
Workgroup:

More Instant Messaging Interoperability

Internet-Draft:

draft-ralston-mimi-linearized-matrix-00

Published: 24 March 2023

Intended Status: Standards Track

Expires: 25 September 2023

Authors: T. Ralston

The Matrix.org Foundation C.I.C.

M. Hodgson

The Matrix.org Foundation C.I.C.

Linearized Matrix API

Abstract

Matrix is an existing openly specified decentralized secure

communications protocol able to provide a framework for instant

messaging interoperability. Matrix rooms (aka conversations)

currently use a Directed Acyclic Graph (DAG) for persisting events/

messages. Servers broadcast their changes to the DAG to every other

server in order to create new events.

This model provides excellent decentralization characteristics and

conversation history replication, but proves complex when aiming to

use Matrix strictly for interoperability between today's existing

messaging service providers, which often do not persist chat history

serverside, and do not seek to replicate it between servers.

This document explores an API surface for Matrix which optimizes for

ease of interoperability at the expense of decentralized

conversation history at a per-room level. We call this API surface

"Linearized Matrix".

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

turt2live.github.io/ietf-mimi-linearized-matrix/draft-ralston-mimi-

linearized-matrix.html. Status information for this document may be

found at https://datatracker.ietf.org/doc/draft-ralston-mimi-

linearized-matrix/.

Discussion of this document takes place on the More Instant

Messaging Interoperability Working Group mailing list

(mailto:mimi@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/mimi/. Subscribe at https://

www.ietf.org/mailman/listinfo/mimi/.

¶

¶

¶

¶

¶

¶

https://turt2live.github.io/ietf-mimi-linearized-matrix/draft-ralston-mimi-linearized-matrix.html
https://turt2live.github.io/ietf-mimi-linearized-matrix/draft-ralston-mimi-linearized-matrix.html
https://turt2live.github.io/ietf-mimi-linearized-matrix/draft-ralston-mimi-linearized-matrix.html
https://datatracker.ietf.org/doc/draft-ralston-mimi-linearized-matrix/
https://datatracker.ietf.org/doc/draft-ralston-mimi-linearized-matrix/
mailto:mimi@ietf.org
https://mailarchive.ietf.org/arch/browse/mimi/
https://mailarchive.ietf.org/arch/browse/mimi/
https://www.ietf.org/mailman/listinfo/mimi/
https://www.ietf.org/mailman/listinfo/mimi/

Source for this draft and an issue tracker can be found at https://

github.com/turt2live/ietf-mimi-linearized-matrix.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Identifiers

4. Room Architecture

5. Event Signing

6. Membership

7. State Events API

8. Room Events API

9. Room Transfers

10. Other APIs

11. Matrix Room Version

12. Anti-Abuse and Anti-Spam

13. DAG-Compatible Event Structure

¶

¶

¶

¶

¶

¶

¶

https://github.com/turt2live/ietf-mimi-linearized-matrix
https://github.com/turt2live/ietf-mimi-linearized-matrix
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

14. Security Considerations

15. IANA Considerations

16. References

16.1. Normative References

16.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

At a high level, rooms using Linearized Matrix have a single server

which owns that room. The owner can change, but will typically be

the server which created the room. All other servers are known as

participating servers and call the owner server to send events. The

owner server is then responsible for informing all the other servers

of any changes/messages in the room.

Many aspects for how Matrix works as an interoperable messaging

framework is described by [I-D.ralston-mimi-matrix-framework]. This

document replaces the eventual consistency model, federation API,

and DAG-related features of the framework document by presenting

rooms as a single, flat, array of events, without being incompatible

with those same replaced components.

This document does not currently define a transport layer for the

Linearized Matrix API, instead focusing its efforts on the

operational aspects of a room.

2. Conventions and Definitions

This document additionally uses the following definitions:

Owner Server: The server responsible for holding the room

history, accepting new events, etc.

Participant Server: Every other server. Note that a server may

inherit this role even if not (currently) participating in the

room.

TODO: Merge/add definitions from framework to here, such as

"homeserver", "user", etc.

3. Identifiers

TODO: Expand upon this section.

A room ID has the format !localpart:domain, where the localpart is

an opaque string and the domain provides global uniqueness. The

domain does not indicate that the room exists on that server, just

that it was originally created there.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

A user ID has the format @localpart:domain, where the localpart is

again an opaque string and the domain is where the user was created

(the server owns the user account).

4. Room Architecture

As mentioned, rooms over Linearized Matrix have a concept of an

"owning server". Typically the room owner will be the server which

created the room, however ownership can shift as needed. The room

owner is responsible for applying the room version semantics/access

controls and distributing the changes to other applicable servers

(called participant servers).

At an implementation level, it should be possible for an owning

server to use a DAG if it so wishes, however for the protocol

considerations a room has a single flat array to store state changes

and room events.

Room state is the same as non-Linearized Matrix: represented by an

event type and state key tuple which maps to a state event. "Current

state" is simply the most recent instance of each event type and

state key pair in the array.

To send an event into the room, each "participant server" (non-

owner) asks the owner to send it to the room. The owner applies

access controls to the event, following Matrix's existing access

controls (power levels, bans, server_acls etc.) and then adds the

event to the room's array, and sends it out to all participating

servers (including the original sender, for simplicity of

implementation). If the owner would like to send an event, it simply

adds the event to the array (assuming such an action is valid) and

broadcasts it. The owner server MUST follow the access control

semantics defined by the room's current state - it MUST NOT make up

its own rules. For instance, the owning server must only let Alice

invite Bob to a room if Alice has permission to invite, and if

Alice's server sent the invite event.

Each room additionally records which Matrix room version it is using

for access control behaviours, such as Authorization Rules

[MxV10AuthRules]. This is required for when rooms gain a DAG-

compatible server in them. Note that this document introduces new

semantics requiring a new room version.

5. Event Signing

Events are signed by the participant/original server to ensure the

owning server is not spoofing events on behalf of another server.

The exact details for how a server's signing keys are shared to

other servers is left as a transport consideration, however signing

keys are currently expected to be Ed25519 keys.

¶

¶

¶

¶

¶

¶

¶

In the existing Matrix Federation APIs, a PDU [MxV10PDUFormat]

contains an event and has several DAG-specific fields to it. When

using the Linearized Matrix API, we introduce a concept of a Linear

PDU which looks similar to a regular room event, but has all non-

essential fields removed.

[MxContentHashCalculation]

The Linear PDU is then redacted [MxRedaction], canonicalized

[MxCanonicalJSON], and signed [MxSigning]. The signature is supplied

to the owner server alongside the event itself for sending to the

room.

6. Membership

After a room is created (by an imagined /createRoom API, for

example), it will exist on a single server: the owner's. This is not

particularly helpful if the goal is to talk to other people, so a

way to involve others in the conversation is needed.

Matrix currently has membership states for join, leave, invite,

kick, ban, and knock (request invite). These states have their own

set of rules governed by the room version to prevent cases of, for

example, ban evasion.

TODO: Describe those membership transitions. Currently specified in

the Client-Server API https://spec.matrix.org/v1.6/client-server-

api/#room-membership (we should move that).

¶

{

 // the room ID the event is sent within

 "room_id": "!room:example.org",

 // the implied (or explicit) event type

 "type": "org.example.event_type",

 // for state events, even if an empty string

 "state_key": "",

 // the user ID of the sender

 "sender": "@user:example.org",

 // milliseconds since epoch

 "origin_server_ts": 123456789,

 // the domain of the room owner

 "authorized_sending_server": "owner.example.org",

 "content": {

 // the normal event content

 },

 "hashes": {

 "sha256": "<content hash, just like in Matrix today>"

 }

}

¶

¶

¶

¶

¶

¶

The owner server broadcasts successful membership changes as

m.room.member events to all participant servers in the room,

including the sending server.

A server is considered to be "in the room" if it has at least one

user with join membership state.

7. State Events API

Matrix, and therefore Linearized Matrix, tracks changes to the room

as state events. State events have both an event type and state key

to differentiate them from room (or non-state) events. While history

for state changes is stored in the room, only the most recent change

for an event type and state key pair is considered "current state".

For example, the current room name is the most recent m.room.name

state event.

As mentioned above, a transport layer would be responsible for the

request/response structure for this API, however a need would be

present to send (arbitrary) state events, read those state events

back, and read the whole of current state (including membership).

8. Room Events API

Room events include messages and redactions, as well as messaging

features like reactions, edits, etc. These may be encrypted in

supported rooms (ones which specify an encryption algorithm in their

room state), and in their unencrypted form will use the Matrix

concept of Extensible Events.

TODO: Update the message format I-D for MSC1767 extensible events

and link it here. https://github.com/matrix-org/matrix-spec-

proposals/blob/main/proposals/1767-extensible-events.md

A transport layer would specify request/response structures for

sending, receiving, reading, and discovering nearby events (for

scrollback purposes).

9. Room Transfers

The current room owner would be stored as a state event within the

room, defaulting to the room creator. To transfer ownership, the

current owner chooses a participant server and requests that it

accept the ownership role. If the participant server agrees to take

ownership, it would create and sign a new room ownership state

event. The current owner then signs the ownership state event itself

and sends it to all participating servers (including the new owner),

just as it would for any other event. All requests from that point

forward now go to the new owner, and the old owner becomes a regular

participating server.

¶

¶

¶

¶

¶

¶

¶

¶

TODO: What do you do if the owner server dies or partitions before

transferring to a successor?

10. Other APIs

TODO: Expand upon this section.

A transport layer would specify request/response structures for:

Media/attachment distribution

APIs to support end-to-end encryption

Ephemeral data such as receipts, typing notifications, and

presence

Resolving an identifer to a room ID

User profiles (display names and avatars)

Other APIs as required to support interoperable messaging

11. Matrix Room Version

The first room version which supports Linearized Matrix will base

its requirements on Matrix's existing Room Version 10 definition

[MxRoomVersion10]. Changes will be made to support the following

features:

A description of the authorization rules when not using a DAG.

The DAG-compatible signing structure for events.

The use of Matrix's Extensible Events content format.

TODO: Expand upon this section with formal details of what the above

looks like for a room version.

12. Anti-Abuse and Anti-Spam

TODO: Expand upon this section.

In a Matrix room, state events get appended to the DAG/array to show

intent. If a server wishes to decline the request, such as in the

case where the recipient server believes an invite is spammy, it can

do so by sending another event to the room. For example, an antispam

system might issue redactions for messages which look spammy on

behalf of a room admin.

¶

¶

¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

13. DAG-Compatible Event Structure

Linearized Matrix is essentially an alternative API for accessing

normal Matrix rooms over federation, which means servers which

support a full-blown DAG can still join and participate in the room.

This is critical in order to avoid breaking compatibility with

today's fully-decentralized Matrix, and provides a way to

decentralize ownership of rooms even if large messaging providers

are themselves not able to implement full decentralization yet.

[I-D.nottingham-avoiding-internet-centralization]

With DAG-compatible servers in the room, the DAG-compatible servers

talk to each other directly as they do with the current Matrix APIs.

Any DAG-compatible server which can also speak Linearized Matrix can

connect to the owner server - effectively trunking Linearized Matrix

into normal Matrix and tracking its events into the DAG. As long as

servers speaking Linearized Matrix uphold the room's access

controls, then they appear as a single logical DAG-compatible server

to normal Matrix, and will maintain consistency with the rest of

normal Matrix.

Normally, events are checked for signatures from the "origin" server

implied by the sender on an event. Events sent with the Linearized

Matrix API are already signed by the participant server to ensure

the owner server isn't spoofing them, however an owner server might

not always be DAG-compatible itself. To remedy this, owner servers

can delegate their DAG involvement to a DAG-compatible server in the

room.

Delegating to a DAG-compatible server means creating a Delegated

Linear PDU from a Linear PDU. The owner moves the

authorized_sending_server value (which should be itself) to

original_authorized_sending_server then populates

authorized_sending_server with the domain name for the DAG-

compatible server it is using. The owner server then signs the

Delegated Linear PDU and sends it to the DAG-compatible server,

which then appends all the DAG-specific fields and signs the

resulting PDU itself before sending it to all the other DAG-

compatible servers in the room.

Note that while a Delegated Linear PDU modifies the structure that

was signed as a Linear PDU, it is easily possible to reconstruct a

Linear PDU from a Delegated Linear PDU. Similarly, a DAG-ready PDU

can be redacted down to a Delegated Linear PDU with ease.

A complete DAG-ready PDU would look like:

¶

¶

¶

¶

¶

¶

When validating the signatures [MxSignatureValidation] on this PDU,

DAG-capable servers would apply the following algorithm. If at any

point the check fails, the algorithm bails.

If an original_authorized_sending_server is present, construct

the implied Linear PDU from the PDU and validate the signature

for the server implied by the sender. Additionally, redact the

PDU down to a Delegated Linear PDU and validate the signature

for the authorized_sending_server value.

{

 // the room ID the event is sent within

 "room_id": "!room:example.org",

 // the implied (or explicit) event type

 "type": "org.example.event_type",

 // for state events, even if an empty string

 "state_key": "",

 // the user ID of the sender

 "sender": "@user:example.org",

 // milliseconds since epoch

 "origin_server_ts": 123456789,

 // the domain of the room owner

 "original_authorized_sending_server": "owner.example.org",

 // DAG-capable server

 "authorized_sending_server": "dag.example.org",

 "content": {

 // the normal event content

 },

 "hashes": {

 "sha256": "<content hash, just like in Matrix today>"

 },

 // other event format stuff:

 "auth_events": ["$event1", "$event2", "$etc"],

 "depth": 42,

 "prev_events": ["$event3", "$event4", "$etc2"],

 "signatures": {

 "dag.example.org": {

 "ed25519:abc": "<signature for PDU>"

 },

 "owner.example.org": {

 "ed25519:def": "<signature for Delegated Linear PDU>"

 },

 "example.org": {

 "ed25519:ghi": "<signature for non-delegated Linear PDU>"

 }

 }

}

¶

¶

1.

¶

[I-D.ralston-mimi-matrix-framework]

[I-D.nottingham-avoiding-internet-centralization]

If an original_authorized_sending_server is NOT present, redact

the PDU down to a Linear PDU and validate the signature for the

authorized_sending_server value.

Without considering the signatures from the domains in previous

steps, verify the signatures per normal. Note that the step

where the signature for the "origin server" (defined as the one

implied by the PDU's sender) is implicitly checked as part of

step 1 and 2, and not actually possible to verify in the

traditional sense. That particular step in event validation is

therefore skipped when step 1 or 2 is performed.

TODO: How does an owner server pick a DAG server to communicate

with, and how does the owner receive events from the DAG to send to

participant servers? One option might be to have DAG-capable servers

identify themselves during joins with the owner server, then the

current owner can transfer ownership to the DAG-capable server. The

DAG-capable owner would simply shuffle events around internally to

feed both API surfaces, though this means all DAG-capable servers

need to implement both API surfaces.

14. Security Considerations

TODO: Expand upon this section.

As discussed in the Event Signing section, we ensure servers are not

able to spoof events.

15. IANA Considerations

This document has no IANA actions.

16. References

16.1. Normative References

Ralston, T., "Matrix as a Messaging Framework", Work in

Progress, Internet-Draft, draft-ralston-mimi-matrix-

framework-01, 13 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ralston-mimi-matrix-

framework-01>.

16.2. Informative References

Nottingham, M., "Internet Centralization: What Can

Standards Do?", Work in Progress, Internet-Draft, draft-

nottingham-avoiding-internet-centralization-09, 17

2.

¶

3.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ralston-mimi-matrix-framework-01
https://datatracker.ietf.org/doc/html/draft-ralston-mimi-matrix-framework-01
https://datatracker.ietf.org/doc/html/draft-ralston-mimi-matrix-framework-01

[MxCanonicalJSON]

[MxContentHashCalculation]

[MxRedaction]

[MxRoomVersion10]

[MxSignatureValidation]

[MxSigning]

[MxV10AuthRules]

[MxV10PDUFormat]

February 2023, <https://datatracker.ietf.org/doc/html/

draft-nottingham-avoiding-internet-centralization-09>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Appendices | Canonical JSON",

2023, <https://spec.matrix.org/v1.6/appendices/

#canonical-json>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Calculating the

Content Hash", 2023, <https://spec.matrix.org/v1.6/

server-server-api/#calculating-the-content-hash-for-an-

event>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Client-Server API | Redaction

Algorithm", 2023, <https://spec.matrix.org/v1.6/client-

server-api/#redactions>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Room Version 10", 2023, <https://

spec.matrix.org/v1.6/rooms/v10>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Validating Hashes

and Signatures", 2023, <https://spec.matrix.org/v1.6/

server-server-api/#validating-hashes-and-signatures-on-

received-events>.

The Matrix.org Foundation C.I.C., "Matrix Specification

| v1.6 | Appendices | Signing", 2023, <https://

spec.matrix.org/v1.6/appendices/#signing-details>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Room Version 10 | Authorization

Rules", 2023, <https://spec.matrix.org/v1.6/rooms/v10/

#authorization-rules>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Room Version 10 | Event Format",

2023, <https://spec.matrix.org/v1.6/rooms/v10/#event-

format-1>.

Acknowledgments

Thank you to the Matrix Spec Core Team (SCT), and in particular

Richard van der Hoff, for exploring how Matrix rooms could be

represented as a linear structure, leading to this document.¶

https://datatracker.ietf.org/doc/html/draft-nottingham-avoiding-internet-centralization-09
https://datatracker.ietf.org/doc/html/draft-nottingham-avoiding-internet-centralization-09
https://spec.matrix.org/v1.6/appendices/#canonical-json
https://spec.matrix.org/v1.6/appendices/#canonical-json
https://spec.matrix.org/v1.6/server-server-api/#calculating-the-content-hash-for-an-event
https://spec.matrix.org/v1.6/server-server-api/#calculating-the-content-hash-for-an-event
https://spec.matrix.org/v1.6/server-server-api/#calculating-the-content-hash-for-an-event
https://spec.matrix.org/v1.6/client-server-api/#redactions
https://spec.matrix.org/v1.6/client-server-api/#redactions
https://spec.matrix.org/v1.6/rooms/v10
https://spec.matrix.org/v1.6/rooms/v10
https://spec.matrix.org/v1.6/server-server-api/#validating-hashes-and-signatures-on-received-events
https://spec.matrix.org/v1.6/server-server-api/#validating-hashes-and-signatures-on-received-events
https://spec.matrix.org/v1.6/server-server-api/#validating-hashes-and-signatures-on-received-events
https://spec.matrix.org/v1.6/appendices/#signing-details
https://spec.matrix.org/v1.6/appendices/#signing-details
https://spec.matrix.org/v1.6/rooms/v10/#authorization-rules
https://spec.matrix.org/v1.6/rooms/v10/#authorization-rules
https://spec.matrix.org/v1.6/rooms/v10/#event-format-1
https://spec.matrix.org/v1.6/rooms/v10/#event-format-1

Authors' Addresses

Travis Ralston

The Matrix.org Foundation C.I.C.

Email: travisr@matrix.org

Matthew Hodgson

The Matrix.org Foundation C.I.C.

Email: matthew@matrix.org

mailto:travisr@matrix.org
mailto:matthew@matrix.org

	Linearized Matrix API
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Identifiers
	4. Room Architecture
	5. Event Signing
	6. Membership
	7. State Events API
	8. Room Events API
	9. Room Transfers
	10. Other APIs
	11. Matrix Room Version
	12. Anti-Abuse and Anti-Spam
	13. DAG-Compatible Event Structure
	14. Security Considerations
	15. IANA Considerations
	16. References
	16.1. Normative References
	16.2. Informative References

	Acknowledgments
	Authors' Addresses

