
Network Working Group Markus Friedl
INTERNET-DRAFT Niels Provos
Expires in six months William A. Simpson
 May 2000

Diffie-Hellman Group Exchange for the SSH Transport Layer Protocol
draft-provos-secsh-dh-group-exchange-00.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026, except that the right to
 produce derivative works is not granted.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) 2000 by Markus Friedl, Niels Provos and William A.
 Simpson. All Rights Reserved.

Abstract

 This memo describes a new key exchange method for the SSH protocol.
 It allows the SSH server to propose to the client new groups on which
 to perform the Diffie-Hellman key exchange. The proposed groups need
 not be fixed and can change with time.

Overview and Rational

 SSH is a de-facto standard for secure remote login on the Internet.
 Currently, SSH performs the initial key exchange using the "diffie-
 hellman-group1-sha1" method. This method prescribes a fixed group on

Friedl/Provos/Simpson expires in six months [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET DRAFT May 2000

 which all operations are performed. The security of the Diffie-
 Hellman key exchange is based on the difficulty of solving the
 Discrete Logarithm Problem (DLP). Since we expect that the SSH
 protocol will be in use for many years in the future, we fear that
 extensive precomputation and more efficient alogorithms to compute
 the Discrete Logarithm might pose a security threat to the SSH
 protocol.

 The ability to propose new moduli will reduce the possibility to use
 precomputation for more efficient calculation of the DL. The server
 can constantly compute new moduli in the background.

Diffie-Hellman Group and Key Exchange

 The Diffie-Hellman key exchange provides a shared secret that can not
 be determined by either party alone. The key exchange is combined
 with a signature with the host key to provide host authentication.

 The server keeps a list of safe primes and corresponding generators
 that it can select from. A prime p is safe, if p = 2q + 1, and q is
 prime. New primes can be generated in the background. The server
 SHOULD know at least one safe prime that has 1024 or more bits.

 The generator g should be chosen such that the order of the generated
 subgroup does not factor into small primes, i.e., with p = 2q + 1,
 the order has to be either q or p - 1. If the order is p - 1, then
 the exponents generate all possible public-values, evenly distributed
 throughout the range of the modulus p, without cycling through a
 smaller subset. Such a generator is called a "primitive root" (which
 is trivial to find when p is "safe").

 Implementation Notes:

 One useful technique is to select the generator, and then limit
 the modulus selection sieve to primes with that generator:

 2 when p (mod 24) = 11.
 5 when p (mod 10) = 3 or 7.

 It is recommened to to use 2 as generator, because it improves
 efficiency in multiplication performance. It is usable even when
 it is not a primitive root, as it still covers half of the space
 of possible residues.

 The client requests a minimum modulus size from the server. In the
 following description (C is the client, S is the server; n is the
 minimal number of bits the subgroup the server replies with should
 have; p is a large safe prime and g is a generator for a subgroup of

Friedl/Provos/Simpson expires in six months [Page 2]

INTERNET DRAFT May 2000

 GF(p); V_S is S's version string; V_C is C's version string; K_S is
 S's public host key; I_C is C's KEXINIT message and I_S S's KEXINIT
 message which have been exchanged before this part begins):

 1. C sends n, the minimal number of bits the subgroup the server
 replies with should have.

 2. S finds a group that matches the clients request the closest
 and sends p and g to C.

 3. C generates a random number x (1 < x < (p-1)/2). It computes
 e = g^x mod p, and sends "e" to S.

 4. S generates a random number y (0 < y < (p-1)/2) and computes
 f = g^y mod p. S receives "e". It computes K = e^y mod p,
 H = hash(V_C || V_S || I_C || I_S || K_S || n || p || g || e ||
 f || K) (these elements are encoded according to their types; see
 below), and signature s on H with its private host key. S sends
 "K_S || f || s" to C. The signing operation may involve a second
 hashing operation.

 5. C verifies that K_S really is the host key for S (e.g. using
 certificates or a local database). C is also allowed to accept the
 key without verification; however, doing so will render the protocol
 insecure against active attacks (but may be desirable for practical
 reasons in the short term in many environments). C then computes K =
 f^x mod p, H = hash(V_C || V_S || I_C || I_S || K_S || n || p || g ||
 e || f || K), and verifies the signature s on H.

 Either side MUST NOT send or accept e or f values that are not in the
 range [1, p-1]. If this condition is violated, the key exchange
 fails.

 This is implemented with the following messages. The hash algorithm
 for computing the exchange hash is defined by the method name, and is
 called HASH. The public key algorithm for signing is negotiated with
 the KEXINIT messages.

 First, the client sends:
 byte SSH_MSG_KEY_DH_GEX_REQUEST
 uint32 n, number of bits the subgroup should have at least

 The server responds with
 byte SSH_MSG_KEX_DH_GEX_GROUP
 mpint p, safe prime
 mpint g, generator for subgroup in GF(p)

Friedl/Provos/Simpson expires in six months [Page 3]

INTERNET DRAFT May 2000

 The client responds with:
 byte SSH_MSG_KEX_DH_GEX_INIT
 mpint e

 The server responds with:
 byte SSH_MSG_KEX_DH_GEX_REPLY
 string server public host key and certificates (K_S)
 mpint f
 string signature of H

 The hash H is computed as the HASH hash of the concatenation of the
 following:
 string V_C, the client's version string (CR and NL excluded)
 string V_S, the server's version string (CR and NL excluded)
 string I_C, the payload of the client's SSH_MSG_KEXINIT
 string I_S, the payload of the server's SSH_MSG_KEXINIT
 string K_S, the host key
 uint32 n, number of bits the client requested
 mpint p, safe prime
 mpint g, generator for subgroup
 mpint e, exchange value sent by the client
 mpint f, exchange value sent by the server
 mpint K, the shared secret

 This value is called the exchange hash, and it is used to
 authenticate the key exchange.

diffie-hellman-group-exchange-sha1

 The "diffie-hellman-group-exchange-sha1" method specifies Diffie-
 Hellman Group and Key Exchange with SHA-1 as HASH.

Summary of Message numbers

 The following message numbers have been defined in this document.

 #define SSH_MSG_KEX_DH_GEX_REQUEST 30
 #define SSH_MSG_KEX_DH_GEX_GROUP 31
 #define SSH_MSG_KEX_DH_GEX_INIT 32
 #define SSH_MSG_KEX_DH_GEX_REPLY 33

 The numbers 30-49 are key exchange specific and may be redefined by
 other kex methods.

Friedl/Provos/Simpson expires in six months [Page 4]

INTERNET DRAFT May 2000

Security Considerations

 The use of multiple moduli inhibits a determined attacker from pre-
 calculating moduli exchange values, and discourages dedication of
 resources for analysis of any particular modulus.

 It is important to only employ safe primes as moduli. Oorshot and
 Wiener note that using short private exponents with a random prime
 modulus p makes the computation of the discrete logarithm easy [1].
 However, they also state that this problem does not apply to safe
 primes.

 The least significant bit of the private exponent can be recovered,
 when the modulus is a safe prime [2]. However, this is not a
 problem, if the size of the private exponent is big enough. Related
 to this, Waldvogel and Massey note: When private exponents are chosen
 independently and uniformly at random from {0,...,p-2}, the key
 entropy is less than 2 bits away from the maximum, lg(p-1) [3].

Acknowledgments

 The document is derived in part from "SSH Transport Layer Protocol"
 by T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S. Lehtinen.

 Markku-Juhani Saarinen pointed out that the least significant bit of
 the private exponent can be recovered efficiently when using safe
 primes and a subgroup with an order divisible by two.

 Bodo Moeller suggested that the server sends only one group reducing
 the complexity of the implementation and the amount of data that
 needs to be exchanged between client and server.

Bibliography

 [1] P. C. van Oorschot and M. J. Wiener, On Diffie-Hellman key agreement
 with short exponents, In Advances in Cryptology - EUROCRYPT'96,
 LNCS 1070, Springer-Verlag, 1996, pp.332-343.

 [2] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
 Handbook of Applied Cryptography. CRC Press, 1996.

 [3] C. P. Waldvogel and J. L. Massey, The probability distribution of the
 Diffie-Hellman key, in Proceedings of AUSCRYPT 92, LNCS 718, Springer-
 Verlag, 1993, pp. 492-504.

Friedl/Provos/Simpson expires in six months [Page 5]

INTERNET DRAFT May 2000

Appendix A: Generation of safe primes

 The Handbook of Applied Cryptography [2] lists the following
 algorithm to generate a k-bit safe prime p. It has been modified so
 that 2 is a generator for the multiplicative group mod p.

 1. Do the following:
 1.1 Select a random (k-1)-bit prime q, so that q mod 12 = 5.
 1.2 Compute p := 2q + 1, and test whether p is prime, (using, e.g.
 trial division and the Rabin-Miller test.)
 Repeat until p is prime.

 If an implementation uses the OpenSSL libraries, a group consisting
 of a 1024-bit safe prime and 2 as generator can be created as
 follows:

 DH *d = NULL;
 d = DH_generate_parameters(1024, DH_GENERATOR_2, NULL, NULL);
 BN_print_fp(stdout, d->p);

 The order of the subgroup generated by 2 is q = p - 1.

Author's Address

 Niels Provos
 CITI
 519 W. William Street
 Ann Arbor, MI, 48103

 Phone: (734) 764-5207

 EMail: provos@citi.umich.edu

Friedl/Provos/Simpson expires in six months [Page 6]

