
Workgroup: Network

Internet-Draft:

draft-pwouters-ipsecme-multi-sa-performance-02

Published: 13 October 2021

Intended Status: Standards Track

Expires: 16 April 2022

Authors: A. Antony

secunet

T. Brunner

codelabs

S. Klassert

secunet

P. Wouters

Aiven

IKEv2 support for per-queue Child SAs

Abstract

This document defines three Notify Message Type Payloads for the

Internet Key Exchange Protocol Version 2 (IKEv2) indicating support

for the negotiation of multiple identical Child SAs to optimize

performance.

The CPU_QUEUES notification indicates support for multiple queues or

CPUs. The CPU_QUEUE_INFO notification is used to confirm and

optionally convey information about the specific queue. The

TS_MAX_QUEUE notify conveys that the peer is unwilling to create

more additional Child SAs for this particular Traffic Selector set.

Using multiple identical Child SAs has the benefit that each stream

has its own Sequence Number Counter, ensuring that CPUs don't have

to synchronize their crypto state or disable their packet replay

protection.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Performance bottlenecks

3. Negotiation of CPU specific Child SAs

4. Implementation Considerations

5. Payload Format

5.1. CPU_QUEUES Notify Status Message Payload

5.2. CPU_QUEUE_INFO Notify Status Message Payload

5.3. TS_MAX_QUEUE Notify Error Message Payload

6. Operational Considerations

7. Security Considerations

8. Implementation Status

8.1. Linux XFRM

8.2. Libreswan

8.3. strongSwan

8.4. iproute2

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

IPsec implementations are currently limited to using one queue or

CPU per Child SA. The result is that a machine with many queues/CPUs

is limited to only using one of these per Child SA. This severely

limits the throughput that can be attained. An unencrypted link of

10Gbps or more is commonly reduced to 2-5Gbps when IPsec is used to

encrypt the link using AES-GCM. By using the implementation

specified in this document, aggregate throughput increased from

5Gbps using 1 CPU to 40-60 Gbps using 25-30 CPUs

While this could be (partially) mitigated by setting up multiple

narrowed Child SAs, for example using Populate From Packet (PFP) as

specified in [RFC4301], this IPsec feature is not widely

implemented. Some route based IPsec implementations might be able to

¶

¶

https://trustee.ietf.org/license-info

implement this with specific rules into separate network interfaces,

but these methods might not be available for policy based IPsec

implementations.

To make better use of multiple network queues and CPUs, it can be

beneficial to negotiate and install multiple identical Child SAs.

IKEv2 [RFC7296] already allows installing multiple identical Child

SAs, it offers no method to negotiate the number of Child SAs or

indicate the purpose for the multiple Child SAs that are requested.

When two IKEv2 peers want to negotiate multiple Child SAs, it is

useful to be able to convey how many Child SAs are required for

optimized traffic. This avoids triggering CREATE_CHILD_SA exchanges

that will only be rejected by the peer.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Performance bottlenecks

Currently, most IPsec implementations are limited by using one CPU

or network queue per Child SA. There are a number of practical

reasons for this, but a key limitation is that sharing the crypto

state, counters and sequence numbers between multiple CPUs is not

feasible without a significant performance penalty. There is a need

to negotiate and establish multiple Child SAs with identical TSi/TSr

on a per-queue or per-CPU basis.

3. Negotiation of CPU specific Child SAs

When negotiating CPU specific Child SAs, the first SA negotiated

either in an IKE_AUTH exchange or CREATE_CHILD_SA is called Fallback

SA. This Child SA is similar to a regular Child SA in that it is not

bound to a single CPU. This Fallback Child SA (or its rekeyed

successors) MUST remain active for the lifetime of the IPsec session

to ensure that there is always a Child SA that can be selected to

send traffic over, in case a per-resource Child SA is not available.

Additional Child SAs are installed bound to a specific CPU. These

Child SAs are responsible for the bulk of the traffic.

The CPU_QUEUES notification payload is sent in the IKE_AUTH or

CREATE_CHILD_SA Exchange indicating the negotiated Child SA is a

Fallback SA.

¶

¶

¶

¶

¶

¶

¶

The CPU_QUEUES notification value refers to the number of additional

resource-specific Child SAs that may be installed for this

particular TSi/TSr combination excluding the Fallback Child SA. Both

peers send the preferred minimum number of additional Child SAs to

install. Both peers pick the maximum of the two numbers (within

reason). That is, if the initiator prefers 16 and the responder

prefers 48, then the number negotiated is 48. The responder may at

any time reject additional Child SAs by returning TS_MAX_QUEUE. It

should not return NO_ADDITIONAL_SAS, as there might be another Child

SAs with different Traffic Selectors that would still be allowed by

the peer.

CPU-specific Child SAs are negotiated as regular Child SAs using the

CREATE_CHILD_SA exchange and are identified by a CPU_QUEUE_INFO

notification. Upon installation, each Child SA is associated with an

additional local selector, such as CPU or queue. These additional

Child SAs MUST be negotiated with identical Child SA properties that

were negotiated for the Fallback SA. This includes cryptographic

algorithms, Traffic Selectors, Mode (e.g. transport mode),

compression usage, etc. However, the Child SAs do have their own

individual keying material that is derived according to the regular

IKEv2 process. The CPU_QUEUE_INFO can be empty or contain some

identifying data that could be useful for debugging purposes.

Additional Child SAs can be started on-demand or can be started all

at once. Peers may also delete specific per-resource Child SAs if

they deem the associated resource to be idle. The Fallback SA MUST

NOT be deleted while any per-resource Child SAs are still present.

During the CREATE_CHILD_SA rekey for the Child SA, the

CPU_QUEUE_INFO notification MAY be included, but regardless of

whether or not it is included, the rekeyed Child SA MUST be bound to

the same resource(s) as the Child SA that is being rekeyed.

As with regular Child SA rekeying, the new Child SA may not be

different from the rekeyed Child SA with respect to cryptographic

algorithms and MUST cover the original Traffic Selector ranges.

If a CREATE_CHILD_SA exchange request containing both a

CPU_QUEUE_INFO and a CPU_QUEUES notification is received, the

responder MUST ignore the CPU_QUEUE_INFO payload. If a

CREATE_CHILD_SA exchange reply is received with both CPU_QUEUE_INFO

and CPU_QUEUES notifications, the initiator MUST ignore the

notification that it did not send in the request.

The CPU_QUEUES notification, even when it is sent in the IKE_AUTH

exchange, is not an attribute of the IKE peer. It is an attribute of

the Child SA, similar to the USE_TRANSPORT notification. That is, an

IKE peer can have multiple Child SAs covering different traffic

¶

¶

¶

¶

¶

¶

selectors and selectively decide whether or not to enable additional

per-resource Child SAs for each of these Child SAs covering

different Traffic Selectors.

4. Implementation Considerations

There are various considerations that an implementation can use to

determine the best way to install multiple Child SAs. Below are

examples of such strategies.

A simple distribution could be to install one additional Child SA on

each CPU. The Fallback Child SA ensures that any CPU generating

traffic to be encrypted has an available (if not optimal) Child SA

to use. Any subsequent Child SAs with identical TSi/TSr Traffic

Selectors are installed in such a way to only be used by a single

CPU or network queue.

Performing per-CPU Child SA negotiations can result in both peers

initiating additional Child SAs at once. This is especially likely

if per-CPU Child SAs are triggered by individual SADB_ACQUIRE

[RFC2367] messages. Responders should install the additional Child

SA on a CPU with the least amount of additional Child SAs for this

TSi/TSr pair. It should count outstanding SADB_ACQUIREs as an

assigned additional Child SA. It is still possible that when the

peers only have one slot left to assign, that both peers send a

CREATE_CHILD_SA request at the same time.

As an optimization, additional Child SAs that see little traffic MAY

be deleted. The Fallback Child SA MUST NOT be deleted when idle, as

it is likely to be idle if enough per-CPU Child SAs are installed.

However, if one of those per-CPU child SAs is deleted because it was

idle, and subsequently that CPU starts to generate traffic again,

that traffic does not have a per-CPU Child SA and will be encrypted

using the Fallback Child SA. Meanwhile, the IKE daemon might be

negotiating to bring up a new per-CPU Child SA.

When the number of queues or CPUs are different between the peers,

the peer with the least amount of queues or CPUs MAY decide to not

install a second outbound Child SA for the same resource as it will

never use it to send traffic. However, it MUST install all inbound

Child SAs as it has committed to receiving traffic on these

negotiated Child SAs.

If per-CPU SADB_ACQUIRE messages are implemented (see Section 6),

the Traffic Selector (TSi) entry containing the information of the

trigger packet should still be included in the TS set. This

information MAY be used by the peer to select the most optimal

target CPU to install the additional Child SA on. For example, if

the trigger packet was for a TCP destination to port 25 (SMTP), it

¶

¶

¶

¶

¶

¶

might be able to install the Child SA on the CPU that is also

running the mail server process. Trigger packet Traffic Selectors

are documented in [RFC7296] Section 2.9.

As per RFC 7296, rekeying a Child SA SHOULD use the same (or wider)

Traffic Selectors to ensure that the new Child SA covers everything

that the rekeyed Child SA covers. This includes Traffic Selectors

negotiated via Configuration Payloads (CP) such as

INTERNAL_IP4_ADDRESS which may use the original wide TS set or use

the narrowed TS set.

5. Payload Format

All multi-octet fields representing integers are laid out in big

endian order (also known as "most significant byte first", or

"network byte order").

5.1. CPU_QUEUES Notify Status Message Payload

Protocol ID (1 octet) - MUST be 0. MUST be ignored if not 0.

SPI Size (1 octet) - MUST be 0. MUST be ignored if not 0.

Notify Status Message Type (2 octets) - set to [TBD1]

Minimum number of per-CPU IPsec SAs (4 octets). MUST be greater

than 0. If 0 is received, it MUST be interpreted as 1.

Note: The Fallback Child SA that is not bound to a single CPU is not

counted as part of these numbers.

¶

¶

¶

 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-----------------------------+-------------------------------+

! Next Payload !C! RESERVED ! Payload Length !

+---------------+---------------+-------------------------------+

! Protocol ID ! SPI Size ! Notify Message Type !

+---------------+---------------+-------------------------------+

! Minimum number of IPsec SAs !

+-------------------------------+-------------------------------+

¶

* ¶

* ¶

* ¶

*

¶

¶

5.2. CPU_QUEUE_INFO Notify Status Message Payload

Protocol ID (1 octet) - MUST be 0. MUST be ignored if not 0.

SPI Size (1 octet) - MUST be 0. MUST be ignored if not 0.

Notify Status Message Type (2 octets) - set to [TBD2]

Optional Payload Data. This value MAY be set to convey the local

identity of the queue. The value SHOULD be a unique identifier

and the peer SHOULD only use it for debugging purposes.

5.3. TS_MAX_QUEUE Notify Error Message Payload

Protocol ID (1 octet) - MUST be 0. MUST be ignored if not 0.

SPI Size (1 octet) - MUST be 0. MUST be ignored if not 0.

Notify Error Message Type (2 octets) - set to [TBD3]

Optional Payload Data. Must be 0.

6. Operational Considerations

Implementations supporting per-CPU SAs SHOULD extend their local SPD

selector, and the mechanism of on-demand negotiation that is

triggered by traffic to include a CPU (or queue) identifier in their

SADB_ACQUIRE message from the SPD to the IKE daemon. If the IKEv2

extension defined in this document is negotiated with the peer, a

node which does not support receiving per-CPU SADB_ACQUIRE messages

 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-----------------------------+-------------------------------+

! Next Payload !C! RESERVED ! Payload Length !

+---------------+---------------+-------------------------------+

! Protocol ID ! SPI Size ! Notify Message Type !

+---------------+---------------+-------------------------------+

! !

~ Optional queue identifier ~

! !

+-------------------------------+-------------------------------+

¶

* ¶

* ¶

* ¶

*

¶

 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-----------------------------+-------------------------------+

! Next Payload !C! RESERVED ! Payload Length !

+---------------+---------------+-------------------------------+

! Protocol ID ! SPI Size ! Notify Message Type !

+---------------+---------------+-------------------------------+

¶

* ¶

* ¶

* ¶

* ¶

MAY initiate all its Child SAs immediately upon receiving the (only)

SADB_ACQUIRE it will receive from the IPsec stack. Such

implementations also need to be careful when receiving a Delete

Notify request for a per-CPU Child SA, as it has no method to detect

when it should bring up such a per-CPU Child SA again later. And

bringing the deleted per-CPU Child SA up again immediately after

receiving the Delete Notify might cause an infinite loop between the

peers. Another issue of not bringing up all its per-CPU Child SAs is

that if the peer acts similarly, the two peers might end up with

only the Fallback SA without ever activating any per-CPU Child SAs.

It is there for RECOMMENDED to implement per-CPU SADB_ACQUIRE

messages.

The minimum number of Child SAs negotiated should not be treated as

the maximum number of allowed Child SAs. Peers SHOULD be lenient

with this number to account for corner cases. For example, during

Child SA rekeying, there might be a large number of additional Child

SAs created before the old Child SAs are torn down. Similarly, when

using on-demand Child SAs, both ends could trigger multiple Child SA

requests as the initial packet causing the Child SA negotiation

might have been transported to the peer via the Fallback SA where

its reply packet might also trigger an on-demand Child SA

negotiation to start. A peer may want to allow up to double the

negotiated minimum number of Child SAs, and rely on idleness of

Child SAs to tear down any unused Child SAs gradually to to reach an

optimal number of Child SAs. Adding too many SAs may slow down per-

packet SAD lookup.

Implementations might support dynamically moving a per-CPU Child SAs

from one CPU to another CPU. If this method is supported,

implementations must be careful to move both the inbound and

outbound SAs. If the IPsec endpoint is a gateway, it can move the

inbound SA and outbound SA independently from each other. It is

likely that for a gateway, IPsec traffic would be asymmetric. If the

IPsec endpoint is the same host responsible for generating the

traffic, the inbound and outbound SAs SHOULD remain as a pair on the

same CPU. If a host previously skipped installing an outbound SA

because it would be an unused duplicate outbound SA, it will have to

create and add the previously skipped outbound SA to the SAD with

the new CPU ID. The inbound SA may not have CPU ID in the SAD.

Adding the outbound SA to the SAD requires access to the key

material, whereas for updating the CPU selector on an existing

outbound SAs. access to key material might not be needed. To support

this, the IKE software might have to hold on to the key material

longer than it normally would, as it might actively attempt to

destroy key material from memory that it no longer needs access to.

¶

¶

¶

Organization:

Name:

Description:

Level of maturity:

Coverage:

Licensing:

7. Security Considerations

[TO DO]

8. Implementation Status

[Note to RFC Editor: Please remove this section and the reference to

[RFC6982] before publication.]

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

Authors are requested to add a note to the RFC Editor at the top of

this section, advising the Editor to remove the entire section

before publication, as well as the reference to [RFC7942].

8.1. Linux XFRM

Linux kernel XFRM

XFRM-PCPU-v1 https://git.kernel.org/pub/scm/linux/kernel/git/

klassert/linux-stk.git/log/?h=xfrm-pcpu-v1

An initial Kernel IPsec implementation of the per-CPU

method.

Alpha

Implements Fallback Child SA and per-CPU Child SAs. It

only supports the NETLINK API. The PFKEYv2 API is not supported.

GPLv2

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Implementation experience:

Contact:

Organization:

Name:

Description:

Level of maturity:

Coverage:

Licensing:

Implementation experience:

Contact:

Organization:

Name:

The Linux XFRM implementation added two

additional attributes to support per-CPU SAs. There is a new

attribute XFRMA_SA_PCPU, u32, for the SAD entry. This attribute

should present on the outgoing SA, per-CPU Child SAs, starting

from 0. This attribute MUST NOT be present on the Fallback XFRM

SA. It is used by the kernel only for the outgoing traffic,

(clear to encrypted). The incoming SAs, both the Fallback and the

per-CPU SA, do not need XFRMA_SA_PCPU attribute. XFRM stack can

not use CPU id on the incoming SA. The kernel internally sets the

value to 0xFFFFFF for the incoming SA and the Fallback SA.

However, one may add XFRMA_SA_PCPU to the incoming per-CPU SA to

steer the ESP flow, to a specific Q or CPU e.g ethtool ntuple

configuration. The SPD entry has new flag

XFRM_POLICY_CPU_ACQUIRE. It should be set only on the "out"

policy. The flag should be disabled when the policy is a trap

policy, without SPD entries. After a successful negotiation of

CPU_QUEUES, while adding the Fallback Child SA, the SPD entry can

be updated with the XFRM_POLICY_CPU_ACQUIRE flag. When

XFRM_POLICY_CPU_ACQUIRE is set, the XFRM_MSG_ACQUIRE generated

will include the XFRMA_SA_PCPU attribute.

Steffen Klassert steffen.klassert@secunet.com

8.2. Libreswan

The Libreswan Project

pcpu-3 https://libreswan.org/wiki/XFRM_pCPU

An initial IKE implementation of the per-CPU method.

Alpha

implements Fallback Child SA and per-CPU additional Child

SAs

GPLv2

TBD

Libreswan Development: swan-dev@libreswan.org

8.3. strongSwan

The StrongSwan Project

StrongSwan https://github.com/strongswan/strongswan/tree/per-

cpu-sas-poc/

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Description:

Level of maturity:

Coverage:

Licensing:

Implementation experience:

Contact:

Organization:

Name:

Description:

Level of maturity:

Licensing:

Implementation experience:

Contact:

An initial IKE implementation of the per-CPU method.

Alpha

implements Fallback Child SA and per-CPU additional Child

SAs

GPLv2

StrongSwan use private space values for

notifications CPU_QUEUES (40970) and QUEUE_INFO (40971).

Tobias Brunner tobias@strongswan.org

8.4. iproute2

The iproute2 Project

iproute2 https://github.com/antonyantony/iproute2/tree/pcpu-

v1

Implemented the per-CPU attributes for the "ip xfrm"

command.

Alpha

GPLv2

TBD

Antony Antony antony.antony@secunet.com

9. IANA Considerations

This document defines two new IKEv2 Notify Message Type payloads for

the IANA "IKEv2 Notify Message Types - Status Types" registry.

Figure 1

This document defines one new IKEv2 Notify Message Type payloads for

the IANA "IKEv2 Notify Message Types - Error Types" registry.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

 Value Notify Type Messages - Status Types Reference

 ----- ------------------------------ ---------------

 [TBD1] CPU_QUEUES [this document]

 [TBD2] CPU_QUEUE_INFO [this document]

¶

 Value Notify Type Messages - Status Types Reference

 ----- ------------------------------ ---------------

 [TBD3] TS_MAX_QUEUE [this document]

[RFC2119]

[RFC2367]

[RFC7296]

[RFC8174]

[RFC4301]

[RFC6982]

[RFC7942]

Figure 2

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

McDonald, D., Metz, C., and B. Phan, "PF_KEY Key

Management API, Version 2", RFC 2367, DOI 10.17487/

RFC2367, July 1998, <https://www.rfc-editor.org/info/

rfc2367>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

Kent, S. and K. Seo, "Security Architecture for the

Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,

December 2005, <https://www.rfc-editor.org/info/rfc4301>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", RFC

6982, DOI 10.17487/RFC6982, July 2013, <https://www.rfc-

editor.org/info/rfc6982>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Authors' Addresses

Antony Antony

secunet Security Networks AG

Email: antony.antony@secunet.com

Tobias Brunner

codelabs GmbH

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2367
https://www.rfc-editor.org/info/rfc2367
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc6982
https://www.rfc-editor.org/info/rfc6982
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
mailto:antony.antony@secunet.com

Email: tobias@codelabs.ch

Steffen Klassert

secunet Security Networks AG

Email: steffen.klassert@secunet.com

Paul Wouters

Aiven

Email: paul.wouters@aiven.io

mailto:tobias@codelabs.ch
mailto:steffen.klassert@secunet.com
mailto:paul.wouters@aiven.io

	IKEv2 support for per-queue Child SAs
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Performance bottlenecks
	3. Negotiation of CPU specific Child SAs
	4. Implementation Considerations
	5. Payload Format
	5.1. CPU_QUEUES Notify Status Message Payload
	5.2. CPU_QUEUE_INFO Notify Status Message Payload
	5.3. TS_MAX_QUEUE Notify Error Message Payload

	6. Operational Considerations
	7. Security Considerations
	8. Implementation Status
	8.1. Linux XFRM
	8.2. Libreswan
	8.3. strongSwan
	8.4. iproute2

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

