
Workgroup: OPSAWG

Internet-Draft:

draft-quilbeuf-opsawg-configuration-tracing-00

Published: 20 October 2022

Intended Status: Standards Track

Expires: 23 April 2023

Authors: J. Quilbeuf

Huawei

B. Claise

Huawei

T. Graf

Swisscom

D. Lopez

Telefonica I+D

Q. Sun

China Telecom

External Transaction ID for Configuration Tracing

Abstract

Network equipments are often configured by a variety of network

management systems (NMS), protocols, and people. If a network issue

arises because of a wrong configuration modification, it's important

to quickly identify the specific service request and obtain the

reason for pushing that modification. Another potential network

issue can stem from concurrent NMS's with overlapping intent, each

having their own tasks to perform: in such a case, it's important to

map the respective modifications to its originating NMS. This

document specifies a mechanism to automatically map the

configuration modifications to their source, up to a specific NMS

service request, in the context of NETCONF. Such a mechanism is

required for autonomous networks, to trace the reason of a

particular configuration change that lead to an anomaly detection or

a broken SLA. This mechanism facilitates the troubleshooting, the

post mortem analysis, and in the end the closed loop automation

required for self-healing networks. The specifications contain a new

YANG module mapping a local configuration change to the

corresponding northbound transaction, up to the controller or even

the orchestrator.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-

tracing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing
https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing
https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 23 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Use cases

3.1. Configuration Mistakes

3.2. Concurrent NMS Configuration

3.3. Conflicting Intents

4. Relying on Transaction-id to Trace Configuration Modifications

4.1. Instantiating the YANG module

4.2. Using the YANG module

5. YANG module

5.1. Overview

5.2. YANG module ietf-external-transaction-id

6. Security Considerations

7. IANA Considerations

8. Contributors

9. Open Issues / TODO

9.1. Possibility of setting the transaction Id from the client

10. Normative References

11. Informative References

Appendix A. Changes between revisions

Appendix B. Tracing configuration changes

Acknowledgements

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Authors' Addresses

1. Introduction

Issues arising in the network, for instance violation of some SLAs,

might be due to some configuration modification. In the context of

automated networks, the assurance system needs not only to identify

and revert the problematic configuration modification, but also to

make sure that it won't happen again and that the fix will not

disrupt other services. To cover the last two points, it is

imperative to understand the cause of the problematic configuration

change. Indeed, the first point, making sure that the configuration

modification will not be repeated, cannot be ensured if the cause

for pushing the modification in the first place is not known.

Ensuring the second point, not disrupting other services, requires

as well knowing if the configuration modification was pushed in

order to support new services. Therefore, we need to be able to

trace a configuration modification on a device back to the reason

that triggered that modification, for instance in a NMS, whether the

controller or the orchestrator.

This specification focuses only on configuration pushed via NETCONF

[RFC6241]. The rationale for this choice is that NETCONF is better

suited for normalization than other protocols (SNMP, CLI). Another

reason is that the notion of transaction ID, useful to track

configuration modification, is already defined in

[I-D.lindblad-netconf-transaction-id] and comes from RESTCONF

[RFC8040].

The same network element, or NETCONF [RFC6241] server, can be

configured by different NMSs or NETCONF clients. If an issue arises,

one of the starting points for investigation is the configuration

modification on the devices supporting the impacted service. In the

best case, there is a dedicated user for each client and the

timestamp of the modification allows tracing the problematic

modification to its cause. In the worst case, everything is done by

the same user and some more tricks must be done to trace the

problematic modification to its source.

This document specifies a mechanism to automatically map the

configuration modifications to their source, up to a specific NMS

service request. Practically, this mechanism annotates configuration

changes on the configured element with sufficient information to

unambiguously identify the corresponding transaction, if any, on the

element that requested the configuration modification. It reuses the

concept of a NETCONF transaction ID from

[I-D.lindblad-netconf-transaction-id] and augment it with an ID for

the client. The information needed to do the actual configuration

tracing is stored in a new YANG module that maps a local

¶

¶

¶

configuration change to the corresponding northbound transaction, up

to the controller or even the orchestrator. In case of a controller,

the local configuration modification ID to both corresponding north-

and southbound transaction ID. Additionally, for northbound

transactions, we store the ID of the client.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terms client and server from [RFC6241].

This document uses the terms transaction and transaction id from

[I-D.lindblad-netconf-transaction-id].

3. Use cases

This document was written with autonomous networks in mind. We

assume that an existing monitoring or assurance system, such as

described in [I-D.ietf-opsawg-service-assurance-architecture], is

able to detect and report network anomalies , e.g. SLA violations,

intent violations, network failure, or simply a customer issue. Here

are the use cases for the proposed YANG module.

3.1. Configuration Mistakes

Taking into account that many network anomalies are due to

configuration mistakes, this mechanism allows to find out whether

the offending configuration modification was triggered by a tracing-

enabled client/NMS. In such as case, we can map the offending

configuration modification id on a server/NE to a local

configuration modification id on the client/NMS. Assuming that this

mechanism (the YANG module) is implemented on the controller, we can

recursively find, in the orchestrator, the latest (set of of)

service request(s) that triggered the configuration modification.

Whether this/those service request(s) are actually the root cause

needs to be investigated. However, they are a good starting point

for troubleshooting, post mortem analysis, and in the end the closed

loop automation, which is absolutely required for for self-healing

networks.

3.2. Concurrent NMS Configuration

Building on the previous use case is the situation where two NMS',

unaware of the each other, configuring routers, each believing that

they are the only NMS for specific device. So one configuration

¶

¶

¶

¶

¶

¶

executed by the NMS1 is overwritten by the NMS2, which in turn is

overwritten by NMS1, etc.

3.3. Conflicting Intents

Autonomous networks will be solved first by assuring intent per

specific domain; for example data center, core, cloud, etc. This

last use case is a more specific "Concurrent NMS configuration" use

case where assuring domain intent breaks the entire end to end

service, even if the domain-specific controllers are aware of each

other.

4. Relying on Transaction-id to Trace Configuration Modifications

4.1. Instantiating the YANG module

In [I-D.lindblad-netconf-transaction-id], the concept of a NETCONF

transaction ID is proposed, to match the same mechanism from

RESTCONF [RFC8040]. The goal of this document is to speed up the re-

synchronization process between a client and a server, by using a

common transaction ID. If the current transaction ID on the server

is the same as the transaction ID known by the client, then both are

synchronized. Otherwise, the client has to fetch again the

configuration. The transaction ID can be applied to the whole

configuration or to so-called versioned nodes. In the latter case,

only versioned nodes for which the transaction ID differs need to be

updated.

Figure 1: Example of Hierarchical Configuration. tx: transaction

A server considers as a northbound transaction a transaction that

modifies its configuration. On Figure 1, tx-1 is a northbound

transaction for the Controller.

¶

¶

¶

 +---------------+

 | Orchestrator |

 +---------------+

 | tx-1

 v

 +---------------+

 | Controller |

 +---------------+

 | tx-2 | tx-3

 v v

 +-----+ +-----+

 | NE1 | | NE2 |

 +-----+ +-----+

¶

A client considers as a southbound transaction the modification of a

server configuration. On Figure 1, tx-2 and tx-3 are southbound

transactions for the Controller.

If the set-tx-id feature is enabled (see open issue in Section 9.1),

the client can specify its own transaction ID when sending the

configuration ID for the server. In that case, the Controller in

Figure 1 could use the same transaction-id for both tx-2 and tx-3

and save a single southbound transaction ID for that commit.

Otherwise, the server is the one generating the ID for the

transaction between the client and the server. If the client has to

configure several servers, for instance to enable a network service,

then each of the configured servers might return a different ID.

Therefore, for a configuration modification on the client might be

implemented via several southbound transactions and thus might have

several southbound transaction ID.

Our proposed solution is to store, on the server, a mapping between

the existing local commit id and the northbound and southbound

transactions related to that local configuration change. The mapping

is read only and populated by the server at configuration time as

follows:

Northbound transaction: If the set-tx-id feature is available

(see Section 9.1), the server MUST accept a transaction-ID and a

client ID from client supporting configuration tracing. The

server MUST store both entries as respectively northbound

transaction ID and northbound client ID, associated to the local

configuration ID. If the set-tx-id feature is not available, the

server MUST accept the client ID, generate a transaction ID, save

both the transaction ID as northbound transaction id and the

client ID as northbound client ID, and send back the transaction

ID to the client. If the client does not support configuration

tracing, none of these entries are populated. In Figure 1, for

the Controller, the northbound transaction ID is the ID of tx-1.

Southbound transaction: If the set-tx-id feature is available

(see Section 9.1), when a client has to configure servers in

response to a local configuration change, then it MUST generate a

transaction ID, send it along with its ID to the configured

servers, and save it as a southbound transaction ID. If the set-

tx-id feature is not available, it MUST sent its own ID with the

configuration, receive back the transaction ID from each server,

and save all of them as southbound transaction ID. In Figure 1,

for the Controller, the southbound transaction IDs are the IDs of

tx-2 and tx-3.

The two cases above are not mutually exclusive. A Controller can be

configured by an Orchestrator and configure network equipment in

¶

¶

¶

*

¶

*

¶

turn, as shown in Figure 1. In that case, both the northbound

transaction ID, shared with the Orchestrator and the southbound

transaction IDs, shared with the network equipments, are stored in

the Controller. They are both associated to the corresponding

configuration commit in the Controller.

It is technically possible that several clients push configuration

to the candidate configuration datastore and only one of them

commits the changes to the running configuration datastore. From the

running configuration datastore perspective, which is the effective

one, there is a single modification, but caused by several clients,

which means that this modification should have several northbound

transaction id. Although, this case is technically possible, it is a

bad practice. We won't cover it in this document. In other terms, we

assume that a given configuration modification on a server is caused

by a single northbound transaction, and thus has a single

corresponding northbound transaction ID.

4.2. Using the YANG module

The YANG module defined below enables tracing a configuration change

in a Network Equipment back to its origin, for instance a service

request in an orchestrator. To do so, the Anomaly Detection System

(ADS) should have for each NMS ID (as stored in northbound-client-

id), access to some credentials enabling read access to the model.

It should as well have access to the network equipment in which an

issue is detected.

¶

¶

¶

 +---------------+

 .----------------[5]match SB tx-1----------->| |

 | | Orchestrator |

 | ----------------[6]commit-id---------------| |

 | | +---------------+

 | | | tx-1

 | | v

 | | +---------------+

 | | .-----------[3] match SB tx-2--------->| |

 | | | | Controller |

 | | | .-----------[4] NB-tx-id tx-1--------| |

 | | | | +---------------+

 | | | | | tx-2

 | v | v v

 +-----------+ +----+

 | Anomaly |--[1] match commit-id before time t-->| |

 | Detection | | NE |

 | System |<--------- [2] NB-tx-id tx-2 ----- ---| |

 +----------+ +----+

Figure 2: Example of Configuration Tracing. tx: transaction, NB:

northbound, SB: southbound. The number between square brackets refer to

steps in the listing below.

The steps for a software to trace a configuration modification in a

Network Equipment back to a service request are illustrated in

Figure 2. They are detailed below.

The Anomaly Detection System identifies the commit id that

created an issue, for instance by looking for the last commit-

id occuring before the issue was detected. The ADS queries the

NE for the northbound transaction-id and northbound client id

associated to the commit-id.

The ADS receives the northbound transaction Id. In Figure 2,

that step would recieve the id of tx-2 and the id of the

Controller as a result. If they are no results, or no

associated northbound-transaction-id, the change was not done

by a client compatible with the present draft, and the

investigation stops here.

The ADS queries the client identified by the northbound-client-

id found at the previous step, looking for a match of the

northbound-transaction-id from the previous step with a

southbound-transaction-id in the client version of the YANG

model. In Figure 2, for that step, the software would look for

the id of tx-2 in the southbound transaction IDs stored in the

Controller.

From that query, the ADS knows the local-commit-id on the

client (Controller in our case). Since the local-commit-id is

associated to a northbound-transaction-id, namely the id of

tx-1, the ADS continues the investigation. The client to query

is identified by the northbound-client-id, in our case the

Orchestrator.

The ADS queries the Orchestrator, trying to find a match for

the Id of tx-1 as a southbound transaction ID.

Finally, the ADS receives the commit-id from the Orchestrator

that ultimately caused the issue in the NE. Since there is no

associated northbound transaction id, the investigation stops

here. The modification associated to the commit-id, for

instance a service request, is now available for further manual

or automated analysis, such as analyzing the root cause of the

issue.

Note that step 5 and 6 are actually a repetition of step 3 and 4.

The general algorithm is to continue looking for a client until no

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

more client (no more northbound-transaction-id) can be found in the

current element.

5. YANG module

We present in this section the YANG module for modelling the

information about the configuration modifications.

5.1. Overview

The tree representation [RFC8340] of our YANG module is depicted in

Figure 3

Figure 3: Tree representation of ietf-external-transaction-id YANG

module

The local-commit-id represents the local id of the configuration

changes. It can be used to retrieve the local configuration changes

that happened during that transaction.

The northbound-transaction-id should be present when the server is

configured by a client supporting the external transaction ID. In

that case, the northbound-client-id is mandatory. The value of both

fields are sent by the client whenever it sends the configuration

that trigger the changes associated to the local-commit-id.

The southbound-transaction-id should be present when the current

configuration change leads to the configuration of other devices. In

that case, the southbound-transaction-id should be generated by the

server (and unique among other southbound-transaction-id fields

generated on this server), sent to the configured devices and saved

in that field. If the configured server do not support having a

forced transaction id, then the transaction IDs resulting of the

configuration of the servers must be stored in that list.

Even if this document focuses only on NETCONF, the use cases defined

in Section 3 are not specific to NETCONF and the mechanism described

in this document could be adapted to other configuration mechanisms.

For instance, a configuration modification pushed via CLI can be

identified via a label. As such cases are difficult to standardize,

¶

¶

¶

module: ietf-external-transaction-id

 +--ro external-transactions-id

 +--ro configuration-change* [local-commit-id]

 +--ro local-commit-id string

 +--ro northbound-transaction-id? ietf-netconf-txid:etag-t

 +--ro northbound-client-id string

 +--ro southbound-transaction-id* ietf-netconf-txid:etag-t

¶

¶

¶

we won't cover them in this document. However, our model could be

extended to support such mechanism for instance by using a

configuration label instead of the northbound transaction ID.¶

5.2. YANG module ietf-external-transaction-id

<CODE BEGINS> file "ietf-external-transaction-id@2021-11-03.yang"

module ietf-external-transaction-id {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-external-transaction-id";

 prefix ext-txid;

 import ietf-netconf-txid {

 prefix ietf-netconf-txid;

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This module enable tracing of configuration changes in an

 automated network. It stores the ID of the northbound

 transaction when the local device is configured by an enabled

 NMS, and the southbound transaction ID when the local device

 configures other devices.

 The main usage of this module is to map a local configuration

 change to a northbound transaction ID that can be retrieved as

 southbound transaction ID on the configuring NMS, or to map a

 southbound transaction ID to a northbound transaction ID on

 devices that are both configured and configuring other devices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the

 RFC itself for full legal notices. ";

 revision 2021-11-03 {

 description

 "Initial revision";

 reference

 "RFC xxxx: Title to be completed";

 }

 container external-transactions-id {

 config false;

 description

 "Contains the IDs of configuration transactions that are

 external to the current device.";

 list configuration-change {

 key "local-commit-id";

 description

 "List of configuration changes, identified by their

 local-commit-id";

 leaf local-commit-id {

 type string;

 description

 "Id as saved by the server. Can be used to retrieve

 the corresponding changes using the server mechanism

 if available.";

 }

 leaf northbound-transaction-id {

 type ietf-netconf-txid:etag-t;

 description

 "External transaction ID, sent by the client, corresponding

 to a change initiated by a northbound NMS. There should be

 a corresponding entry on the NMS as a

 southbound-transaction-id that maps to the actual

 configuration commit that triggered the configuration of

 this server.

 This field is present only when the configuration was

 pushed by a compatible system.";

 }

 leaf northbound-client-id {

 when '../northbound-transaction-id';

 type string;

 mandatory true;

 description

 "ID of the client doing the modification, to further query

 information about the corresponding change.";

 }

 leaf-list southbound-transaction-id {

 type ietf-netconf-txid:etag-t;

[I-D.lindblad-netconf-transaction-id]

 description

 "Transaction ID transmitted to southbound devices

 configured following the configuration change

 corresponding to local-commit-id. ";

 }

 }

 }

}

<CODE ENDS>

6. Security Considerations

7. IANA Considerations

This document includes no request to IANA.

8. Contributors

9. Open Issues / TODO

Evaluate risk of collision between transaction ids in the

southbound-transaction id. Example scenario: 1) client

configures server 1 and server 2 for commit-id (client) 1 the

southbound transaction IDs are A (server 1) B (server 2) 2)

client configures server 1 and server 2 for commit-id (client) 2

the southbound transaction IDs are B (server 1) C (server 2) 3)

the last configuration of server 1 causes an issue, when looking

for southbound transaction id B, it's not clear whether the issue

comes from commit 1 or commit 2 in the client

9.1. Possibility of setting the transaction Id from the client

In the -00 version of [I-D.lindblad-netconf-transaction-id], there

is the possibility for the client to set the transaction id when

sending the configuration to the server. This feature has been

removed in subsequent versions. In this draft, we call this feature

set-tx-id. Such a feature would simplify the present draft,

therefore we try to present two versions, one with the feature set-

tx-id available and one without.

10. Normative References

Lindblad, J., "Transaction ID Mechanism for NETCONF",

Work in Progress, Internet-Draft, draft-lindblad-netconf-

transaction-id-02, 8 June 2022, <https://www.ietf.org/

archive/id/draft-lindblad-netconf-transaction-id-02.txt>.

¶

¶

*

¶

¶

https://www.ietf.org/archive/id/draft-lindblad-netconf-transaction-id-02.txt
https://www.ietf.org/archive/id/draft-lindblad-netconf-transaction-id-02.txt

[RFC2119]

[RFC6241]

[RFC8174]

[RFC8340]

[I-D.ietf-opsawg-service-assurance-architecture]

[RFC8040]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

11. Informative References

Claise, B., Quilbeuf, J., Lopez, D., Voyer, D., and T.

Arumugam, "Service Assurance for Intent-based Networking

Architecture", Work in Progress, Internet-Draft, draft-

ietf-opsawg-service-assurance-architecture-11, 18 October

2022, <https://www.ietf.org/archive/id/draft-ietf-opsawg-

service-assurance-architecture-11.txt>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Appendix A. Changes between revisions

Initial version

Appendix B. Tracing configuration changes

Acknowledgements

Authors' Addresses

Jean Quilbeuf

Huawei

Email: jean.quilbeuf@huawei.com

Benoit Claise

Huawei

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8340
https://www.ietf.org/archive/id/draft-ietf-opsawg-service-assurance-architecture-11.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-service-assurance-architecture-11.txt
https://www.rfc-editor.org/info/rfc8040
mailto:jean.quilbeuf@huawei.com

Email: benoit.claise@huawei.com

Thomas Graf

Swisscom

Binzring 17

CH-8045 Zurich

Switzerland

Email: thomas.graf@swisscom.com

Diego R. Lopez

Telefonica I+D

Don Ramon de la Cruz, 82

Madrid 28006

Spain

Email: diego.r.lopez@telefonica.com

Qiong Sun

China Telecom

Email: sunqiong@chinatelecom.cn

mailto:benoit.claise@huawei.com
mailto:thomas.graf@swisscom.com
mailto:diego.r.lopez@telefonica.com
mailto:sunqiong@chinatelecom.cn

	External Transaction ID for Configuration Tracing
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Use cases
	3.1. Configuration Mistakes
	3.2. Concurrent NMS Configuration
	3.3. Conflicting Intents

	4. Relying on Transaction-id to Trace Configuration Modifications
	4.1. Instantiating the YANG module
	4.2. Using the YANG module

	5. YANG module
	5.1. Overview
	5.2. YANG module ietf-external-transaction-id

	6. Security Considerations
	7. IANA Considerations
	8. Contributors
	9. Open Issues / TODO
	9.1. Possibility of setting the transaction Id from the client

	10. Normative References
	11. Informative References
	Appendix A. Changes between revisions
	Appendix B. Tracing configuration changes
	Acknowledgements
	Authors' Addresses

