rate-

limiting as a defense in depth strategy. Captchas or additional

verification can be required by these pages when a client exceeds a

set rate-limit.

Origins routinely use client IP addresses for this purpose.

1.1.2. Client Geo-Location

An origin provides access to or customizes content based on the geo-

location of the client. The origin does not need to know the
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client's identity, but needs to know the geo-location, with some

level of accuracy, for providing service.

A specific example of this use case is "geo-fencing", where an

origin restricts the available content it can serve based on the

client's geographical region.

Origins almost exclusively use client IP addresses for this purpose.

1.1.3. Private Client Authentication

An origin provides access to content for clients that have been

authorized by a delegated or known mediator. The origin does not

need to know the client's identity.

A specific example of this use case is a federated service that

authorizes users for access to specific sites, such as a federated

news service or a federated video streaming service. The origin

trusts the federator to authorize users and needs proof that the

federator authorized a particular user, but it does not need the

user's identity to provide access to content.

Origins could currently redirect clients to a federator for

authentication, but origins could then track the client's federator

user ID or the client's IP address across accesses.

1.2. Architecture

At a high level, the PAT architecture seeks to solve the following

problem: in the absence of a stable Client identifier, an Origin

needs to verify the identity of a connecting Client and enforce

access policies for the incoming Client. To accomplish this, the PAT

architecture employs four functional components:

Client: requests a PAT from an Issuer and presents it to a

Origin for access to the Origin's service.

Mediator: authenticates a Client, using information such as its

IP address, an account name, or a device identifier. Anonymizes

a Client to an Issuer and relays information between an

anonymized Client and an Issuer.

Issuer: issues PATs to an anonymized Client on behalf of an

Origin. Anonymizes an Origin to a Mediator and enforces the

Origin's policy.

Origin: directs a Client to an Issuer with a challenge and

enables access to content or services to the Client upon

verification of any PAT sent in response by the Client.
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In the PAT architecture, these four components interact as follows.

An Origin designates a trusted Issuer to issue tokens for it. The

Origin then redirects any incoming Clients to the Issuer for policy

enforcement, expecting the Client to return with a proof from the

Issuer that the Origin's policy has been enforced for this Client.

The Client employs a trusted Mediator through which it communicates

with the Issuer for this proof. The Mediator performs three

important functions:

authenticate and associate the Client with a stable identifier;

maintain issuance state for the Client and relay it to the

Issuer; and

anonymize the Client and mediate communication between the Client

and the Issuer.

When a Mediator-anonymized Client requests a token from an Issuer,

the Issuer enforces the Origin's policies based on the received

Client issuance state and Origin policy. Issuers know the Origin's

policies and enforce them on behalf of the Origin. An example policy

is: "Limit 10 accesses per Client". More examples and their use

cases are discussed in Section 6. The Issuer does not learn the

Client's true identity.

Finally, the Origin provides access to content or services to a

Client upon verifying a PAT presented by the Client. Verification of

this token serves as proof that the Client meets the Origin's

policies as enforced by the delegated Issuer with the help of a

Mediator. The Origin can then provide any services or content gated

behind these policies to the Client.

Figure 1 shows the components of the PAT architecture described in

this document. Protocol details follow in Section 4 and Section 5.
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Figure 1: PAT Architectural Components

1.3. Properties and Requirements

In this architecture, the Mediator, Issuer, and Origin each have

partial knowledge of the Client's identity and actions, and each

entity only knows enough to serve its function (see Section 2 for

more about the pieces of information):

The Mediator knows the Client's identity and learns the Client's

public key (CLIENT_KEY), the Issuer being targeted (ISSUER_NAME),

the period of time for which the Issuer's policy is valid

(ISSUER_POLICY_WINDOW), and the number of tokens issued to a

given Client for the claimed Origin in the given policy window.

The Mediator does not know the identity of the Origin the Client

is trying to access (ORIGIN_ID), but knows a Client-anonymized

identifier for it (ANON_ORIGIN_ID).

The Issuer knows the Origin's secret (ORIGIN_SECRET) and policy

about client access, and learns the Origin's identity

(ORIGIN_NAME) and the number of previous tokens issued to the

Client (as communicated by the Mediator) during issuance. The

Issuer does not learn the Client's identity.

The Origin knows the Issuer to which it will delegate an incoming

Client (ISSUER_NAME), and can verify that any tokens presented by

the Client were signed by the Issuer. The Origin does not learn

which Mediator was used by a Client for issuance.

Since an Issuer enforces policies on behalf of Origins, a Client is

required to reveal the Origin's identity to the delegated Issuer. It

 Client        Mediator          Issuer          Origin

    <---------------------------------------- Challenge \

                                                        |

+--------------------------------------------\          |

| TokenRequest --->                          |          |

|             (validate)                     |          |

|             (attach state)                 |          |

|                    TokenRequest --->       |          |    PAT

|                                 (validate) |   PAT    | Challenge/

|                                 (evaluate) | Issuance |  Response

|                    <--- TokenResponse      |   Flow   |   Flow

|             (evaluate)                     |          |

|             (update state)                 |          |

|   <--- TokenResponse                       |          |

---------------------------------------------/          |

                                                        |

     Response -------------------------------------- >  /
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is a requirement of this architecture that the Mediator not learn

the Origin's identity so that, despite knowing the Client's

identity, a Mediator cannot track and concentrate information about

Client activity.

An Issuer expects a Mediator to verify its Clients' identities

correctly, but an Issuer cannot confirm a Mediator's efficacy or the

Mediator-Client relationship directly without learning the Client's

identity. Similarly, an Origin does not know the Mediator's

identity, but ultimately relies on the Mediator to correctly verify

or authenticate a Client for the Origin's policies to be correctly

enforced. An Issuer therefore chooses to issue tokens to only known

and reputable Mediators; the Issuer can employ its own methods to

determine the reputation of a Mediator.

A Mediator is expected to employ a stable Client identifier, such as

an IP address, a device identifier, or an account at the Mediator,

that can serve as a reasonable proxy for a user with some creation

and maintenance cost on the user.

For the Issuance protocol, a Client is expected to create and

maintain stable and explicit secrets for time periods that are on

the scale of Issuer policy windows. Changing these secrets

arbitrarily during a policy window can result in token issuance

failure for the rest of the policy window; see Section 5.1.1 for

more details. A Client can use a service offered by its Mediator or

a third-party to store these secrets, but it is a requirement of the

PAT architecture that the Mediator not be able to learn these

secrets.

The privacy guarantees of the PAT architecture, specifically those

around separating the identity of the Client from the names of the

Origins that it accesses, are based on the expectation that there is

not collusion between the entities that know about Client identity

and those that know about Origin identity. Clients choose and share

information with Mediators, and Origins choose and share policy with

Issuers; however, the Mediator is generally expected to not be

colluding with Issuers or Origins. If this occurs, it can become

possible for a Mediator to learn or infer which Origins a Client is

accessing, or for an Origin to learn or infer the Client identity.

For further discussion, see Section 8.4.

1.4. Client Identity

The PAT architecture does not enforce strong constraints around the

definition of a Client identity and allows it to be defined entirely

by a Mediator. If a user can create an arbitrary number of Client

identities that are accepted by one or more Mediators, a malicious
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user can easily abuse the system to defeat the Issuer's ability to

enforce per-Client policies.

These multiple identities could be fake or true identities.

A Mediator alone is responsible for detecting and weeding out fake

Client identities in the PAT architecture. An Issuer relies on a

Mediator's reputation; as explained in Section 1.3, the correctness

of the architecture hinges on Issuers issuing tokens to only known

and reputable Mediators.

Users have multiple true identities on the Internet however, and as

a result, it seems possible for a user to abuse the system without

having to create fake identities. For instance, a user could use

multiple Mediators, authenticating with each one using a different

true identity.

The PAT architecture offers no panacea against this potential abuse.

We note however that the usages of PATs will cause the ecosystem to

evolve and offer practical mitigations, such as:

An Issuer can learn the properties of a Mediator - specifically,

which stable Client identifier is authenticated by the Mediator -

to determine whether the Mediator is acceptable for an Origin.

An Origin can choose an Issuer based on the types of Mediators

accepted by the Issuer, or the Origin can communicate its

constraints to the designated Issuer.

An Origin can direct a user to a specific Issuer based on client

properties that are visible. For instance, properties that are

observable in the HTTP User Agent string.

The number of true Mediator-authenticated identities for a user

is expected to be small, and therefore likely to be small enough

to not matter for certain use cases. For instance, when PATs are

used to prevent fraud by rate-limiting Clients (as described in 

Section 1.1.1), an Origin might be tolerant of the potential

amplification caused by an attacking user's access to multiple

true identities with Issuer-trusted Mediators.

1.5. User Interaction

When used in contexts like websites, origin servers that challenge

clients for Private Access Tokens need to consider how to optimize

their interaction model to ensure a good user experience.

Private Access Tokens are designed to be used without explicit user

involvement. Since tokens are only valid for a single origin and in

response to a specific challenge, there is no need for a user to
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ISSUER_NAME:

manage a limited pool of tokens across origins. The information that

is available to an origin upon token redemption is limited to the

fact that this is a client that passed a Mediator's checks and has

not exceeded the per-origin limit defined by an Issuer. Generally,

if a user is willing to use Private Access Tokens with a particular

origin (or all origins), there is no need for per-challenge user

interaction. Note that the Issuance flow may separately involve user

interaction if the Mediator needs to authenticate the Client.

Since tokens are issued using a separate connection through a

Mediator to an Issuer, the process of issuance can add user-

perceivable latency. Origins SHOULD NOT block useful work on token

authentication. Instead, token authentication can be used in similar

ways to CAPTCHA validation today, but without the need for user

interaction. If issuance is taking a long time, a website could show

an indicator that it is waiting, or fall back to another method of

user validation.

If an origin is requesting an unexpected number of tokens, such as

requesting token authentication more than once for a single website

load, it can indicate that the server is not functioning correctly,

or is trying to attack or overload the client or issuance servers.

In such cases, the client SHOULD ignore redundant token challengers,

or else alert the user.

2. Notation and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Unless said otherwise, this document encodes protocol messages in

TLS notation from [TLS13], Section 3.

This draft includes pseudocode that uses the functions and

conventions defined in [HPKE].

Encoding an integer to a sequence of bytes in network byte order is

described using the function "encode(n, v)", where "n" is the number

of bytes and "v" is the integer value. The function "len()" returns

the length of a sequence of bytes.

The following terms are defined to refer to the different pieces of

information passed through the system:

The Issuer Name identifies which Issuer is able to

provide tokens for a Client. The Client sends the Issuer Name to
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ISSUER_POLICY_WINDOW:

ORIGIN_TOKEN_KEY:

ISSUER_KEY:

ORIGIN_NAME:

ANON_ORIGIN_ID:

CLIENT_KEY:

CLIENT_SECRET:

ORIGIN_SECRET:

ANON_ISSUER_ORIGIN_ID:

the Mediator so the Mediator know where to forward requests. Each

Issuer is associated with a specific ISSUER_POLICY_WINDOW.

The period over which an Issuer will track

access policy, defined in terms of seconds and represented as a

uint64. The state that the Mediator keeps for a Client is

specific to a policy window. The effective policy window for a

specific Client starts when the Client first sends a request

associated with an Issuer.

The public key used when generating and verifying

Private Access Tokens. Each Origin Token Key is unique to a

single Origin. The corresponding private key is held by the

Issuer.

The public key used to encrypt values such as

ORIGIN_NAME in requests from Clients to the Issuer, so that

Mediators cannot learn the ORIGIN_NAME value. Each ISSUER_KEY is

used across all requests on the Issuer, for different Origins.

The name of the Origin that requests and verifies

Private Access Tokens.

An identifier that is generated by the Client and

marked on requests to the Mediator, which represents a specific

Origin anonymously. The Client generates a stable ANON_ORIGIN_ID

for each ORIGIN_NAME, to allow the Mediator to count token access

without learning the ORIGIN_NAME.

A public key chosen by the Client and shared only with

the Mediator.

The secret key used by the Client during token

issuance, whose public key (CLIENT_KEY) is shared with the

Mediator.

The secret key used by the Issuer during token

issuance, whose public key is not shared with anyone.

An identifier that is generated by Issuer

based on an ORIGIN_SECRET that is per-Client and per-Origin. See 

Section 5.6 for details of derivation.

3. Configuration

Issuers MUST provide three parameters for configuration:

ISSUER_KEY: a KeyConfig as defined in [OHTTP] to use when

encrypting the ORIGIN_NAME in issuance requests. This parameter

uses resource media type "application/ohttp-keys".
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ISSUER_POLICY_WINDOW: a uint64 of seconds as defined in Section

2.

ISSUER_REQUEST_URI: a Private Access Token request URL for

generating access tokens. For example, an Issuer URL might be

https://issuer.example.net/access-token-request. This parameter

uses resource media type "text/plain".

These parameters can be obtained from an Issuer via a directory

object, which is a JSON object whose field names and values are raw

values and URLs for the parameters.

Field Name Value

issuer-key ISSUER_KEY resource URL as a JSON string

issuer-policy-

window
ISSUER_POLICY_WINDOW as a JSON number

issuer-request-uri
ISSUER_REQUEST_URI resource URL as a JSON

string

Table 1

As an example, the Issuer's JSON directory could look like:

Mediators MUST provide a single parameter for configuration,

MEDIATOR_REQUEST_URI, wich is Private Access Token request URL for

proxying protocol messages to Issuers. For example, a Mediator URL

might be https://mediator.example.net/relay-access-token-request.

Similar to Issuers, Mediators make this parameter available by a

directory object with the following contents:

Field Name Value

mediator-request-uri MEDIATOR_REQUEST_URI resource URL

Table 2

As an example, the Mediator's JSON dictionary could look like:

Issuer and Mediator directory resources have the media type

"application/json" and are located at the well-known location

/.well-known/private-access-tokens-directory.

2. 
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 {

    "issuer-key": "https://issuer.example.net/key",

    "issuer-token-window": 86400,

    "issuer-request-uri": "https://issuer.example.net/access-token-request"

 }

¶

¶

¶

 {

    "mediator-request-uri": "https://mediator.example.net/relay-access-token-request."

 }

¶
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4. Token Challenge and Redemption Protocol

This section describes the interactive protocol for the token

challenge and redemption flow between a Client and an Origin.

Token redemption is performed using HTTP Authentication ([RFC7235]),

with the scheme "PrivateAccessToken". Origins challenge Clients to

present a unique, single-use token from a specific Issuer. Once a

Client has received a token from that Issuer, it presents the token

to the Origin.

Token redemption only requires Origins to verify token signatures

computed using the Blind Signature protocol from [BLINDSIG]. Origins

are not required to implement the complete Blind Signature protocol.

(In contrast, token issuance requires Clients and Issuers to

implement the Blind Signature protocol, as described in Section 5.)

4.1. Token Challenge

Origins send a token challenge to Clients in an "WWW-Authenticate"

header with the "PrivateAccessToken" scheme. This challenge includes

a TokenChallenge message, along with information about what keys to

use when requesting a token from the Issuer.

The TokenChallenge message has the following structure:

The structure fields are defined as follows:

"version" is a 1-octet integer. This document defines version 1.

"origin_name" is a string containing the name of the Origin

(ORIGIN_NAME).

"issuer_name" is a string containing the name of the Issuer

(ISSUER_NAME).

"redemption_nonce" is a fresh 32-byte nonce generated for each

redemption request.

¶
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struct {

    uint8_t version;

    opaque origin_name<1..2^16-1>;

    opaque issuer_name<1..2^16-1>;

    opaque redemption_nonce[32];

} TokenChallenge;
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When used in an authentication challenge, the "PrivateAccessToken"

scheme uses the following attributes:

"challenge", which contains a base64url-encoded [RFC4648]

TokenChallenge value. This MUST be unique for every 401 HTTP

response to prevent replay attacks.

"token-key", which contains a base64url encoding of the

SubjectPublicKeyInfo object for use with the RSA Blind Signature

protocol (ORIGIN_TOKEN_KEY).

"issuer-key", which contains a base64url encoding of a KeyConfig

as defined in [OHTTP] to use when encrypting the ORIGIN_NAME in

issuance requests (ISSUER_KEY).

"max-age", an optional attribute that consists of the number of

seconds for which the challenge will be accepted by the Origin.

Origins MAY also include the standard "realm" attribute, if desired.

As an example, the WWW-Authenticate header could look like this:

Upon receipt of this challenge, a Client uses the message and keys

in the Issuance protocol (see Section 5). If the TokenChallenge has

a version field the Client does not recognize or support, it MUST

NOT parse or respond to the challenge. This document defines version

1, which indicates use of private tokens based on RSA Blind

Signatures [BLINDSIG], and determines the rest of the structure

contents.

Note that it is possible for the WWW-Authenticate header to include

multiple challenges, in order to allow the Client to fetch a batch

of multiple tokens for future use.

For example, the WWW-Authenticate header could look like this:

4.2. Token Redemption

The output of the issuance protocol is a token that corresponds to

the Origin's challenge (see Section 4.1). A token is a structure

that begins with a single byte that indicates a version, which MUST

match the version in the TokenChallenge structure.

¶
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WWW-Authenticate: PrivateAccessToken challenge=abc..., token-key=123...,

issuer-key=456...

¶

¶

¶

¶

WWW-Authenticate: PrivateAccessToken challenge=abc..., token-key=123...,

issuer-key=456..., PrivateAccessToken challenge=def..., token-key=234...,

issuer-key=567...
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The structure fields are defined as follows:

"version" is a 1-octet integer. This document defines version 1.

"token_key_id" is a collision-resistant hash that identifies the

ORIGIN_TOKEN_KEY used to produce the signature. This is generated

as SHA256(public_key), where public_key is a DER-encoded

SubjectPublicKeyInfo object carrying the public key.

"message" is a 32-octet message containing the hash of the

original TokenChallenge, SHA256(TokenChallenge). This message is

signed by the signature,

"signature" is a Nk-octet RSA Blind Signature that covers the

message. For version 1, Nk is indicated by size of the Token

structure and may be 256, 384, or 512. These correspond to RSA

2048, 3072, and 4096 bit keys. Clients implementing version 1

MUST support signature sizes with Nk of 512 and 256.

When used for client authorization, the "PrivateAccessToken"

authentication scheme defines one parameter, "token", which contains

the base64url-encoded Token struct. All unknown or unsupported

parameters to "PrivateAccessToken" authentication credentials MUST

be ignored.

Clients present this Token structure to Origins in a new HTTP

request using the Authorization header as follows:

Origins verify the token signature using the corresponding policy

verification key from the Issuer, and validate that the message

matches the hash of a TokenChallenge it previously issued and is

still valid, SHA256(TokenChallenge), and that the version of the

Token matches the version in the TokenChallenge. The TokenChallenge

MAY be bound to a specific HTTP session with Client, but Origins can

also accept tokens for valid challenges in new sessions.

If a Client's issuance request fails with a 401 error, as described

in Section 5.4, the Client MUST react to the challenge as if it

could not produce a valid Authorization response.

struct {

    uint8_t version;

    uint8_t token_key_id[32];

    uint8_t message[32];

    uint8_t signature[Nk];

} Token;

¶
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Authorization: PrivateAccessToken token=abc...¶

¶

¶



5. Issuance Protocol

This section describes the Issuance protocol for a Client to request

and receive a token from an Issuer. Token issuance involves a

Client, Mediator, and Issuer, with the following steps:

The Client sends a token request to the Mediator, encrypted

using an Issuer-specific key

The Mediator validates the request and proxies the request to

the Issuer

The Issuer decrypts the request and sends a response back to

the Mediator

The Mediator verifies the response and proxies the response to

the Client

The Issuance protocol has a number of underlying cryptographic

dependencies for operation:

[HPKE], for encrypting information in transit between Client and

Issuer across the Mediator.

RSA Blind Signatures [BLINDSIG], for issuing and constructing

Tokens as described in Section 4.2.

Prime Order Groups (POGs), for computing stable mappings between

(Client, Origin) pairs. This document uses notation described in 

[VOPRF], Section 2.1, and, in particular, the functions

RandomScalar(), Generator(), SerializeScalar(),

SerializeElement(), and HashToScalar().

Non-Interactive proof-of-knowledge (POK), as described in Section

5.8, for verifying correctness of Client requests.

Clients and Issuers are required to implement all of these

dependencies, whereas Mediators are required to implement POG and

POK support.

5.1. State Requirements

The Issuance protocol requires each participating endpoint to

maintain some necessary state, as described in this section.
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5.1.1. Client State

A Client is required to have the following information, derived from

a given TokenChallenge:

Origin name (ORIGIN_NAME), a URI referring to the Origin 

[RFC6454]. This is the value of TokenChallenge.origin_name.

Origin token public key (ORIGIN_TOKEN_KEY), a blind signature

public key corresponding to the Origin identified by

TokenChallenge.origin_name.

Issuer public key (ISSUER_KEY), a public key used to encrypt

requests corresponding to the Issuer identified by

TokenChallenge.issuer_name.

Clients maintain a stable CLIENT_ID that they use for all

communication with a specific Mediator. CLIENT_ID is a public key,

where the corresponding private key CLIENT_SECRET is known only to

the client.

If the client loses this (CLIENT_ID, CLIENT_SECRET), they may

generate a new tuple. The mediator will enforce if a client is

allowed to use this new CLIENT_ID. See #mediator-state for details

on this enforcement.

Clients also need to be able to generate an ANON_ORIGIN_ID value

that corresponds to the ORIGIN_NAME, to send in requests to the

Mediator.

ANON_ORIGIN_ID MUST be a stable and unpredictable 32-byte value

computed by the Client. Clients MUST NOT change this value across

token requests for the same ORIGIN_NAME. Doing so will result in

token issuance failure (specifically, when a Mediator rejects a

request upon detecting two ANON_ORIGIN_ID values that map to the

same Origin).

One possible mechanism for implementing this identifier is for the

Client to store a mapping between the ORIGIN_NAME and a randomly

generated ANON_ORIGIN_ID for future requests. Alternatively, the

Client can compute a PRF keyed by a per-client secret

(CLIENT_SECRET) over the ORIGIN_NAME, e.g., ANON_ORIGIN_ID =

HKDF(secret=CLIENT_SECRET, salt="", info=ORIGIN_NAME).

5.1.2. Mediator State

A Mediator is required to maintain state for every authenticated

Client. The mechanism of identifying a Client is specific to each

Mediator, and is not defined in this document. As examples, the
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Mediator could use device-specific certificates or account

authentication to identify a Client.

Mediators must enforce that Clients don't change their CLIENT_ID

frequently, to ensure Clients can't regularily evade the per-client

policy as seen by the issuer. Mediators MUST NOT allow Clients to

change their CLIENT_ID more than once within a policy window, or in

the subsequent policy window after a previous CLIENT_ID change.

Alternative schemes where the mediator stores the encrypted

(CLIENT_ID, CLIENT_SECRET) tuple on behalf of the client are possble

but not described here.

Mediators are expected to know the ISSUER_POLICY_WINDOW for any

ISSUER_NAME to which they allow access. This information can be

retrieved using the URIs defined in Section 3.

For each Client-Issuer pair, a Mediator maintains a policy window

start and end time for each Issuer from which a Client requests a

token.

For each tuple of (CLIENT_ID, ANON_ORIGIN_ID, policy window), the

Mediator maintains the following state:

A counter of successful tokens issued

Whether or not a previous request was rejected by the Issuer

The last received ANON_ISSUER_ORIGIN_ID value for this

ANON_ORIGIN_ID, if any

5.1.3. Issuer State

Issuers maintain a stable ORIGIN_SECRET that they use in calculating

values returned to the Mediator for each origin. If this value

changes, it will open up a possibility for Clients to request extra

tokens for an Origin without being limited, within a policy window.

Issuers are expected to have the private key that corresponds to

ISSUER_KEY, which allows them to decrypt the ORIGIN_NAME values in

requests.

Issuers also need to know the set of valid ORIGIN_TOKEN_KEY public

keys and corresponding private key, for each ORIGIN_NAME that is

served by the Issuer. Origins SHOULD update their view of the

ORIGIN_TOKEN_KEY regularly to ensure that Client requests do not

fail after ORIGIN_TOKEN_KEY rotation.
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5.2. Issuance HTTP Headers

The Issuance protocol defines four new HTTP headers that are used in

requests and responses between Clients, Mediators, and Issuers (see 

Section 10.2).

The "Sec-Token-Origin" is an Item Structured Header [RFC8941]. Its

value MUST be a Byte Sequence. This header is sent both on Client-

to-Mediator requests (Section 5.3) and on Issuer-to-Mediator

responses (Section 5.5). Its ABNF is:

The "Sec-Token-Client" is an Item Structured Header [RFC8941]. Its

value MUST be a Byte Sequence. This header is sent on Client-to-

Mediator requests (Section 5.3), and contains the bytes of

CLIENT_KEY. Its ABNF is:

The "Sec-Token-Nonce" is an Item Structured Header [RFC8941]. Its

value MUST be a Byte Sequence. This header is sent on Client-to-

Mediator requests (Section 5.3), and contains a per-request nonce

value. Its ABNF is:

The "Sec-Token-Count" is an Item Structured Header [RFC8941]. Its

value MUST be an Integer. This header is sent on Mediator-to-Issuer

requests (Section 5.3), and contains the number of times a Client

has previously received a token for an Origin. Its ABNF is:

5.3. Client-to-Mediator Request

The Client and Mediator MUST use a secure and Mediator-authenticated

HTTPS connection. They MAY use mutual authentication or mechanisms

such as TLS certificate pinning, to mitigate the risk of channel

compromise; see Section 7 for additional about this channel.

Issuance begins by Clients hashing the TokenChallenge to produce a

token input as message = SHA256(challenge), and then blinding

message as follows:

The Client MUST use a randomized variant of RSABSSA in producing

this signature with a salt length of at least 32 bytes.

¶

¶

    Sec-Token-Origin = sf-binary¶

¶

    Sec-Token-Client = sf-binary¶

¶

    Sec-Token-Nonce = sf-binary¶

¶

    Sec-Token-Count = sf-integer¶

¶

¶

blinded_req, blind_inv = rsabssa_blind(ORIGIN_TOKEN_KEY, message)¶

¶



The Client uses CLIENT_SECRET to generate proof of its request.

The Client then transforms this proof into "mapping_nonce",

"mapping_key", "mapping_generator", and "mapping_proof".

The Client then constructs a Private Access Token request using

mapping_key, mapping_generator, mapping_proof, blinded_req, and

origin information.

The structure fields are defined as follows:

"version" is a 1-octet integer, which matches the version in the

TokenChallenge. This document defines version 1.

"mapping_generator", "mapping_key", and "mapping_proof" are

computed as described above.

"token_key_id" is the least significant byte of the

ORIGIN_TOKEN_KEY key ID, which is generated as

SHA256(public_key), where public_key is a DER-encoded

SubjectPublicKeyInfo object carrying ORIGIN_TOKEN_KEY.

"blinded_req" is the Nk-octet request defined above.

"name_key_id" is a collision-resistant hash that identifies the

ISSUER_KEY public key, generated as SHA256(KeyConfig).

"encrypted_origin_name" is an encrypted structure that contains

ORIGIN_NAME, calculated as described in Section 5.7.

¶

blind = RandomScalar()

blind_key = blind * CLIENT_SECRET

blind_generator = blind * Generator()

key_proof = SchnorrProof(CLIENT_SECRET, blind_key, blind_generator)

¶

¶

mapping_nonce = SerializeScalar(blind)

mapping_key = SerializeElement(blind_key)

mapping_generator = SerializeElement(blind_generator)

mapping_proof = SerializeProof(key_proof)

¶

¶

struct {

   uint8_t version;

   uint8_t mapping_generator[Ne];

   uint8_t mapping_key[Ne];

   uint8_t mapping_proof[Np];

   uint8_t token_key_id;

   uint8_t blinded_req[Nk];

   uint8_t name_key_id[32];

   uint8_t encrypted_origin_name<1..2^16-1>;

} AccessTokenRequest;
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The Client then generates an HTTP POST request to send through the

Mediator to the Issuer, with the AccessTokenRequest as the body. The

media type for this request is "message/access-token-request". The

Client includes the "Sec-Token-Origin" header, whose value is

ANON_ORIGIN_ID; the "Sec-Token-Client" header, whose value is

CLIENT_KEY; and the "Sec-Token-Nonce" header, whose value is

mapping_nonce. The Client sends this request to the Mediator's proxy

URI. An example request is shown below, where Nk = 512.

If the Mediator detects a version in the AccessTokenRequest that it

does not recognize or support, it MUST reject the request with an

HTTP 400 error.

The Mediator also checks to validate that the name_key_id in the

client's AccessTokenRequest matches a known ISSUER_KEY public key

for the Issuer. For example, the Mediator can fetch this key using

the API defined in Section 3. This check is done to help ensure that

the Client has not been given a unique key that could allow the

Issuer to fingerprint or target the Client. If the key does not

match, the Mediator rejects the request with an HTTP 400 error. Note

that Mediators need to be careful in cases of key rotation; see 

Section 8.

The Mediator finally checks to ensure that the

AccessTokenRequest.mapping_proof is valid for the given CLIENT_KEY;

see Section 5.8 for verification details. If the index is invalid,

the Mediator rejects the request with an HTTP 400 error.

If the Mediator accepts the request, it will look up the state

stored for this Client. It will look up the count of previously

generate tokens for this Client using the same ANON_ORIGIN_ID. See 

Section 5.1.2 for more details.

If the Mediator has stored state that a previous request for this

ANON_ORIGIN_ID was rejected by the Issuer in the current policy

¶

:method = POST

:scheme = https

:authority = issuer.net

:path = /access-token-request

accept = message/access-token-response

cache-control = no-cache, no-store

content-type = message/access-token-request

content-length = 512

sec-token-origin = ANON_ORIGIN_ID

sec-token-client = CLIENT_KEY

sec-token-nonce = mapping_nonce

<Bytes containing the AccessTokenRequest>
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window, it SHOULD reject the request without forwarding it to the

Issuer.

If the Mediator detects this Client has changed their CLIENT_ID more

frequently than allowed as described in #mediator-state, it SHOULD

reject the request without forwarding it to the Issuer.

5.4. Mediator-to-Issuer Request

The Mediator and the Issuer MUST use a secure and Issuer-

authenticated HTTPS connection. Also, Issuers MUST authenticate

Mediators, either via mutual TLS or another form of application-

layer authentication. They MAY additionally use mechanisms such as

TLS certificate pinning, to mitigate the risk of channel compromise;

see Section 7 for additional about this channel.

Before copying and forwarding the Client's AccessTokenRequest

request to the Issuer, the Mediator adds a header that includes the

count of previous tokens as "Sec-Token-Count". The Mediator MAY also

add additional context information, but MUST NOT add information

that will uniquely identify a Client.

Upon receipt of the forwarded request, the Issuer validates the

following conditions:

The "Sec-Token-Count" header is present

The AccessTokenRequest contains a supported version

For version 1, the AccessTokenRequest.name_key_id corresponds to

the ID of the ISSUER_KEY held by the Issuer

For version 1, the AccessTokenRequest.encrypted_origin_name can

be decrypted using the Issuer's private key (the private key

associated with ISSUER_KEY), and matches an ORIGIN_NAME that is

served by the Issuer

¶
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:method = POST

:scheme = https

:authority = issuer.net

:path = /access-token-request

accept = message/access-token-response

cache-control = no-cache, no-store

content-type = message/access-token-request

content-length = 512

sec-token-count = 3

<Bytes containing the AccessTokenRequest>
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For version 1, the AccessTokenRequest.blinded_req is of the

correct size

For version 1, the AccessTokenRequest.token_key_id corresponds to

an ID of an ORIGIN_TOKEN_KEY for the corresponding ORIGIN_NAME

If any of these conditions is not met, the Issuer MUST return an

HTTP 400 error to the Mediator, which will forward the error to the

client.

If the request is valid, the Issuer then can use the value from

"Sec-Token-Count" to determine if the Client is allowed to receive a

token for this Origin during the current policy window. If the

Issuer refuses to issue more tokens, it responds with an HTTP 429

(Too Many Requests) error to the Mediator, which will forward the

error to the client.

The Issuer determines the correct ORIGIN_TOKEN_KEY by using the

decrypted ORIGIN_NAME value and AccessTokenRequest.token_key_id. If

there is no ORIGIN_TOKEN_KEY whose truncated key ID matches

AccessTokenRequest.token_key_id, the Issuer MUST return an HTTP 401

error to Mediator, which will forward the error to the client. The

Mediator learns that the client's view of the Origin key was invalid

in the process.

5.5. Issuer-to-Mediator Response

If the Issuer is willing to give a token to the Client, the Issuer

verifies the token request using "mapping_generator", "mapping_key",

and "mapping_proof":

If this fails, the Issuer rejects the request with a 400 error.

Otherwise, the Issuer decrypts

AccessTokenRequest.encrypted_origin_name to discover "origin". If

this fails, the Issuer rejects the request with a 400 error. The

Issuer then evaluates the mapping over the ORIGIN_SECRET pertaining

to the origin for this issuer:

If DeserializeElement fails, or if AccessTokenRequest.mapping_key is

the identity element, the Issuer rejects the request with a 400

error.

The Issuer completes the issuance flow by computing a blinded

response as follows:

*
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¶

valid = SchnorrVerify(mapping_generator, mapping_key, mapping_proof)¶

¶

mapping_input = DeserializeElement(AccessTokenRequest.mapping_key)

index = ORIGIN_SECRET * mapping_input

mapping_index = SerializeElement(index)

¶

¶

¶



skP is the private key corresponding to ORIGIN_TOKEN_KEY, known only

to the Issuer.

The Issuer generates an HTTP response with status code 200 whose

body consists of blind_sig, with the content type set as "message/

access-token-response" and the mapping_tag set in the "Sec-Token-

Origin" header.

5.6. Mediator-to-Client Response

Upon receipt of a successful response from the Issuer, the Mediator

extracts the "Sec-Token-Origin" header, and uses the value to

determine ANON_ISSUER_ORIGIN_ID.

If the "Sec-Token-Origin" is missing, or if the same

ANON_ISSUER_ORIGIN_ID was previously received in a response for a

different ANON_ORIGIN_ID within the same policy window, the Mediator

MUST drop the token and respond to the client with an HTTP 400

status. If there is not an error, the ANON_ISSUER_ORIGIN_ID is

stored alongside the state for the ANON_ORIGIN_ID.

For all other cases, the Mediator forwards all HTTP responses

unmodified to the Client as the response to the original request for

this issuance.

When the Mediator detects successful token issuance, it MUST

increment the counter in its state for the number of tokens issued

to the Client for the ANON_ORIGIN_ID.

Upon receipt, the Client handles the response and, if successful,

processes the body as follows:

If this succeeds, the Client then constructs a Private Access Token

as described in Section 4.1 using the token input message and output

sig.

blind_sig = rsabssa_blind_sign(skP, AccessTokenRequest.blinded_req)¶

¶

¶

:status = 200

content-type = message/access-token-response

content-length = 512

sec-token-origin = mapping_index

<Bytes containing the blind_sig>

¶

¶

index = DeserializeElement(mapping_index)

nonce = DeserializeScalar(mapping_nonce)

ANON_ISSUER_ORIGIN_ID = (nonce^(-1)) * index

¶

¶

¶

¶

¶

sig = rsabssa_finalize(ORIGIN_TOKEN_KEY, nonce, blind_sig, blind_inv)¶

¶



5.7. Encrypting Origin Names

Given a KeyConfig (ISSUER_KEY), Clients produce

encrypted_origin_name and authenticate all other contents of the

AccessTokenRequest using the following values:

the key identifier from the configuration, keyID, with the

corresponding KEM identified by kemID, the public key from the

configuration, pkI, and;

a selected combination of KDF, identified by kdfID, and AEAD,

identified by aeadID.

Beyond the key configuration inputs, Clients also require the

AccessTokenRequest inputs. Together, these are used to encapsulate

ORIGIN_NAME (origin_name) and produce ENCRYPTED_ORIGIN_NAME

(encrypted_origin) as follows:

Compute an [HPKE] context using pkI, yielding context and

encapsulation key enc.

Construct associated data, aad, by concatenating the values of

keyID, kemID, kdfID, aeadID, and all other values of the

AccessTokenRequest structure.

Encrypt (seal) request with aad as associated data using

context, yielding ciphertext ct.

Concatenate the values of aad, enc, and ct, yielding an

Encapsulated Request enc_request.

Note that enc is of fixed-length, so there is no ambiguity in

parsing this structure.

In pseudocode, this procedure is as follows:
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enc, context = SetupBaseS(pkI, "AccessTokenRequest")

aad = concat(encode(1, keyID),

             encode(2, kemID),

             encode(2, kdfID),

             encode(2, aeadID),

             encode(1, version),

             encode(Ne, mapping_generator),

             encode(Ne, mapping_key),

             encode(Np, mapping_proof),

             encode(1, token_key_id),

             encode(Nk, blinded_req),

             encode(32, name_key_id))

ct = context.Seal(aad, origin_name)

encrypted_origin_name = concat(enc, ct)

¶



Issuers reverse this procedure to recover ORIGIN_NAME by computing

the AAD as described above and decrypting encrypted_origin_name with

their private key skI, the private key corresponding to pkI. In

pseudocode, this procedure is as follows:

5.8. Non-Interactive Schnorr Proof of Knowledge

Each Issuance request requires evaluation and verification of a

Schnorr proof-of-knowledge. Given input secret "secret" and two

elements, "base" and "target", generation of this proof (u, c, z),

denoted SchnorrProof(secret, base, target), works as follows:

The proof is encoded by serializing (u, c, z) as follows:

The size of this structure is Np = Ne + 2*Ns bytes.

Verification of a proof (u, c, z), denoted SchnorrVerify(base,

target, proof), works as follows:

¶

enc, ct = parse(encrypted_origin_name)

aad = concat(encode(1, keyID),

             encode(2, kemID),

             encode(2, kdfID),

             encode(2, aeadID),

             encode(1, version),

             encode(Ne, mapping_generator),

             encode(Ne, mapping_key),

             encode(Np, mapping_proof),

             encode(1, token_key_id),

             encode(Nk, blinded_req),

             encode(32, name_key_id))

enc, context = SetupBaseR(enc, skI, "AccessTokenRequest")

origin_name, error = context.Open(aad, ct)

¶

¶

r = RandomScalar()

u = r * base

c = HashToScalar(SerializeElement(base) ||

                 SerializeElement(target) ||

                 SerializeElement(mask),

                 dst = "PrivateAccessTokensProof")

z = r + (c * secret)

¶

¶

struct {

   uint8_t u[Ne];

   uint8_t c[Ns];

   uint8_t z[Ns];

} Proof;

¶

¶

¶



The proof is considered valid if expected_left is the same as

expected_right.

6. Instantiating Uses Cases

This section describes various instantiations of this protocol to

address use cases described in Section 1.1.

6.1. Rate-limited Access

To instantiate this case, the site acts as an Origin and registers a

"bounded token" policy with the Issuer. In this policy, the Issuer

enforces a fixed number of tokens that it will allow a Client to

request for a single ORIGIN_NAME.

Origins request tokens from Clients and, upon successful redemption,

the Origin knows the Client was able to request a token for the

given ORIGIN_NAME within its budget. Failure to present a token can

be interpreted as a signal that the client's token budget was

exceeded.

Clients can redeem a token from a specific challenge up to the max-

age in the challenge. Servers can choose to issue many challenges in

a single HTTP 401 response, providing the client with many challenge

nonces which can be used to redeem tokens over a longer period of

time.

6.2. Client Geo-Location

To instantiate this use case, the Issuer has an issuing key pair per

geographic region, i.e., each region has a unique policy key. When

verifying the key for the Client request, the Mediator obtains the

per-region key from the Issuer based on the Client's perceived

location. During issuance, the Mediator checks that this key matches

that of the Client's request. If it matches, the Mediator forwards

the request to complete issuance. The number of key pairs is then

the cross product of the number of Origins that require per-region

keys and the number of regions.

During redemption, Clients present their geographic location to

Origins in a "Sec-CH-Geohash" header. Origins use this to obtain the

appropriate policy verification key. Origins request tokens from

c = HashToScalar(SerializeElement(base) ||

                 SerializeElement(target) ||

                 SerializeElement(mask),

                 dst = "PrivateAccessTokensProof")

expected_left = base * z

expected_right = u + (target * c)
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Clients and, upon successful redemption, the Origin knows the Client

obtained a token for the given ORIGIN_NAME in the specified region.

6.3. Private Client Authentication

To instantiate this case, the site acts as an Origin and registers

an "unlimited token" policy with the Issuer. In this policy, the

Issuer does not enforce any limit on the number of tokens a given

user will obtain.

Origins request tokens from Clients and, upon successful redemption,

the Origin knows the Client was able to request a token for the

given ORIGIN_NAME tuple. As a result, the Origin knows this is an

authentic client.

7. Security Considerations

This section discusses security considerations for the protocol.

[OPEN ISSUE: discuss trust model]

7.1. Client Identity

The HTTPS connection between Client and Mediator is minimally

Mediator-authenticated. Mediators can also require Client

authentication if they wish to restrict Private Access Token

proxying to trusted or otherwise authenticated Clients. Absent some

form of Client authentication, Mediators can use other per-Client

information for the client identifier mapping, such as IP addresses.

7.2. Denial of Service

Requesting and verifying a Private Access Token is more expensive

than checking an implicit signal, such as an IP address, especially

since malicious clients can generate garbage Private Access Tokens

and for Origins to work. However, similar DoS vectors already exist

for Origins, e.g., at the underlying TLS layer.

7.3. Channel Security

An attacker that can act as an intermediate between Mediator and

Issuer communication can influence or disrupt the ability for the

Issuer to correctly rate-limit token issuance. All communication

channels use server-authenticated HTTPS. Some connections, e.g.,

between a Mediator and an Issuer, require mutual authentication

between both endpoints. Where appropriate, endpoints MAY use further

enhancements such as TLS certificate pinning to mitigate the risk of

channel compromise.
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An attacker that can intermediate the channel between Client and

Origin can observe a TokenChallenge, and can view a Token being

presented for authentication to an Origin. Scoping the

TokenChallenge nonce to the Client HTTP session prevents Tokens

being collected in one session and then presented to the Origin in

another. Note that an Origin cannot distinguish between a connection

to a single Client and a connection to an attacker intermediating

multiple Clients. Thus, it is possible for an attacker to collect

and later present Tokens from multiple clients over the same Origin

session.

8. Privacy Considerations

8.1. Client Token State and Origin Tracking

Origins SHOULD only generate token challenges based on client

action, such as when a user loads a website. Clients SHOULD ignore

token challenges if an Origin tries to force the client to present

tokens multiple times without any new client-initiated action.

Failure to do so can allow malicious origins to track clients across

contexts. Specifically, an origin can abuse per-user token limits

for tracking by assigning each new client a random token count and

observing whether or not the client can successfully redeem that

many tokens in a given context. If any token redemption fails, then

the origin learns information about how many tokens that client had

previously been issued.

By rejecting repeated or duplicative challenges within a single

context, the origin only learns a single bit of information: whether

or not the client had any token quota left in the given policy

window.

8.2. Origin Verification

Private Access Tokens are defined in terms of a Client

authenticating to an Origin, where the "origin" is used as defined

in [RFC6454]. In order to limit cross-origin correlation, Clients

MUST verify that the origin_name presented in the TokenChallenge

structure (Section 4.1) matches the origin that is providing the

HTTP authentication challenge, where the matching logic is defined

for same-origin policies in [RFC6454]. Clients MAY further limit

which authentication challenges they are willing to respond to, for

example by only accepting challenges when the origin is a web site

to which the user navigated.

8.3. Client Identification with Unique Keys

Client activity could be linked if an Origin and Issuer collude to

have unique keys targeted at specific Clients or sets of Clients.
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To mitigate the risk of a targeted ISSUER_KEY, the Mediator can

observe and validate the name_key_id presented by the Client to the

Issuer. As described in Section 5, Mediators MUST validate that the

name_key_id in the Client's AccessTokenRequest matches a known

public key for the Issuer. The Mediator needs to support key

rotation, but ought to disallow very rapid key changes, which could

indicate that an Origin is colluding with an Issuer to try to rotate

the key for each new Client in order to link the client activity.

To mitigate the risk of a targeted ORIGIN_TOKEN_KEY, the protocol

expects that an Issuer has only a single valid public key for

signing tokens at a time. The Client does not present the

name_key_id of the token public key to the Issuer, but instead

expects the Issuer to infer the correct key based on the information

the Issuer knows, specifically the origin_name itself.

8.4. Collusion Among Different Entities

Collusion among the different entities in the PAT architecture can

result in violation of the Client's privacy.

Issuers and Mediators should be run by mutually distinct

organizations to limit information sharing. A single entity running

an issuer and mediator for a single redemption can view the origins

being accessed by a given client. Running the issuer and mediator in

this 'single issuer/mediator' fashion reduces the privacy promises

to those of the [I-D.ietf-privacypass-protocol]; see Appendix A for

more discussion. This may be desirable for a redemption flow that is

limited to specific issuers and mediators, but should be avoided

where hiding origins from the mediator is desirable.

If a Mediator and Origin are able to collude, they can correlate a

client's identity and origin access patterns through timestamp

correlation. The timing of a request to an Origin and subsequent

token issuance to a Mediator can reveal the Client identity (as

known to the Mediator) to the Origin, especially if repeated over

multiple accesses.

9. Deployment Considerations

9.1. Origin Key Rollout

Issuers SHOULD generate a new (ORIGIN_TOKEN_KEY, ORIGIN_SECRET)

regularly, and SHOULD maintain old and new secrets to allow for

graceful updates. The RECOMMENDED rotation interval is two times the

length of the policy window for that information. During generation,

issuers must ensure the token_key_id (the 8-bit prefix of

SHA256(ORIGIN_TOKEN_KEY)) is different from all other token_key_id

values for that origin currently in rotation. One way to ensure this

uniqueness is via rejection sampling, where a new key is generated

¶
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Type name:

until its token_key_id is unique among all currently in rotation for

the origin.

10. IANA Considerations

10.1. Authentication Scheme

This document registers the "PrivateAccessToken" authentication

scheme in the "Hypertext Transfer Protocol (HTTP) Authentication

Scheme Registry" established by [RFC7235].

Authentication Scheme Name: PrivateAccessToken

Pointer to specification text: Section 4.1 of this document

10.2. HTTP Headers

This document registers four new headers for use on the token

issuance path in the "Permanent Message Header Field Names"

<https://www.iana.org/assignments/message-headers>.

Figure 2: Registered HTTP Header

10.3. Media Types

This specification defines the following protocol messages, along

with their corresponding media types:

AccessTokenRequest Section 5: "message/access-token-request"

AccessTokenResponse Section 5: "message/access-token-response"

The definition for each media type is in the following subsections.

10.3.1. "message/access-token-request" media type

message

¶

¶

¶

¶

¶

    +-------------------+----------+--------+---------------+

    | Header Field Name | Protocol | Status |   Reference   |

    +-------------------+----------+--------+---------------+

    | Sec-Token-Origin  |   http   |  std   | This document |

    +-------------------+----------+--------+---------------+

    | Sec-Token-Client  |   http   |  std   | This document |

    +-------------------+----------+--------+---------------+

    | Sec-Token-Nonce   |   http   |  std   | This document |

    +-------------------+----------+--------+---------------+

    | Sec-Token-Count   |   http   |  std   | This document |

    +-------------------+----------+--------+---------------+
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Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

access-token-request

N/A

None

only "8bit" or "binary" is permitted

see Section 5

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG

10.3.2. "message/access-token-response" media type

message

access-token-response

N/A

None

only "8bit" or "binary" is permitted
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Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Magic number(s):

Deprecated alias names for this type:

File extension(s):

Macintosh file type code(s):

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

Author:

Change controller:

[BLINDSIG]

[HPKE]

[OHTTP]

see Section 5

N/A

this specification

N/A

N/A

N/A

N/A

N/A

N/A

see

Authors' Addresses section

COMMON

N/A

see Authors' Addresses section

IESG
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Appendix A. Related Work: Privacy Pass

Private Access Tokens has many similarities to the existing Privacy

Pass protocol ([I-D.ietf-privacypass-protocol]). Both protocols

allow clients to redeem signed tokens while not allowing linking

between token issuance and token redemption.

There are several important differences between the protocols,

however:

Private Access Tokens uses per-origin tokens that support rate-

limiting policies. Each token can only be used with a specific

origin in accordance with a policy defined for that origin. This

allows origins to implement metered paywalls or mechanisms that

that limit the actions a single client can perform. Per-origin

tokens also ensure that one origin cannot consume all of a

client's tokens, so there is less need for clients to manage when

they are willing to present tokens to origins.

Private Access Tokens employ an online challenge (Section 4.1)

during token redemption. This ensures that tokens cannot be

harvested and stored for use later. This also removes the need

for preventing double spending or employing token expiry

techniques, such as frequent signer rotation or expiry-encoded

public metadata.

Private Access Tokens use a publically verifiable signature 

[BLINDSIG] to optimize token verification at the origin by

avoiding a round trip to the issuer/mediator.
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