
IPv6 maintenance Working Group (6man) H. Rafiee
INTERNET-DRAFT C. Meinel
Updates RFC 3971 Hasso Plattner Institute
(if approved)
Intended status: Proposed Standard
Expires: January 15, 2014 July 15, 2013

A Simple Secure Addressing Scheme for IPv6 AutoConfiguration
(SSAS)

<draft-rafiee-6man-ssas-05.txt>

Abstract

 The default method for IPv6 address generation uses an
 Organizationally Unique Identifier (OUI) assigned by the IEEE
 Standards Association and an Extension Identifier assigned to the
 hardware manufacturer [1] (section 2.5.1 RFC-4291) [RFC4291]. This
 fact thus means that a node will always have the same Interface ID
 (IID) whenever it connects to a new network. Because the node's IP
 address does not change, the node will be vulnerable to privacy
 related attacks. Currently this problem is addressed by the use of
 two mechanisms that do not make use of the MAC address, or other
 unique values that can be used for ID generation, for randomizing the
 IID; Cryptographically Generated Addresses (CGA) [RFC3972] and
 Privacy Extension [RFC4941]. The problem with the former approach is
 the computational cost involved for the IID generation and in the
 verification process. The problem with the latter approach is that it
 lacks necessary security mechanisms and provides the node with only
 partial protection against privacy related attacks. This document
 proposes the use of a new algorithm for use in the generation of the
 IID while, at the same time, securing the node against some types of
 attack, like IP spoofing. These attacks are prevented by the addition
 of a signature to messages sent over the network and by finding a
 binding with the nodes' IP address and its public key. The use of
 theResource Public Key Infrastructure (RPKI), introduced in this
 document, is based on the centralized version explained in RFC 6494
 and RFC 6495.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute working
 documents as Internet-Drafts. The list of current Internet-Drafts is
 at http://datatracker.ietf.org/drafts/current.

https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/draft-rafiee-6man-ssas-05.txt
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc6494
https://datatracker.ietf.org/doc/html/rfc6495
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current

Rafiee, et al. Expires January 15, 2014 [Page 1]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 15, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved. This document is subject to

BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
 Documents (http://trustee.ietf.org/license-info) in effect on the
 date of publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions used in this document 4
3. Problem Statement . 5
3.1. SSAS Applications . 6
3.1.1. Preventing Attacks 6
3.1.1.1. Replay attack 6
3.1.1.2. IP spoofing 6
3.1.1.3. Denial of Service (DoS) attacks 7
3.1.1.4. Spoofed Redirect Message 7

3.1.2. Nodes with limited resources 7
3.1.3. Other Applications 8

4. Algorithms Overview . 8
4.1. SSAS First Algorithm (SSAS v1) 8
4.1.1. Interface ID (IID) Generation 8
4.1.2. Signature Generation 9
4.1.3. Generation of NDP Messages 10
4.1.3.1. SSAS signature data field 10

4.1.4. SSAS v1 verification process 11
4.2. SSAS Second Algorithm (SSAS v2) 12
4.2.1. Interface ID (IID) Generation 13
4.2.2. SSAS v2 verification process 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

4.3. Resource Public key Infrastructure (RPKI) 13
4.3.1. Generation of RPK and SPK 14

 4.3.2. Process of RPK and SPK. 15

Rafiee, et al. Expires January 15, 2014 [Page 2]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

5. Security Considerations 16
6. IANA Considerations . 16
7. Conclusions . 17
8. References . 17
8.1. Normative . 17
8.2. Informative . 18

 Authors' Addresses . 19

Rafiee, et al. Expires January 15, 2014 [Page 3]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

1. Introduction

 IPv6 addresses consist of two parts; the subnet prefix, which is the
 64 leftmost bits of the IPv6 address, and the Interface ID (IID),
 which is the 64 rightmost bits of the IPv6 address. The IEEE
 Standards Association [1] (section 2.5.1 RFC-4291) [RFC4291] offered
 a standard for the generation of IPv6 Interface IDs (IID) called the
 Extended Unique Identifier (EUI-64). EUI-64s are generated by the
 concatenation of an Organizationally Unique Identifier (OUI),
 assigned by the IEEE Registration Authority (IEEE RA), with the
 Extension Identifier assigned by the hardware manufacturer. For
 example, if a manufacturer's OUI-36 hexadecimal value is
 00-5A-D1-02-3, and the manufacture hexadecimal value, for the
 Extension Identifier for a given component is 4-42-61-71, then the
 EUI-64 value generated from these two numbers will be
 00-5A-D1-02-34-42-61-71. If the OUI is 24 bits and the extension
 identifier is also 24 bits (this constitutes the MAC address), then
 to form the 64-bit EUI address, the OUI portion of the MAC address is
 inserted into the leftmost 24 bits of the EUI-64 8 byte field and the
 Extension Identifier is inserted into the rightmost 24 bits of the
 EUI-64 8 byte field. A value of 0xFFFE is then inserted between these
 two 24-bit items. IEEE has chosen 0xFFFE as a reserved value which
 can only appear in an EUI-64 which is generated from an EUI-48 MAC
 address. Bit 7 (u bit) in the OUI portion of the address is used to
 indicate either global or local uniqueness. Globally unique addresses
 assigned by the IEEE set this bit to zero, by default,indicating
 global uniqueness.The bit is set to 1 for locally created addresses,
 such as those used for virtual interfaces or a MAC address manually
 configured by an administrator.

 There are currently some mechanisms used to generate a randomized IID
 that do not make use of a MAC address; CGA [RFC3972], Privacy
 Extension (generation of temporary addresses) [RFC4941], etc. In this
 document we discuss the problem inherent with using the current
 mechanisms and then we explain our solution to the problem, which is
 to randomize the IID observing privacy, while, at the same time,
 providing security to Neighbor Discovery Protocol (NDP) messages of
 nodes in the IP layer. DHCPv6 [RFC3315] can also benefit from this
 approach for the generation of a random IID or for authentication
 purposes.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc3315

 document are to be interpreted as described in RFC-2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be

Rafiee, et al. Expires January 15, 2014 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 interpreted as carrying RFC-2119 significance.

 In this document the use of || indicates the concatenation of the
 values on either side of the sign.

3. Problem Statement

 The drawback to using IIDs that do not change over time is one of
 privacy. The node will generate the same IID whenever it joins a new
 network thus making it easy for an attacker to track that node when
 it moves to different networks.

 The main problem with the privacy extension mechanism, when using the
 first approach as explained in section 3.2.1 RFC-4941 [RFC4941],
 i.e., using stable storage, is the lack of a provision for the use of
 a security mechanism and also the need to generate public addresses
 based on MAC addresses. The Privacy Extension RFC partially prevents
 attacks related to privacy issues, but it cannot prevent attacks
 related to security issues. For example, it cannot prevent IP
 spoofing attacks and it cannot provide proof of IP address ownership
 for a node. If one wants to use a secure method, with the privacy
 extension, then one needs to use CGA. The problem with using CGA is
 in the computational overhead necessary to compute it when higher sec
 values are used and the time that is needed to perform the
 verification process. This time is based on the reverse of the steps
 required for the CGA regeneration during the verification process
 along with the additional time needed for signature verification.

 The first problem with CGA is the apparent lack of a defense against
 Denial of Service (DoS) types of attack that are performed against
 verifier nodes. In the CGA RFC there is no explanation as to how to
 prevent these types of attacks. This means that an attacker can
 overwhelm the verifier node with false CGA values thus rendering it
 unable to process further messages.This document also proposes a
 solution to this type of attack. The other problem with CGA sec value
 higher than 0 is unnecessary making busy the CPU and other resources
 in a node for unlimited period of time. It is because there is no
 guarantee that the 16 by sec value equal to zero condition will ever
 be met. So the use of the CGA algorithm, which is compute intensive,
 is thus not ideal for use with nodes having limited resources or with
 nodes wanting to change their IID frequently for the purpose of
 protecting their privacy.

 In order to overcome the problem with using the other mechanisms, the
 time needed for IP address generation and verification needs to be
 reduced and avoid unnecessary usage of CPU while at the same not
 scarifying user's security. We propose the use of the SSAS algorithm,

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc4941

 along with the SSAS signature, to provide a node with the protection
 it needs to protect it against IP spoofing and other spoofing types
 of attack in the IP layer. Our experimental results [2] show that
 SSAS is more secure and faster than CGA when using a sec value of 0

Rafiee, et al. Expires January 15, 2014 [Page 5]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 (uses 62 bits (when using first SSAS algorithm) while CGA uses 59
 bits) and much faster than CGA when using a sec value of 1. The
 security of SSAS, when using second algorithm, is about the same as
 the security of the whole public key while in CGA it depends on the
 sec value. It is not also ideal to use CGA with sec value higher than
 1 when using the current hardware resources. This is because it will
 take hours to years to generate an IP address.

 Note: It is not the intent of this document to obsolete CGA but to
 propose a simpler, faster and high security addressing mechanism for
 use in providing nodes with network layer privacy and security. This
 is accomplished by providing a node with two algorithms to be used to
 randomize the IID while at the same time providing nodes protection
 against the types of attack explained below.

3.1. SSAS Applications

3.1.1. Preventing Attacks

 The following sections detail some types of attack that SSAS can
 prevent.

3.1.1.1. Replay attack

 In this type of attack, an attacker will sniff the Neighbor Discovery
 Protocol enabled network (NDP) messages to find, and then copy, a
 legitimate signature and public key to his own NDP message which he
 will then send to the original sender. But with the use of the SSAS
 algorithm (Including the timestamp in the signature) and using RPKI
 introduced in this document, this can be prevented. The use of a
 timestamp works because the timestamp will be valid for only a short
 period of time. (this accounts for clock skews.)

3.1.1.2. IP spoofing

 This is a well-known type of attack in NDP. This type of attack is
 used against the Duplicate Address Detection process. In this attack,
 when a node joins the network and generates a new IP address, the
 node sends a Neighbor Solicitation (NS) message to check for address
 collisions in the network. The attacker, in this scenario, spoofs the
 IP address and responds back to the node with a Neighbor
 Advertisement (NA) message claiming ownership of this IP address.

 While the SSAS algorithm does allow this node to verify other nodes
 in the network, an attacker will not have the private key associated
 with this node which is needed for SSAS signature generation, so the

Rafiee, et al. Expires January 15, 2014 [Page 6]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 verification process will fail.

3.1.1.3. Denial of Service (DoS) attacks

 An attacker might send many NDP messages, using invalid signatures,
 to a victim's node which then forces the node to busy itself with the
 verification process. To mitigate this attack, a node SHOULD set a
 limit on the number of messages (x) that should be verified within a
 certain period of time. Implementations MUST provide a conservative
 default and SHOULD provide a means for detecting when this limit is
 reached.

3.1.1.4. Spoofed Redirect Message

 Redirect messages, imitating the end host needing redirection, can be
 sent from any router on the same broadcast segment. The attacker uses
 the link-local address of the current first-hop router in order to
 send a Redirect message to a legitimate node. Since that node
 identifies the message as coming from its first hop router, by use of
 the link-local address, it accepts the Redirect. The Redirect will
 remain in effect as long as the attacker responds to the Neighbor
 Unreachability Detection probes sent to the link-layer address. To
 preclude this from occurring, the address ownership of the first-hop
 router should be verified. The use of the SSAS verification process
 along with RPKI will prevent such an attack.

3.1.2. Nodes with limited resources

 SSAS can be used in nodes where limited computational resources are
 available. It can provide protection to these nodes against the types
 of attack stated above. Sensor networks are a prime example of nodes
 with limited resources (such as battery, CPU, and etc); see RFC-4919
 [RFC4919] for use in IPv6 networks. Because currently, as explained
 in section 4. RFC-6775, the generation of the IID is based on EUI-64
 which makes these nodes vulnerable to privacy and security attacks.
 One of these types of attack can occur during the Duplicate Address
 Detection (DAD) process.

 Another example for the use of SSAS would be in mobile networks
 during the generation of IP addresses, as explained in section 4.4

RFC-6275 [RFC6275]. The current problem with the addressing mechanism
 in a mobile node is that no privacy is observed when a node moves to
 another network while usually keeping its Home Address. If there were
 a fast and secure mechanism available, then it would be possible to

https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc6275
https://datatracker.ietf.org/doc/html/rfc6275

 set this Home Address and change it and re-register it to the Home
 network. Another possible use for SSAS in mobile nodes could be as a
 security mechanism during the configuration of Care of Address (CoA);

Rafiee, et al. Expires January 15, 2014 [Page 7]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 see section 3. RFC-5213 [RFC5213]. In that RFC, home proxy plays the
 role of a home agent for mobile nodes and mobile nodes set their CoA
 by the use of either stateful or stateless autoconfiguration.
 Currently they MUST use IPsec in order to secure this process.

Section 4 of that RFC discusses the possibility of using another
 algorithm in order to secure mobile nodes.

3.1.3. Other Applications

 With the wide usage of IP addresses in different types of devices and
 by the use of autoconfiguration mechanisms to configure these IP
 addresses, the need for the use of a security algorithm is increased.
 One type of application would for use in vehicular networks or car by
 car networks. There is currently some work in progress that makes use
 of Neighbor Discovery. SSAS could also be a solution for enabling
 fast protection against ND attacks.

4. Algorithms Overview

 As explained earlier, one of the problems with using the current IID
 generation approach is the compute intensive processing that is
 needed for the IID algorithm generation. Another concern is for the
 lack of security. Since we assume that a node will need to generate
 and keep its address for a short period of time, we have tried to
 keep the IID generation process to a minimum. We have also tried to
 remain within the confines of NDP protocol. Here we offer two
 algorithms. The first algorithm is used where the purpose is a fast
 algorithm with the security higher than CGA sec value 0. The second
 algorithm addresses the problem with the security level and tries to
 use the security of the whole public key.

4.1. SSAS First Algorithm (SSAS v1)

4.1.1. Interface ID (IID) Generation

 To generate the IID a node will need to execute the following steps.

 1. Generate key pairs (public/private keys) using ECC (RFC 6090) or
 other available algorithms. ECC is the default algorithm, but any
 algorithm capable of generating a small key size in a short amount of
 time is viable. It is best to have the key pairs generated, on the
 fly, during the start-up phase of the algorithm generation. These

https://datatracker.ietf.org/doc/html/rfc5213
https://datatracker.ietf.org/doc/html/rfc5213
https://datatracker.ietf.org/doc/html/rfc6090

 keys SHOULD be valid for only a certain period of time which depends
 on network policy. When the time expires for the use of these key
 pairs, the node will generate new key pairs. It then uses this new

Rafiee, et al. Expires January 15, 2014 [Page 8]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 value for the generation of the IP address and signature. Comparing
 the use of ECC to that of RSA shows that an ECC with a 192 bit key is
 equivalent to a RSA with a 7680 bit key (according to US National
 Security Agency) In this case the packet size would be decreased by a
 factor 11 times smaller than that when using RSA.

 2. Divide the public key array of bytes into two half byte arrays
 (see figure 1). Obtain the first 4 bytes from the first half byte
 array and call it the partial IID1. Obtain the first 4 bytes of the
 second half byte array and call this the partial IID2.

 3. Concatenate partial IID1 with partial IID2 and call this the IID.
 Set bits u and g to one.

 4. Concatenate the IID with the local subnet prefix to set the local
 IP address

 5. Concatenate the IID with the router subnet prefix (Global subnet
 prefix), obtained from the Router Advertisement (RA) message, and set
 it as a tentative public IP address. This IP address will become
 permanent after Duplicate Address Detection (DAD) processing. (for
 more information about DAD refer to section 4.1.3.)

 +-------------+---------+ +-------------+---------+
 |partial IID1 | | |Partial IID2 | |
 +-------------+ | +-------------+ |
 | | | |
 +-----------------------+ +-----------------------+
 Figure 1 Public key divided into two halves

4.1.2. Signature Generation

 The SSAS signature is added to NDP messages in order to protect them
 from IP spoofing and spoofing types of attack. SSAS will provide
 proof of IP address ownership, as does the CGA generation algorithm,
 but by using fewer steps. To generate the SSAS signature, the node
 needs to execute the following steps:

 1. Concatenate the timestamp with the MAC address, collision count,
 algorithm type and the global (public) IP address. (see figure 2)

+---------+-----------+---------------+--------------+
|timestamp|Mac address|Collision Count|Algorithm type|
| 8 bytes | 6 bytes | 3 bits | 1 byte |
+---------------------+---------------+--------------+

|Global IP address | Other Options |
| 16 bytes | variable |
+---------------------+---------------+

Rafiee, et al. Expires January 15, 2014 [Page 9]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 Figure 2 SSAS Signature format

 2. Sign the resulting value from step 1, using the ECC private key,
 and call the resulting output the SSAS signature.

 If NDP messages contain other data that must be protected, such as
 important routing information, then this data SHOULD also be included
 in the signature. The signature is designed for the inclusion of any
 data needing protection. If there is no data that needs protection,
 then the signature will only contain the timestamp, MAC address,
 Collision count and Global IP address (Router subnet prefix plus
 IID).

4.1.3. Generation of NDP Messages

 After a node generates its IP address, it should then process
 Duplicate Address Detection in order to avoid address collisions in
 the network. In order to do this the node needs to generate a
 Neighbor Solicitation (NS) message. The SSAS signature is added to
 the ICMPv6 options of NS messages. The SSAS signature data field is
 an extended version of the standard format of the RSA signature
 option of SeND [RFC3971]. The timestamp option is the same as that
 used with SEND. In the SSAS signature, the data field contains the
 following items: type, length, reserved, Other Len, algorithm type,
 collision count, subnet prefix, other option and padding.

4.1.3.1. SSAS signature data field

+------+-------+------------+---------+
| Type |Length | Reserved |Other len|
|1 byte|1 byte | 2 bytes | 1 byte |
+----------+---------+------+---------+
Algorithm	Collision	Subnet	Other
type	count	prefix	Options
1 byte	3 bits	8bytes	
+-------------------------------------+			
SSAS Signature			
+-------------------------------------+			
padding			
+-------------------------------------+
 Figure 3 NDP Message Format with SSAS Signature Data Field

https://datatracker.ietf.org/doc/html/rfc3971

 - Type: This option is set to 15. This is the sequential number used

Rafiee, et al. Expires January 15, 2014 [Page 10]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 in SeND to indicate a SSAS data field.

 - Length: The length of the Signature Data field, including the Type,
 Length, Reserved, Algorithm type, Signature and padding, must be a
 multiple of eight.

 - Reserved: A 2 byte field reserved for future use. The value must be
 initialized to zero by the sender and should be ignored by the
 receiver.

 - Other Len: The length of other options in multiples of eight. The
 length of this field is 1 byte.

 - algorithm type: The algorithm used to generate key pairs and sign
 the message. The length of this field is 1 byte. For ECC, this value
 is 0. Future algorithms will start at one and increase from there.

 - Collision count: When a collision occurs during the DAD, the node
 will increment this value and store it in a file to be included in
 the sent packets for as long as the current IP address is valid. This
 value indicates to the node where it needs to start its check from,
 i.e., the first or second or third bytes from the start of the half
 byte array of the public key.

 - Subnet Prefix: This is the router subnet prefix.

 - Other Options. This variable-length field contains important data
 that needs to be protected in the packet. The padding is used to
 insure that the field is a multiple of eight in length.

 - Padding. A variable-length field containing padding to insure that
 the entire signature field is a multiple of eight in length. It thus
 contains the number of blanks needed to make the entire signature
 field end on a multiple of eight.

 All NDP messages (except RS messages) SHOULD contain the SSAS
 signature data field which allows receivers to verify senders. If a
 node receives a solicited NA message in response to its NS message
 showing that another node claims to own this address, then, after a
 successful verification process, this node increments the collision
 count by one and this value is used as explained in the "Collision
 count" item above. It will start from that section of the public key
 for the generation of a new IP address. If the node receives the same
 claim three times in a row, then it will consider it as an attack and
 it will use that IP address.

 This document proposes an update to the RFC 3971 in order to include
 the the SSAS signature data field as an additional field to SeND to
 be used in place of RSA signature.

https://datatracker.ietf.org/doc/html/rfc3971

4.1.4. SSAS v1 verification process

Rafiee, et al. Expires January 15, 2014 [Page 11]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 A node's verification process should start when it receives NDP
 messages.

 Following are the steps used in the verification process:

 1. Obtain the timestamp from the NDP message and call this value t1.

 2. Obtain the timestamp from the node's system, convert it to UTC,
 and call this value t2.

 3. If (t2- x) < = t1 < = (t2 + x) go to step 4. Otherwise, the
 message SHOULD be discarded without further processing. The value of
 x is dependent on network delays and network policy. The
 implementations MUST choose a flexible value for x based on the delay
 in this network.

 4. Obtain the public key from the CN node or by checking its own
 neighboring cache. (see section 4.3)

 5. Compare this to its own public key. If it is not the same, go to
 the next step. Otherwise, the message should be discarded without
 further processing. (This step should be skipped when the node uses
 the CN node to obtain the other nodes' public key.)

 6. Divide the public key into two arrays of byes. Based on the
 collision count, start from the first, second or third bytes of
 public key and select 4 bytes from each half byte array and call them
 partial IID 1 and 2. Concatenate partial IID 1 with partial IID2 and
 set bits u and g to 1. Obtain the node's source IP address. Compare
 this value with the node's IID source IP. If it is the same, go to
 the next step. Otherwise, discard the message without further
 processing.

 7. Concatenate the timestamp with the MAC address, algorithm type,
 collision count, sender's Global IP address (subnet prefix and IID),
 and other options (if any) and call this entity the plain message.

 8. Obtain the SSAS signature from the SSAS signature data field.
 Obtain the Algorithm type from the message.

 9. Verify the Signature using the public key and then enter the plain
 message and the SSAS signature as an input to the verification
 function. If the verification process is successful, process the
 message. Otherwise, the message should be discarded without further
 processing.

4.2. SSAS Second Algorithm (SSAS v2)

Rafiee, et al. Expires January 15, 2014 [Page 12]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

4.2.1. Interface ID (IID) Generation

 1. The first step is the same as what is explained in section 4.1.1.
 of this document and call the public key Pk

 2. execute a function on the public key.

 R= F_x(Pk)

 F() is the root function which depends on the size of public key. x
 is the root value. If ECC or Another short key size algorithm is
 used, then it will be the square root (x=2). R is the IID obtained
 from the public key. The value is comprised of a 64 bit floating
 point number obtained from the leftmost bits that includes the
 numbers before and after the digits in the floating point
 representation. then the bits u and g are set to one and this will be
 IID. The implementations SHOULD use the same way of calculating x for
 the same public key size. This will avoid the need of sending x to
 the verifier node.

 3. Concatenate the IID with the local subnet prefix to set the local
 IP address

 4. Concatenate the IID with the router subnet prefix (Global subnet
 prefix), obtained from the RA message, and set it as a tentative
 global IP address. This IP address will become permanent after
 Duplicate Address Detection (DAD) processing.

4.2.2. SSAS v2 verification process

 The first 5 steps of SSAS verification process is the same as the
 first 5 steps explained in section 4.1.4.

 6- Execute F_x(Pk) and compare the resulting value to the nodes' IID
 (bits u and g SHOULD be ignored). If there is a match the message
 SHOULD be processed otherwise it SHOULD be considered as an attack
 and the message SHOULD be discarded without further action.

4.3. Resource Public key Infrastructure (RPKI)

 To verify the authorized router in the local network and to create a
 partial trust within the network, we propose the use of a local
 centralized Resource Public Key Infrastructure (RPKI) which is based
 on the centralized version explained in RFC 6494 and RFC 6495. Figure
 4 depicts the architecture of this new RPKI framework. In this
 framework we propose the use of a Controller Node (CN) whereby

https://datatracker.ietf.org/doc/html/rfc6494
https://datatracker.ietf.org/doc/html/rfc6495

 administrators will be able to manually store, in the database of
 this node, the router's public key and MAC address. We are
 introducing the use of two different NDP messages, Request Public Key

Rafiee, et al. Expires January 15, 2014 [Page 13]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 (RPK) and Send Public Key (SPK), that can be used by nodes to request
 the public key of the router or other nodes, and can be used to send
 from the CN node the public key of the requested node. The CN node
 has a fixed IP address and MAC address in the local link. It is a
 reserved MAC address and IP address which is known to all nodes. One
 possible way to implement CN is to use a new module in routers
 capable of processing these two messages. In this case, one CN node
 could be available in two different local networks when the same
 router is available between these two networks. When a node first
 sends a RPK message, the CN node will add its MAC address and public
 key to its database. This gives other nodes the capability of
 verifying this new node by asking for the public key of this node.
 The CN node maintains this data for as long as it receives NS
 messages from this node. Nodes frequently check neighbor reachability
 and the CN node receives these messages passively. If the CN node
 does not see a message from a node that has an entry in its database,
 then it sends a NS message to that node. If it does not receive a
 response from that node after a few minutes, it removes that node
 from its database. Nodes that are added manually to the CN database
 must be removed manually from the CN database.

4.3.1. Generation of RPK and SPK

 Figure 4 shows the format of these two new NDP messages. The NDP
 message type used for RPK is 140 and for SPK is 141. These are set in
 the ICMPv6 header. There are two new types in these messages: type 16
 and type 17. If a node wants to generate a change to its IP address
 or generate a new one, it sends a type 16 RPK message which indicates
 the use of its MAC address and timestamp signed by its old private
 key. A Type 17 message indicates the use of a node's new public key
 and the signature generated by signing the MAC address and timestamp
 with the node's new private key.

 When a CN node wants to generate the SPK, it adds the requested
 public key to the type 16 section of the message and then includes
 its own public key and generates a signature IID using its own
 private key created from the concatenation of timestamp with its own
 MAC address and the values of type 17.

+--------+---------+---------------------------+
| Type | Length | Reserved |
| 1 byte | 1 byte | 6 bytes |
+--+
| timestamp |
+---------+--------+---------------------------+

| Type=20| Length | public key |
| 1 byte | 1 byte | |
+---------+--------+-----------+---------------+
| Type=21| Length | pubkeylen| CN public |

Rafiee, et al. Expires January 15, 2014 [Page 14]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

| 1 byte | 1 byte | 1 byte | key |
+------------------+---------------------------+
| Algorithm type | Signature II |
| 1 byte | |
+--+
| Padding |
+--+

 SPK message

+--------+---------+---------------------------+
| Type | Length | Reserved |
| 1 byte | 1 byte | 6 bytes |
+--+
| timestamp |
+---------+--------+-------------+-------------+
| Type=20| Length | Algorithm | Signature I |
| 1 byte | 1 byte | type(1 byte)| |
+---------+--------+-------------+-------------+
| Type=21| Length | pubkeylen| new public |
| 1 byte | 1 byte | 1 byte | key |
+------------------+---------------------------+
| Algorithm type | Signature II |
| 1 byte | |
+--+
| Padding |
+--+

 RPK message
Figure 4 Format of Request Public Key (RPK) and Send Public Key (SPK)

4.3.2. Process of RPK and SPK.

 When a new node joins a network, it generates its local IP address
 using the SSAS algorithm and then sends a Router Solicitation message
 to obtain a router advertisement and to generate its global IP
 address. This message does not need to include the SSAS data
 structure. The router responds to the node with a Router
 Advertisement (RA). The new node needs to obtain the public key for
 this router from the CN node. It then generates a RPK. After
 successful verification, the CN node checks whether or not this MAC
 address already exists in its database. If it does, it checks to see
 whether or not the public key is the same as that which is available
 in its database. If it finds a match, it generates a SPK message and
 sends it to the node. If the CN node finds a different public key
 than that of this node, it sends the SPK setting the length of the
 type 16 option to 1 and setting the one byte public key to 1. This

 informs the new node that there is an existing MAC address with a
 different public key. If this node is the owner of the old public key
 that is available in the CN node, it includes its old public key as
 shown in figure 5 and sends a new RPK. Otherwise it considers this an

Rafiee, et al. Expires January 15, 2014 [Page 15]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 attack on his MAC address and sets the one byte of the old public key
 to zero and the length of the type 16 option to one, and sends this
 message. This message causes a flag to be added to the database to
 inform the network administrator that something is wrong in this
 network.

 If the public key and MAC address of the new node are not available
 in the CN, after receiving the RPK message it will add these values
 to its database.

 When the other nodes want to add a new node to their neighboring
 caches, after receiving the neighbor advertisement message, they will
 ask the CN node for the public key of this node. After successful
 verification, they will add the public key, MAC address and IP
 address of this node to their neighboring cache. The next time they
 will not need to ask the CN node for any information to check the
 reachability of the neighboring nodes in their cache. This decreases
 the number of messages exchanged between the CN node and the other
 nodes in this network.

5. Security Considerations

 As a security consideration what one might ask oneself is what are
 the odds of an attacker being able to generate a public key having
 two four sequential bytes (from two different halves of public key)
 that are the same as 62 bits of that in public key If he could, he
 could then generate the signature using his own private key and thus
 break SSAS.

 Mathematically it has been shown that the probability of matching 48
 bits in the public key against 62 bits in the IID is about
 pow(1/2,62) where pow is the power function, 2 is a base and 62 is an
 exponent. in [2] the analysis of SSAS is explained and compared to
 CGA. For CGA sec value 0, the attacker needs to do brute force
 attacks against 59 bits. So SSAS v1 is more secure than CGA sec value
 0. For SSAS v2, the attacker needs to do brute force attacks against
 the whole public key. So the security of that is depends on the
 security of public key algorithm and the key size.

6. IANA Considerations

 This document defines two new algorithm for the generation of an
 Interface ID in IPv6 networks that provides IP layer privacy and

Rafiee, et al. Expires January 15, 2014 [Page 16]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 local link security. It also introduces a new, local RPKI based on
 the centralized RPKI.

7. Conclusions

 Privacy has become a very important issue in recent years. A solution
 for preventing a node from being tracked by an attacker is to change
 the node's IP address frequently and by generating a random IID each
 time a node wants to generate a new IP address. This document
 introduced two new algorithms as a solution for providing privacy by
 randomizing the IID and for providing security with the addition of a
 SSAS signature to the NDP message and finding a binding between the
 public key and the IP address. In SSAS v1, a node directly uses the
 public key for IID generation. This algorithm is faster than CGA with
 sec value higher than 1 and more secure than CGA with sec value 0.In
 SSAS v2, a node uses a root function (depends on the public key) to
 make use of about the whole security of the public key. This will
 increase the security of SSAS to the whole public key while at the
 same time decrease the time require for generation of IID.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4291] Hinden, R., Deering, S., "IP Version 6 Addressing
 Architecture," RFC 4291, February 2006.

 [RFC3972] Aura, T., "Cryptographically Generated Addresses
 (CGA)," RFC 3972, March 2005.

 [RFC4941] Narten, T., Draves, R., Krishnan, S., "Privacy
 Extensions for Stateless Address Autoconfiguration in
 IPv6", RFC 4941, September 2007.

 [RFC3971] Arkko, J., Kempf, J., Zill, B., and Nikander, P.,
 "SEcure Neighbor Discovery (SEND)", RFC 3971, March 2005.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T.,
 Perkins, C., Carney, M. , " Dynamic Host Configuration
 Protocol for IPv6 (DHCPv6)", RFC 3315, July 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3972
https://datatracker.ietf.org/doc/html/rfc4941
https://datatracker.ietf.org/doc/html/rfc3971
https://datatracker.ietf.org/doc/html/rfc3315

 [RFC4919] Kushalnagar, N., Montenegro, G., Schumacher, C.,"
 IPv6 over Low-Power Wireless Personal Area Networks
 (6LoWPANs): Overview, Assumptions, Problem Statement, and

Rafiee, et al. Expires January 15, 2014 [Page 17]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

 Goals", RFC 4919, August 2007.

 [RFC6775] Shelby, Z., Chakrabarti, S., Nordmark, E.,
 Bormann, C. , " Neighbor Discovery Optimization for IPv6
 over Low-Power Wireless Personal Area Networks (6LoWPANs)",

RFC 6775, November 2012.

 [RFC6275] Perkins, C., Johnson, D., Arkko, J., "Mobility
 Support in IPv6", RFC 6275, July 2011.

 [RFC6543] Gundavell, S., "Reserved IPv6 Interface
 Identifier for Proxy Mobile IPv6", RFC 6543, May 2012.

 [RFC6090] McGrew, D., Igoe, K., Salter, M., "Fundamental
 Elliptic Curve Cryptography Algorithms", RFC 6090, February
 2012.

8.2. Informative References

 [1] IEEE Standards Association,
http://standards.ieee.org/develop/regauth/tut/eui64.pdf, 2012

 [2] Rafiee, H., Meinel, C., "'SSAS: a Simple Secure Addressing
 Scheme for IPv6 AutoConfiguration". In Proceedings of the 11th
 IEEE International Conference on Privacy, Security and Trust
 (PST), IEEE Catalog number: CFP1304F-ART, ISBN:
 978-1-4673-5839-2.

https://datatracker.ietf.org/doc/html/rfc4919
https://datatracker.ietf.org/doc/html/rfc6775
https://datatracker.ietf.org/doc/html/rfc6275
https://datatracker.ietf.org/doc/html/rfc6543
https://datatracker.ietf.org/doc/html/rfc6090
http://standards.ieee.org/develop/regauth/tut/eui64.pdf

Rafiee, et al. Expires January 15, 2014 [Page 18]

INTERNET DRAFT SSAS for Autoconfiguration July 15, 2013

Authors' Addresses

 Hosnieh Rafiee
 Hasso-Plattner-Institute
 Prof.-Dr.-Helmert-Str. 2-3
 Potsdam, Germany
 Phone: +49 (0)331-5509-546
 Email: ietf@rozanak.com

 Dr. Christoph Meinel
 (Professor)
 Hasso-Plattner-Institute
 Prof.-Dr.-Helmert-Str. 2-3
 Potsdam, Germany
 Email: meinel@hpi.uni-potsdam.de

Rafiee, et al. Expires January 15, 2014 [Page 19]

