
Workgroup: OPSAWG

Internet-Draft:

draft-quilbeuf-opsawg-configuration-tracing-01

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: J. Quilbeuf

Huawei

B. Claise

Huawei

T. Graf

Swisscom

D. Lopez

Telefonica I+D

Q. Sun

China Telecom

External Transaction ID for Configuration Tracing

Abstract

Network equipment are often configured by a variety of network

management systems (NMS), protocols, and teams. If a network issue

arises (e.g., because of a wrong configuration change), it is

important to quickly identify the root cause and obtain the reason

for pushing that modification. Another potential network issue can

stem from concurrent NMSes with overlapping intents, each having

their own tasks to perform. In such a case, it is important to map

the respective modifications to its originating NMS.

This document specifies a NETCONF mechanism to automatically map the

configuration modifications to their source, up to a specific NMS

change request. Such a mechanism is required, in particular, for

autonomous networks to trace the source of a particular

configuration change that led to an anomaly detection. This

mechanism facilitates the troubleshooting, the post mortem analysis,

and in the end the closed loop automation required for self-healing

networks. The specification also includes a YANG module that is

meant to map a local configuration change to the corresponding

change transaction, up to the controller or even the orchestrator.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-

tracing.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

¶

¶

¶

¶

¶

https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing
https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing
https://github.com/JeanQuilbeufHuawei/draft-quilbeuf-opsawg-configuration-tracing

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Use cases

3.1. Configuration Mistakes

3.2. Concurrent NMS Configuration

3.3. Conflicting Intents

3.4. Not a use case: Onboarding

4. Relying on Transaction ID to Trace Configuration Modifications

4.1. Existing configuration metadata on device

4.2. Client ID

4.3. Instantiating the YANG module

4.4. Using the YANG module

5. YANG module

5.1. Overview

5.2. YANG module ietf-external-transaction-id

6. Security Considerations

7. IANA Considerations

8. Contributors

9. Open Issues / TODO

9.1. Possibility of setting the transaction Id from the client

10. Normative References

11. Informative References

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Appendix A. Changes between revisions

Appendix B. Tracing configuration changes

Acknowledgements

Authors' Addresses

1. Introduction

Issues arising in the network, for instance violation of some SLAs,

might be due to some configuration modification. In the context of

automated networks, the assurance system needs not only to identify

and revert the problematic configuration modification, but also to

make sure that it won't happen again and that the fix will not

disrupt other services. To cover the last two points, it is

imperative to understand the cause of the problematic configuration

change. Indeed, the first point, making sure that the configuration

modification will not be repeated, cannot be ensured if the cause

for pushing the modification in the first place is not known.

Ensuring the second point, not disrupting other services, requires

as well knowing if the configuration modification was pushed in

order to support new services. Therefore, we need to be able to

trace a configuration modification on a device back to the reason

that triggered that modification, for instance in a NMS, whether the

controller or the orchestrator.

This specification focuses only on configuration pushed via NETCONF

[RFC6241]. The rationale for this choice is that NETCONF is better

suited for normalization than other protocols (SNMP, CLI). Another

reason is that the notion of transaction ID, useful to track

configuration modification, is already defined in

[I-D.lindblad-netconf-transaction-id] and comes from RESTCONF

[RFC8040].

The same network element, or NETCONF [RFC6241] server, can be

configured by different NMSs or NETCONF clients. If an issue arises,

one of the starting points for investigation is the configuration

modification on the devices supporting the impacted service. In the

best case, there is a dedicated user for each client and the

timestamp of the modification allows tracing the problematic

modification to its cause. In the worst case, everything is done by

the same user and some more correlations must be done to trace the

problematic modification to its source.

This document specifies a mechanism to automatically map the

configuration modifications to their source, up to a specific NMS

service request. Practically, this mechanism annotates configuration

changes on the configured element with sufficient information to

unambiguously identify the corresponding transaction, if any, on the

element that requested the configuration modification. It reuses the

concept of a NETCONF transaction ID from

¶

¶

¶

Local Commit ID

Parent Transaction

Child Transaction

Client ID

[I-D.lindblad-netconf-transaction-id] and additionally requires an

ID for the client. The information needed to trace the configuration

is stored in a new YANG module that maps a local configuration

change to some additional metadata. In the server, this metadata

includes the ID of the client triggering the configuration change as

well as the transaction ID corresponding to that change in the

client. In the client, the metadata includes the transaction ID for

each server configured during the local configuration change. In

case of a controller, which plays both the role of server (for an

orchestrator) and client (for a network equipment), the metadata

associated to both the server-side and the client-side of the

translation are stored.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the terms client and server from [RFC6241].

This document uses the terms transaction and Transaction ID from

[I-D.lindblad-netconf-transaction-id].

Identifier of a local configuration change on a

Network Equipment, Controller, Orchestrator or any other device

or software handling configuration. Such an identifier is usually

present in devices that can show an history of the configuration

changes, to identify one such configuration change.

For a given NETCONF server, a transaction that

changed the local configuration.

For a given NETCONF client, a transaction that

required configuration changes to at least one server.

ID of a NETCONF client, must be unique among all NETCONF

clients that configure the network.

3. Use cases

This document was written with autonomous networks in mind. We

assume that an existing monitoring or assurance system, such as

described in [I-D.ietf-opsawg-service-assurance-architecture], is

able to detect and report network anomalies , e.g. SLA violations,

intent violations, network failure, or simply a customer issue. Here

are the use cases for the proposed YANG module.

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1. Configuration Mistakes

Taking into account that many network anomalies are due to

configuration mistakes, this mechanism allows to find out whether

the offending configuration modification was triggered by a tracing-

enabled client/NMS. In such a case, we can map the offending

configuration modification id on a server/NE to a local

configuration modification id on the client/NMS. Assuming that this

mechanism (the YANG module) is implemented on the controller, we can

recursively find, in the orchestrator, the latest (set of of)

service request(s) that triggered the configuration modification.

Whether this/those service request(s) are actually the root cause

needs to be investigated. However, they are a good starting point

for troubleshooting, post mortem analysis, and in the end the closed

loop automation, which is absolutely required for for self-healing

networks.

3.2. Concurrent NMS Configuration

Building on the previous use case is the situation where two NMS's,

unaware of the each other, are configuring a common router, each

believing that they are the only NMS for the common router. So one

configuration executed by the NMS1 is overwritten by the NMS2, which

in turn is overwritten by NMS1, etc.

3.3. Conflicting Intents

Autonomous networks will be solved first by assuring intent per

specific domain; for example data center, core, cloud, etc. This

last use case is a more specific "Concurrent NMS configuration" use

case where assuring domain intent breaks the entire end to end

service, even if the domain-specific controllers are aware of each

other.

3.4. Not a use case: Onboarding

During onboarding, a newly added device is likely to receive a

multiple configuration message, as it needs to be fully configured.

Our use cases focus more on what happens after the initial

configuration is done, i.e. when the "stable" configuration is

modified.

4. Relying on Transaction ID to Trace Configuration Modifications

4.1. Existing configuration metadata on device

This document assumes that NETCONF clients or servers

(orchestrators, controllers, devices, ...) have some kind of

mechanism to record the modifications done to the configuration. For

instance, routers typically have an history of configuration change

¶

¶

¶

¶

and this configuration associates a locally unique identifier to

some metadata, such as the timestamp of the modification, the user

doing the modification or the protocol used for the modification.

Such a locally unique identifier is a Local Commit ID, we assume

that it exists on the platform. This Local Commit ID is the link

between the module presented in this draft and the device-specific

way of storing configuration changes.

4.2. Client ID

This document assumes that each NETCONF client for which

configuration must be traced (for instance orchestrator and

controllers) has a unique client ID among the other NETCONF clients

in the network. Such an ID could be an IP address or a host name.

The mechanism for providing and defining this client ID is out of

scope of the current document.

4.3. Instantiating the YANG module

In [I-D.lindblad-netconf-transaction-id], the concept of a NETCONF

transaction ID is proposed, to match the same mechanism from

RESTCONF [RFC8040]. The goal of this document is to speed up the re-

synchronization process between a client and a server, by using a

common transaction ID. If the current transaction ID on the server

is the same as the transaction ID known by the client, then both are

synchronized. Otherwise, the client has to fetch again the

configuration. The transaction ID can be applied to the whole

configuration or to so-called versioned nodes. In the latter case,

only versioned nodes for which the transaction ID differs need to be

updated.

Figure 1: Example of Hierarchical Configuration. tx: transaction

¶

¶

¶

 +---------------+

 | Orchestrator |

 +---------------+

 | tx-1

 v

 +---------------+

 | Controller |

 +---------------+

 | tx-2 | tx-3

 v v

 +-----+ +-----+

 | NE1 | | NE2 |

 +-----+ +-----+

A server considers as a Parent Transaction a transaction that

modifies its configuration. On Figure 1, tx-1 is a Parent

Transaction for the Controller.

A client considers as a Child Transaction the modification of a

server configuration. On Figure 1, tx-2 and tx-3 are Child

Transactions for the Controller.

If the set-tx-id feature is enabled (see open issue in Section 9.1),

the client can specify its own transaction ID when sending the

configuration ID for the server. In that case, the Controller in

Figure 1 could use the same transaction-id for both tx-2 and tx-3

and save a single Child Transaction ID for that commit. Otherwise,

the server is the one generating the ID for the transaction between

the client and the server. If the client has to configure several

servers, for instance to enable a network service, then each of the

configured servers might return a different ID. Therefore, for a

configuration modification on the client might be implemented via

several Child Transactions and thus might have several Child

Transaction IDs.

Our proposed solution is to store, on the server, a mapping between

the existing local commit id and the Parent and Child Transactions

related to that local configuration change. The mapping is read only

and populated by the server at configuration time as follows:

Parent Transaction: If the set-tx-id feature is available (see

Section 9.1), the server MUST accept a transaction-ID and a

client ID from client supporting configuration tracing. The

server MUST store both entries as respectively Parent Transaction

ID and Client ID, associated to the local configuration ID. If

the set-tx-id feature is not available, the server MUST accept

the client ID, generate a transaction ID, save both the

transaction ID as Parent Transaction ID and the Client ID as

Client ID, and send back the transaction ID to the client. If the

client does not support configuration tracing, none of these

entries are populated. In Figure 1, for the Controller, the

Parent Transaction ID is the ID of tx-1.

Child Transaction: If the set-tx-id feature is available (see

Section 9.1), when a client has to configure servers in response

to a local configuration change, then it MUST generate a

Transaction ID, send it along with its ID to the configured

servers, and save it as a Child Transaction ID. If the set-tx-id

feature is not available, it MUST sent its own ID with the

configuration, receive back the transaction ID from each server,

and save all of them as Child Transaction ID. In Figure 1, for

the Controller, the Child Transaction IDs are the IDs of tx-2 and

tx-3.

¶

¶

¶

¶

*

¶

*

¶

The two cases above are not mutually exclusive. A Controller can be

configured by an Orchestrator and configure network equipment in

turn, as shown in Figure 1. In that case, both the Parent

Transaction ID, shared with the Orchestrator and the Child

Transaction IDs, shared with the network equipments, are stored in

the Controller. They are both associated to the corresponding

configuration commit in the Controller.

It is technically possible that several clients push configuration

to the candidate configuration datastore and only one of them

commits the changes to the running configuration datastore. From the

running configuration datastore perspective, which is the effective

one, there is a single modification, but caused by several clients,

which means that this modification should have several Parent

Transaction ID. Although, this case is technically possible, it is a

bad practice. We won’t cover it in this document. In other terms, we

assume that a given configuration modification on a server is caused

by a single Parent Transaction, and thus has a single corresponding

Parent Transaction ID.

4.4. Using the YANG module

The YANG module defined below enables tracing a configuration change

in a Network Equipment back to its origin, for instance a service

request in an orchestrator. To do so, the Anomaly Detection System

(ADS) should have for each NMS ID (as stored in client-id), access

to some credentials enabling read access to the model. It should as

well have access to the network equipment in which an issue is

detected.

¶

¶

¶

Figure 2: Example of Configuration Tracing. tx: transaction, P: parent,

C: child. The number between square brackets refer to steps in the

listing below.

The steps for a software to trace a configuration modification in a

Network Equipment back to a service request are illustrated in

Figure 2. They are detailed below.

The Anomaly Detection System (ADS) identifies the commit id

that created an issue, for instance by looking for the last

commit-id occuring before the issue was detected. The ADS

queries the NE for the Parent Transaction ID and client id

associated to the commit-id.

The ADS receives the Parent Transaction ID. In Figure 2, that

step would recieve the id of tx-2 and the id of the Controller

as a result. If they are no results, or no associated Parent

Transaction ID, the change was not done by a client compatible

with the present draft, and the investigation stops here.

The ADS queries the client identified by the client-id found at

the previous step, looking for a match of the Parent

Transaction ID from the previous step with a Child Transaction

ID in the client version of the YANG model. In Figure 2, for

that step, the software would look for the id of tx-2 in the

Child Transaction IDs stored in the Controller.

 +---------------+

 .----------------[5]match C tx-1------------>| |

 | | Orchestrator |

 | ----------------[6]commit-id---------------| |

 | | +---------------+

 | | | tx-1

 | | v

 | | +---------------+

 | | .-----------[3] match C tx-2---------->| |

 | | | | Controller |

 | | | .-----------[4] P-tx-id tx-1---------| |

 | | | | +---------------+

 | | | | | tx-2

 | v | v v

 +-----------+ +----+

 | Anomaly |--[1] match commit-id before time t-->| |

 | Detection | | NE |

 | System |<--------- [2] P-tx-id tx-2 ----------| |

 +----------+ +----+

¶

1.

¶

2.

¶

3.

¶

From that query, the ADS knows the local-commit-id on the

client (Controller in our case). Since the local-commit-id is

associated to a Parent Transaction ID, namely the id of tx-1,

the ADS continues the investigation. The client to query is

identified by the client-id, in our case the Orchestrator.

The ADS queries the Orchestrator, trying to find a match for

the Id of tx-1 as a Child Transaction ID.

Finally, the ADS receives the commit-id from the Orchestrator

that ultimately caused the issue in the NE. Since there is no

associated Parent Transaction ID, the investigation stops here.

The modification associated to the commit-id, for instance a

service request, is now available for further manual or

automated analysis, such as analyzing the root cause of the

issue.

Note that step 5 and 6 are actually a repetition of step 3 and 4.

The general algorithm is to continue looking for a client until no

more client (no more Parent Transaction ID) can be found in the

current element.

5. YANG module

We present in this section the YANG module for modelling the

information about the configuration modifications.

5.1. Overview

The tree representation [RFC8340] of our YANG module is depicted in

Figure 3

Figure 3: Tree representation of ietf-external-transaction-id YANG

module

The local-commit-id represents the local id of the configuration

changes. It can be used to retrieve the local configuration changes

that happened during that transaction.

4.

¶

5.

¶

6.

¶

¶

¶

¶

module: ietf-external-transaction-id

 +--ro external-transactions-id

 +--ro configuration-change* [local-commit-id]

 +--ro local-commit-id string

 +--ro timestamp? yang:date-and-time

 +--ro parent-transaction-id? ietf-netconf-txid:etag-t

 +--ro client-id string

 +--ro child-transaction-id* ietf-netconf-txid:etag-t

¶

The Parent Transaction ID should be present when the server is

configured by a client supporting the external transaction ID. In

that case, the client-id is mandatory. The value of both fields are

sent by the client whenever it sends the configuration that trigger

the changes associated to the local-commit-id.

The Child Transaction ID should be present when the current

configuration change leads to the configuration of other devices. In

that case, the Child Transaction ID should be generated by the

server (and unique among other Child Transaction ID fields generated

on this server), sent to the configured devices and saved in that

field. If the configured server do not support having a forced

transaction id, then the transaction IDs resulting of the

configuration of the servers must be stored in that list.

Even if this document focuses only on NETCONF, the use cases defined

in Section 3 are not specific to NETCONF and the mechanism described

in this document could be adapted to other configuration mechanisms.

For instance, a configuration modification pushed via CLI can be

identified via a label. As such cases are difficult to standardize,

we won’t cover them in this document. However, our model could be

extended to support such mechanism for instance by using a

configuration label instead of the Parent Transaction ID.

¶

¶

¶

5.2. YANG module ietf-external-transaction-id

<CODE BEGINS> file "ietf-external-transaction-id@2021-11-03.yang"

module ietf-external-transaction-id {

 yang-version 1.1;

 namespace

 "urn:ietf:params:xml:ns:yang:ietf-external-transaction-id";

 prefix ext-txid;

 import ietf-yang-types {

 prefix yang;

 reference

 "RFC 6991: Common YANG Data Types, Section 3";

 }

 import ietf-netconf-txid {

 prefix ietf-netconf-txid;

 reference

 "draft-lindblad-netconf-transaction-id:

 Transaction ID Mechanism for NETCONF";

 }

 organization

 "IETF OPSAWG Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Author: Benoit Claise <mailto:benoit.claise@huawei.com>

 Author: Jean Quilbeuf <mailto:jean.quilbeuf@huawei.com>";

 description

 "This module enables tracing of configuration changes in a

 network for the sake of automated correlation between

 configuration changes and the external request that triggered

 that change.

 The module stores the identifier of the parent transaction

 that triggered the change in a device, and the child

 transaction ID when the local device originates in its turn a

 transaction.

 Copyright (c) 2022 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Revised BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see the

 RFC itself for full legal notices. ";

 revision 2022-10-20 {

 description

 "Initial revision";

 reference

 "RFC xxxx: Title to be completed";

 }

 container external-transactions-id {

 config false;

 description

 "Contains the IDs of configuration transactions that are

 external to the device.";

 list configuration-change {

 key "local-commit-id";

 description

 "List of configuration changes, identified by their

 local-commit-id";

 leaf local-commit-id {

 type string;

 description

 "Stores the identifier as saved by the server. Can be used

 to retrieve the corresponding changes using the server

 mechanism if available.";

 }

 leaf timestamp {

 type yang:date-and-time;

 description

 "A timestamp that can be used to further filter change

 events.";

 }

 leaf parent-transaction-id {

 type ietf-netconf-txid:etag-t;

 description

 "External transaction ID, sent by the client, corresponding

 to a change initiated by an external entity (e.g.,

 controller, orchestrator). There should be a corresponding

 entry on that external entity as a child-transaction-id

 that maps to the actual configuration commit that

 triggered the configuration of this server.

 This data node is present only when the configuration was

 pushed by a compatible system.";

 }

 leaf client-id {

 when '../parent-transaction-id';

 type string;

 mandatory true;

 description

 "ID of the client that originated the modification, to

 further query information about the corresponding

 change.";

 }

 leaf-list child-transaction-id {

 type ietf-netconf-txid:etag-t;

 description

 "Transaction ID transmitted to other devices

 configured following the configuration change

 corresponding to local-commit-id.";

 }

 }

 }

}

<CODE ENDS>

¶

[I-D.lindblad-netconf-transaction-id]

[RFC2119]

[RFC6241]

6. Security Considerations

7. IANA Considerations

This document includes no request to IANA.

8. Contributors

9. Open Issues / TODO

Evaluate risk of collision between transaction ids in the Child

Transaction ID. Example scenario: 1) client configures server 1

and server 2 for commit-id (client) 1 the Child Transaction IDs

are A (server 1) B (server 2) 2) client configures server 1 and

server 2 for commit-id (client) 2 the Child Transaction IDs are B

(server 1) C (server 2) 3) the last configuration of server 1

causes an issue, when looking for Child Transaction id B, it's

not clear whether the issue comes from commit 1 or commit 2 in

the client

Indicate what to do with O-RAN apps, since each of them might be

seen as a different client with a different client-id.

9.1. Possibility of setting the transaction Id from the client

In the -00 version of [I-D.lindblad-netconf-transaction-id], there

is the possibility for the client to set the transaction id when

sending the configuration to the server. This feature has been

removed in subsequent versions. In this draft, we call this feature

set-tx-id. Such a feature would simplify the present draft,

therefore we try to present two versions, one with the feature set-

tx-id available and one without.

10. Normative References

Lindblad, J., "Transaction ID Mechanism for NETCONF",

Work in Progress, Internet-Draft, draft-lindblad-netconf-

transaction-id-02, 8 June 2022, <https://

datatracker.ietf.org/doc/html/draft-lindblad-netconf-

transaction-id-02>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

¶

*

¶

*

¶

¶

https://datatracker.ietf.org/doc/html/draft-lindblad-netconf-transaction-id-02
https://datatracker.ietf.org/doc/html/draft-lindblad-netconf-transaction-id-02
https://datatracker.ietf.org/doc/html/draft-lindblad-netconf-transaction-id-02
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[RFC8340]

[I-D.ietf-opsawg-service-assurance-architecture]

[RFC8040]

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",

BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,

<https://www.rfc-editor.org/info/rfc8340>.

11. Informative References

Claise, B., Quilbeuf, J., Lopez, D., Voyer, D., and T.

Arumugam, "Service Assurance for Intent-based Networking

Architecture", Work in Progress, Internet-Draft, draft-

ietf-opsawg-service-assurance-architecture-13, 3 January

2023, <https://datatracker.ietf.org/doc/html/draft-ietf-

opsawg-service-assurance-architecture-13>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Appendix A. Changes between revisions

00 -> 01

Define Parent and Child Transaction

Context for the "local-commit-id" concept

Feedback from Med, both in text and YANG module

Appendix B. Tracing configuration changes

Acknowledgements

The authors would like to thank Mohamed Boucadair for his reviews

and propositions.

Authors' Addresses

Jean Quilbeuf

Huawei

Email: jean.quilbeuf@huawei.com

Benoit Claise

¶

* ¶

* ¶

* ¶

¶

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8340
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-service-assurance-architecture-13
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-service-assurance-architecture-13
https://www.rfc-editor.org/info/rfc8040
mailto:jean.quilbeuf@huawei.com

Huawei

Email: benoit.claise@huawei.com

Thomas Graf

Swisscom

Binzring 17

CH-8045 Zurich

Switzerland

Email: thomas.graf@swisscom.com

Diego R. Lopez

Telefonica I+D

Don Ramon de la Cruz, 82

Madrid 28006

Spain

Email: diego.r.lopez@telefonica.com

Qiong Sun

China Telecom

Email: sunqiong@chinatelecom.cn

mailto:benoit.claise@huawei.com
mailto:thomas.graf@swisscom.com
mailto:diego.r.lopez@telefonica.com
mailto:sunqiong@chinatelecom.cn

	External Transaction ID for Configuration Tracing
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Use cases
	3.1. Configuration Mistakes
	3.2. Concurrent NMS Configuration
	3.3. Conflicting Intents
	3.4. Not a use case: Onboarding

	4. Relying on Transaction ID to Trace Configuration Modifications
	4.1. Existing configuration metadata on device
	4.2. Client ID
	4.3. Instantiating the YANG module
	4.4. Using the YANG module

	5. YANG module
	5.1. Overview
	5.2. YANG module ietf-external-transaction-id

	6. Security Considerations
	7. IANA Considerations
	8. Contributors
	9. Open Issues / TODO
	9.1. Possibility of setting the transaction Id from the client

	10. Normative References
	11. Informative References
	Appendix A. Changes between revisions
	Appendix B. Tracing configuration changes
	Acknowledgements
	Authors' Addresses

