
Workgroup:

More Instant Messaging Interoperability

Internet-Draft:

draft-ralston-mimi-matrix-framework-01

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: T. Ralston

The Matrix.org Foundation C.I.C.

Matrix as a Messaging Framework

Abstract

This document describes how Matrix, an existing openly specified

decentralized protocol for secure interoperable communications,

works to create a framework for messaging.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

turt2live.github.io/ietf-mimi-matrix-framework/draft-ralston-mimi-

matrix-framework.html. Status information for this document may be

found at https://datatracker.ietf.org/doc/draft-ralston-mimi-matrix-

framework/.

Discussion of this document takes place on the More Instant

Messaging Interoperability Working Group mailing list

(mailto:mimi@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/mimi/. Subscribe at https://

www.ietf.org/mailman/listinfo/mimi/.

Source for this draft and an issue tracker can be found at https://

github.com/turt2live/ietf-mimi-matrix-framework.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

¶

¶

¶

¶

¶

¶

¶

https://turt2live.github.io/ietf-mimi-matrix-framework/draft-ralston-mimi-matrix-framework.html
https://turt2live.github.io/ietf-mimi-matrix-framework/draft-ralston-mimi-matrix-framework.html
https://turt2live.github.io/ietf-mimi-matrix-framework/draft-ralston-mimi-matrix-framework.html
https://datatracker.ietf.org/doc/draft-ralston-mimi-matrix-framework/
https://datatracker.ietf.org/doc/draft-ralston-mimi-matrix-framework/
mailto:mimi@ietf.org
https://mailarchive.ietf.org/arch/browse/mimi/
https://mailarchive.ietf.org/arch/browse/mimi/
https://www.ietf.org/mailman/listinfo/mimi/
https://www.ietf.org/mailman/listinfo/mimi/
https://github.com/turt2live/ietf-mimi-matrix-framework
https://github.com/turt2live/ietf-mimi-matrix-framework
https://datatracker.ietf.org/drafts/current/

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Overall model

2.1. Eventual Consistency

3. Rooms and Events

3.1. State Events

3.2. Room Versions

3.3. Mapping Features to Events

4. Users and Devices

5. Room Version I.1

6. Federation API

7. Identity

8. End-to-end Encryption

9. Security Considerations

10. IANA Considerations

11. References

11.1. Normative References

11.2. Informative References

Author's Address

1. Introduction

Matrix is an existing open standard suitable for Instant Messaging

(IM), Voice over IP (VoIP) signaling, Internet of Things (IoT)

communication, and bridging other existing communication platforms

together. In this document we focus largely on the IM use case,

however the concepts can be applied to other forms of communication

as well.

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

The existing Matrix specification [MxSpec] is quite large, yet

modular. Here, we can focus on the reusable portions that cover

messaging, and leave the rest out of scope, leading to more

effective implementations.

This document assumes some prior knowledge of federated or

decentralized systems, such as the principles of email. This

document additionally references concepts from

[I-D.rosenberg-mimi-taxonomy] to build common understanding.

2. Overall model

At a high level, Matrix consists of 4 primary concepts:

Homeservers (also called "servers" for simplicity) contain user

accounts and handle the algorithms needed to support Rooms.

Users produce Events which are sent into Rooms through their

Homeserver.

Rooms are a defined set of algorithms which govern how all

servers in that room behave and treat Events. They are similar to

channels, group chats, etc from other protocols.

Events are pieces of information that make up a room. They can be

"state events" which track details such as membership, room name,

and encryption algorithm or "timeline events" which are most

commonly messages between users.

Homeservers replicate events created by their users to all other

participating homeservers in the room (any server with at least 1

joined user). Similarly, events are retrieved on-demand from those

same participating homeservers. The details regarding how this is

done specifically, and how a server becomes joined to a room, are

discussed later in this document.

A 2 homeserver federation might look as follows:

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

@alice:hs1.example.org

@bob:hs1.example.org

@carol:hs1.example.org

Homeserver 1
hs1.example.org

Homeserver 2
hs2.example.org

@dan:hs2.example.org

@erin:hs2.example.org

Figure 1: Simple Network Architecture of Matrix

In this Figure, Alice, Bob, and Carol are on "hs1", with Dan and

Erin being on "hs2". Despite both having the root domain

"example.org", they are considered two completely different

homeservers. Typically, a homeserver would use a domain which was

closer to the root (ie: just "example.org"), however for

illustrative purposes and having two homeservers to work with, they

have been "improperly" named here.

If Alice creates a room and invites Bob, Alice and Bob can

communicate without hs2. If Bob invites Dan or Erin, hs2 joins the

room when either accepts the invite. During the join process hs1

replicates the current state of the room (membership, room name,

etc) to hs2. After this initial replication, both homeservers

replicate new events from their side to the other. This replication

includes validation of the events on the receiving side.

¶

¶

¶

2.1. Eventual Consistency

In federated environments it is extremely likely that a remote

server will be offline or unreachable for a variety of reasons, and

a protocol generally needs to handle this network fault without

causing undue inconvenience to others involved. In Matrix,

homeservers can go completely offline without affecting other

homeservers (and therefore users) in the room - only users on that

offline homeserver would be affected.

During a network fault, homeservers can continue to send events to

the room without the involvement of the remaining homeservers. This

applies to both sides of the fault: the "offline" server might have

had an issue where it could not send or receive from the federation

side, but users are still able to send events internally - the

server can continue to queue these events until full connectivity is

restored. When network is restored between affected parties, they

simply send any traffic the remote side missed and the room's

history is merged together. This is eventual consistency: over time,

all homeservers involved will reach a consistent state, even through

network issues.

3. Rooms and Events

Rooms are a conceptual place where users can send and receive

events. Events are sent into the room, and all participants with

sufficient access will receive the event. Rooms have a unique

identifier of !opaque_localpart:example.org, with the server name in

the ID providing no meaning beyond a measure to ensure global

uniqueness of the room. It is not possible to create rooms with

another server's name in the ID.

Rooms are not "created on" any particular server because the room is

replicated to all participating homeservers equally. Though, at time

of creation, the room might only exist on a single server until

other participants are invited and joined (as is typical with

creating a new room).

Rooms are not limited in number of participants, and a "direct

message" (DM, 1:1) room is simply a room with two users in it. Rooms

can additionally have a "type" to clearly communicate their intended

purpose, however this type does not fundamentally change that events

are sent into the room for receipt by other users. The type

typically only changes client-side rendering/handling of the room.

Events are how data is exchanged over Matrix. Each client action

(eg: "send a message") correlates with exactly one event. Each event

has a type to differentiate different kinds of data, and each type

SHOULD serve exactly one purpose. For example, an event for an image

¶

¶

¶

¶

¶

might contain a "caption" (alt text), but should not contain a text

message to go along with the image - instead, the client would send

two events and use a structured relationship to represent the text

referencing the image.

Through the use of namespaces, events can represent any piece of

information. Clients looking to send text messages would use

m.message, for example, while an IoT device might send

org.example.temperature into the room. The namespace for event types

is the same as the Java package naming conventions (reverse domain

with purpose).

3.1. State Events

Within a room, some events are used to store key/value information:

these are known as state events. Alongside all the normal fields for

an event, they also contain a "state key" which is used to store

similar information of the same type in the room.

Such an example of a state event is membership: each member, once

involved in the room in some way, has a dedicated m.room.member

state event to describe their membership state (join, leave, ban,

etc) and a state key of their user ID. This allows their membership

to change and for other clients (or servers) to easily look up

current membership information using the event type and predictable

state key.

Other examples of state events are the room name, topic,

permissions, history visibility, join constraints, and creation

information itself (all with empty/blank state keys, as there's only

one useful version of each). Custom state events are additionally

possible, just like with custom events.

3.2. Room Versions

Rooms have strict rules for what is allowed to be contained within

them, and have various algorithms which handle different aspects of

the protocol, such as conflict resolution and acceptance of events.

To allow rooms to be improved upon through new algorithms or rules,

"room versions" are employed to manage a set of expectations for

each room. New room versions would be created and assigned as

needed.

Room versions do not have implicit ordering or hierarchy to them,

and once in place their principles are immutable (preventing all

existing rooms from breaking). This allows for breaking changes to

be implemented without actually breaking existing rooms: rooms would

"upgrade" to the new room version, putting their old copy behind

them.

¶

¶

¶

¶

¶

¶

¶

Upgrading a room is done by creating a new room with the new version

specified, and adding some referential information in both rooms.

This is to allow clients and servers to treat the set of rooms as a

single logical room, with history being available for clients which

might wish to combine the timelines of the rooms to hide the

mechanics of the room upgrade itself.

Rooms can be upgraded any number of times, and because there's no

implicit ordering for room versions it's possible to "upgrade" from,

for example, version 2 to 1, or even 2 to 2.

Later in this document is a description of a room version suitable

for MIMI.

3.3. Mapping Features to Events

To achieve proper interoperability it is important to consider which

features the other clients (and sometimes servers) in the domain

support, and how to represent them using a common format

[I-D.ralston-mimi-messaging-requirements]. Matrix represents

everything either as Events, per earlier in this section, or as

Ephemeral Data Units (EDUs) [MxEDU] when the data doesn't need to be

persisted to the room.

This structure of having everything being a genericised event or EDU

allows Matrix to represent nearly every messaging feature as a

content format problem. Servers additionally do not generally need

to do much processing of events in order for the clients to operate,

and can even be purely store & forward-like nodes for clients. The

interface between client and server (also called the Client-Server

API) is out of scope for this document. The Matrix Client-Server API

[MxClientServerApi] may be a good reference for building a Matrix-

native client or server implementation.

In Matrix, the following is how some common features would be

represented:

Feature Representation

Direct/Private Messages,

1:1 chats
A room with 2 users in it

Message history
Natural consequence of Matrix's room

algorithms. Stored on the server.

Text messages Timeline events

Multimedia (images,

video, etc)
Timeline events

Message edits Timeline events

Redaction/Removal Timeline events

Reactions Timeline events

¶

¶

¶

¶

¶

¶

Feature Representation

Replies & rich markup Timeline events

VoIP Timeline events & WebRTC

Threads Timeline events

Encryption
Timeline events containing an encrypted

plaintext event payload

Typing notifications EDUs

Read receipts EDUs

Presence/online status EDUs

Invites/membership State events

Room name, topic, etc State events

Table 1: Examples of IM features mapped to Matrix

Note: some features have not been included for brevity. The features

in the table above should represent enough of a baseline to

determine whether another feature would be a timeline event, state

event, EDU, or something else.

In Matrix's content format, updated and defined by MSC1767

[MSC1767], fallbacks to rich text are common to ensure clients can

particpate as best as realistically possible when encountering

features they don't support. For example, a client which doesn't

support polls might represent that poll simply as a text message and

users can react to it (or simply reply with more text) to "vote".

4. Users and Devices

Each user, identified by @localpart:example.org, can have any number

of "devices" associated with them. Typically linked to a logged-in

session, a device has an opaque ID to identify it and usually holds

applicable encryption keys for end-to-end encryption.

Multiple algorithms for encryption are supported, though the Matrix

specification currently uses its own Olm and Megolm algorithms for

encryption. For increased interoperability, Matrix would adopt MLS

[I-D.ietf-mls-protocol] instead, likely with minor changes to

support decentralized environments [DMLS].

5. Room Version I.1

The room version grammar [MxRoomVersionGrammar] reserves versions

consisting solely of 0-9 and . for the Matrix protocol itself. For

purposes of MIMI, a reservation of versions starting with I. and

consisting otherwise of 0-9 and . is introduced.

The first version under this reservation would be I.1, described as

follows.

¶

¶

¶

¶

¶

¶

I.1 is based upon Matrix's Room Version 10 [MxRoomVersion10], and

MSC1767 [MSC1767] is incorporated to provide better content format

primitives. Note that while the Matrix specification references

clients and HTTP/JSON APIs, neither of these details are strictly

relevant for this document.

6. Federation API

In order to replicate a room across other homeservers, an API must

exist to federate accordingly. This document defines a transport-

agnostic API for federation in Matrix.

Matrix aims for a "Multilateral" federation described by

[I-D.rosenberg-mimi-taxonomy], where servers can implement their own

non-standard checks on requests to ensure their server is operating

safely. For example, while this document describes an "invite API",

a server might choose to block invites from a particular server or

user for any reason it feels is reasonable (preventing the receiving

server from participating in the room).

The major APIs needed for federation are as follows. Note that where

Matrix specification already exists, transport details in that

specification are out of scope of this document.

A way to invite users to a room (when their server isn't already

participating in the room). This is specified by Matrix already

[MxInviteApi].

A way to join a room the server doesn't yet already participate

in. This is specified by Matrix already [MxJoinApi].

A way to knock or request an invite to a room (when the server

isn't already participating in the room). This is specified by

Matrix already [MxKnockApi].

A way to reject invites when the server isn't already

participating in the room. This is specified by Matrix already

[MxLeaveApi].

A way to retrieve individual and missing events from other

participating servers, subject to history visbility and

authorization. This is specified by Matrix already [MxEventsApi]

[MxBackfillApi].

A way to send events to another server. Matrix currently

describes this as a transport-level detail in the form of

transactions [MxTransactionApi].

Note that the membership APIs above only apply when the server isn't

already participating in the room. If the server is already

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

[I-D.ralston-mimi-messaging-requirements]

participating, the server can simply generate an appropriate

membership event for the user and send it to the other participating

servers directly - it does not need to handshake a valid event with

a resident server.

Matrix defines many more federation APIs such as to-device

messaging, ephemeral event handling (typing notifications, presence,

etc), and encryption-specific APIs, however these are out of scope

of this document.

7. Identity

Matrix relies on identifiers being user IDs (@user:example.org),

however in the wider scope of MIMI it is expected that a user might

be trying to message a phone number instead of knowing the user ID.

This document does not define how an identifier like a phone number

is resolved to a user ID, but expects that a process exists to do

so.

Such a service might resolve +1 555 123 4567 to

@15551234567:example.org, for example.

8. End-to-end Encryption

Encryption of events generally happens at the Content Format level,

with key exchange happening over a transport-level concern. Matrix

currently uses a dedicated set of APIs for key exchange, though with

the adoption of MLS by MIMI there are expected changes

[MxDevicesApi] [MxEncryptionApi] [MxToDeviceApi].

9. Security Considerations

Not formally specified in this version of the document, Matrix has

several threat model considerations to ensure feature development

does not make these threats easier to achieve. They are currently

specified in v1.6 of the Matrix specification under Section 6 of the

Appendices. [MxSecurityThreatModel]

10. IANA Considerations

This document has no IANA actions.

11. References

11.1. Normative References

Ralston, T., "Requirements of Interoperable Messaging",

Work in Progress, Internet-Draft, draft-ralston-mimi-

messaging-requirements-00, 13 March 2023, <https://

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ralston-mimi-messaging-requirements-00

[I-D.rosenberg-mimi-taxonomy]

[MSC1767]

[MxBackfillApi]

[MxEventsApi]

[MxInviteApi]

[MxJoinApi]

[MxKnockApi]

[MxLeaveApi]

datatracker.ietf.org/doc/html/draft-ralston-mimi-

messaging-requirements-00>.

Rosenberg, J., "A Taxonomy for More Messaging Interop

(MIMI)", Work in Progress, Internet-Draft, draft-

rosenberg-mimi-taxonomy-00, 24 October 2022, <https://

datatracker.ietf.org/doc/html/draft-rosenberg-mimi-

taxonomy-00>.

Hodgson, M. and T. Ralston, "Extensible event types &

fallback in Matrix (v2)", 2023, <https://github.com/

matrix-org/matrix-spec-proposals/blob/

01654eb2dec7769daf1d8d7a25c04cb70a1ac9f4/proposals/1767-

extensible-events.md>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Backfill", 2023,

<https://spec.matrix.org/v1.6/server-server-api/

#backfilling-and-retrieving-missing-events>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Event Retrieval",

2023, <https://spec.matrix.org/v1.6/server-server-api/

#retrieving-events>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Invites", 2023,

<https://spec.matrix.org/v1.6/server-server-api/

#inviting-to-a-room>.

The Matrix.org Foundation C.I.C., "Matrix Specification

| v1.6 | Federation API | Joins", 2023, <https://

spec.matrix.org/v1.6/server-server-api/#joining-rooms>.

The Matrix.org Foundation C.I.C., "Matrix Specification

| v1.6 | Federation API | Knocks", 2023, <https://

spec.matrix.org/v1.6/server-server-api/#a-nameknocking-

rooms-knocking-upon-a-room>.

The Matrix.org Foundation C.I.C., "Matrix Specification

| v1.6 | Federation API | Leaves and Rejected Invites",

https://datatracker.ietf.org/doc/html/draft-ralston-mimi-messaging-requirements-00
https://datatracker.ietf.org/doc/html/draft-ralston-mimi-messaging-requirements-00
https://datatracker.ietf.org/doc/html/draft-rosenberg-mimi-taxonomy-00
https://datatracker.ietf.org/doc/html/draft-rosenberg-mimi-taxonomy-00
https://datatracker.ietf.org/doc/html/draft-rosenberg-mimi-taxonomy-00
https://github.com/matrix-org/matrix-spec-proposals/blob/01654eb2dec7769daf1d8d7a25c04cb70a1ac9f4/proposals/1767-extensible-events.md
https://github.com/matrix-org/matrix-spec-proposals/blob/01654eb2dec7769daf1d8d7a25c04cb70a1ac9f4/proposals/1767-extensible-events.md
https://github.com/matrix-org/matrix-spec-proposals/blob/01654eb2dec7769daf1d8d7a25c04cb70a1ac9f4/proposals/1767-extensible-events.md
https://github.com/matrix-org/matrix-spec-proposals/blob/01654eb2dec7769daf1d8d7a25c04cb70a1ac9f4/proposals/1767-extensible-events.md
https://spec.matrix.org/v1.6/server-server-api/#backfilling-and-retrieving-missing-events
https://spec.matrix.org/v1.6/server-server-api/#backfilling-and-retrieving-missing-events
https://spec.matrix.org/v1.6/server-server-api/#retrieving-events
https://spec.matrix.org/v1.6/server-server-api/#retrieving-events
https://spec.matrix.org/v1.6/server-server-api/#inviting-to-a-room
https://spec.matrix.org/v1.6/server-server-api/#inviting-to-a-room
https://spec.matrix.org/v1.6/server-server-api/#joining-rooms
https://spec.matrix.org/v1.6/server-server-api/#joining-rooms
https://spec.matrix.org/v1.6/server-server-api/#a-nameknocking-rooms-knocking-upon-a-room
https://spec.matrix.org/v1.6/server-server-api/#a-nameknocking-rooms-knocking-upon-a-room
https://spec.matrix.org/v1.6/server-server-api/#a-nameknocking-rooms-knocking-upon-a-room

[MxRoomVersion10]

[MxRoomVersionGrammar]

[DMLS]

[I-D.ietf-mls-protocol]

[MxClientServerApi]

[MxDevicesApi]

[MxEDU]

[MxEncryptionApi]

[MxSecurityThreatModel]

2023, <https://spec.matrix.org/v1.6/server-server-api/

#leaving-rooms-rejecting-invites>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Room Version 10", 2023, <https://

spec.matrix.org/v1.6/rooms/v10/>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Room Versions | Room Version

Grammar", 2023, <https://spec.matrix.org/v1.6/rooms/

#room-version-grammar>.

11.2. Informative References

Chathi, H., "Decentralised MLS", Web https://

gitlab.matrix.org/matrix-org/mls-ts/-/blob/

dd57bc25f6145ddedfb6d193f6baebf5133db7ed/

decentralised.org, 2021, <https://gitlab.matrix.org/

matrix-org/mls-ts/-/blob/

dd57bc25f6145ddedfb6d193f6baebf5133db7ed/

decentralised.org>.

Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

Omara, E., and K. Cohn-Gordon, "The Messaging Layer

Security (MLS) Protocol", Work in Progress, Internet-

Draft, draft-ietf-mls-protocol-18, 13 March 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-mls-

protocol-18>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Client-Server API", 2023,

<https://spec.matrix.org/v1.6/client-server-api>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Device

Management", 2023, <https://spec.matrix.org/v1.6/server-

server-api/#device-management>.

The Matrix.org Foundation C.I.C., "Matrix Specification |

v1.6 | Federation API | EDUs", 2023, <https://

spec.matrix.org/v1.6/server-server-api/#edus>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | End-to-End

Encryption", 2023, <https://spec.matrix.org/v1.6/server-

server-api/#end-to-end-encryption>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Appendices | Security Threat

https://spec.matrix.org/v1.6/server-server-api/#leaving-rooms-rejecting-invites
https://spec.matrix.org/v1.6/server-server-api/#leaving-rooms-rejecting-invites
https://spec.matrix.org/v1.6/rooms/v10/
https://spec.matrix.org/v1.6/rooms/v10/
https://spec.matrix.org/v1.6/rooms/#room-version-grammar
https://spec.matrix.org/v1.6/rooms/#room-version-grammar
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/dd57bc25f6145ddedfb6d193f6baebf5133db7ed/decentralised.org
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/dd57bc25f6145ddedfb6d193f6baebf5133db7ed/decentralised.org
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/dd57bc25f6145ddedfb6d193f6baebf5133db7ed/decentralised.org
https://gitlab.matrix.org/matrix-org/mls-ts/-/blob/dd57bc25f6145ddedfb6d193f6baebf5133db7ed/decentralised.org
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-18
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-18
https://spec.matrix.org/v1.6/client-server-api
https://spec.matrix.org/v1.6/server-server-api/#device-management
https://spec.matrix.org/v1.6/server-server-api/#device-management
https://spec.matrix.org/v1.6/server-server-api/#edus
https://spec.matrix.org/v1.6/server-server-api/#edus
https://spec.matrix.org/v1.6/server-server-api/#end-to-end-encryption
https://spec.matrix.org/v1.6/server-server-api/#end-to-end-encryption

[MxSpec]

[MxToDeviceApi]

[MxTransactionApi]

Model", 2023, <https://spec.matrix.org/v1.6/appendices/

#security-threat-model>.

The Matrix.org Foundation C.I.C., "Matrix Specification |

v1.6", 2023, <https://spec.matrix.org/v1.6/>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Send-to-device

Messaging", 2023, <https://spec.matrix.org/v1.6/server-

server-api/#send-to-device-messaging>.

The Matrix.org Foundation C.I.C., "Matrix

Specification | v1.6 | Federation API | Transactions",

2023, <https://spec.matrix.org/v1.6/server-server-api/

#transactions>.

Author's Address

Travis Ralston

The Matrix.org Foundation C.I.C.

Email: travisr@matrix.org

https://spec.matrix.org/v1.6/appendices/#security-threat-model
https://spec.matrix.org/v1.6/appendices/#security-threat-model
https://spec.matrix.org/v1.6/
https://spec.matrix.org/v1.6/server-server-api/#send-to-device-messaging
https://spec.matrix.org/v1.6/server-server-api/#send-to-device-messaging
https://spec.matrix.org/v1.6/server-server-api/#transactions
https://spec.matrix.org/v1.6/server-server-api/#transactions
mailto:travisr@matrix.org

	Matrix as a Messaging Framework
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Overall model
	2.1. Eventual Consistency

	3. Rooms and Events
	3.1. State Events
	3.2. Room Versions
	3.3. Mapping Features to Events

	4. Users and Devices
	5. Room Version I.1
	6. Federation API
	7. Identity
	8. End-to-end Encryption
	9. Security Considerations
	10. IANA Considerations
	11. References
	11.1. Normative References
	11.2. Informative References

	Author's Address

